Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF

F.G. CANALESa, J.L. MANTARIa,b,*

a Faculty of Mechanical Engineering, Universidad de Ingenier\ı́a y Tecnolog\ı́a (UTEC), Lima 15063, Peru
b Department of Mechanical Engineering, University of New Mexico, Albuquerque 87131, USA

Received 30 June 2016; revised 28 October 2016; accepted 24 January 2017
Available online 11 July 2017

KEYWORDS
Analytical solution; Beam; Clamped; Fourier; Unified formulation

Abstract
This paper presents an analytical solution for static analysis of thick rectangular beams with different boundary conditions. Carrera’s Unified Formulation (CUF) is used in order to consider shear deformation theories of arbitrary order. The novelty of the present work is that a boundary discontinuous Fourier approach is used to consider clamped boundary conditions in the analytical solution, unlike Navier-type solutions which are restricted to simply supported beams. Governing equations are obtained by employing the principle of virtual work. The numerical accuracy of results is ascertained by studying the convergence of the solution and comparing the results to those of a 3D finite element solution. Beams subjected to bending due to a uniform pressure load and subjected to torsion due to opposite linear forces are considered. Overall, accurate results close to those of 3D finite element solutions are obtained, which can be used to validate finite element results or other approximate methods.

© 2017 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1D theories are widely used to analyze behaviors of slender bodies in a computationally efficient manner. For this reason, many beam models have been developed. The most well-known beam theory is the classical or Euler-Bernoulli beam theory, which yields reasonably good results for slender beams. However, this model does not take into account shear deformations in a beam. The Timoshenko beam theory is an improvement over the classical theory that considers a uniform shear distribution across the thickness of a beam. However, this theory requires a shear correction factor to correct the strain energy of deformation. Discussion of shear coefficients has been presented in Refs.1–4

A large amount of Higher-order Shear Deformation Theories (HSDTs) have been developed in order to consider a nonuniform shear distribution in a beam’s cross-section. HSDTs with polynomial distributions of shear deformation...
across the thickness are common due to their simplicity, and some have been presented in Refs. 5–13. Theories containing trigonometric functions in thickness coordinates are also common. A trigonometric shear deformation theory has been presented by Dahake and Ghugal. 14 Many polynomial and trigonometric deformation theories have been developed for analysis of laminated beams, as presented in Refs. 15–20. First-order shear deformation theories are popular due to their computational efficiency, and some have been given in Refs. 21–24.

In order to analyze theories with arbitrary order in a systematic manner, a unified formulation known as Carrera’s Unified Formulation (CUF) has been developed in Ref. 25. This formulation has been applied to solve multfield problems, as presented in Refs. 26–28. Carrera and Giunta 29 used the 1D-CUF model to analyze 1D problems with complex cross-sections, and further development has been presented by Carrera et al. 30–32. The capability of these models to obtain quasi-3D solutions has been exploited to develop accurate static, free vibration, 34,35, and buckling analysis 36 of composite beams.

Analytical solutions for bending of simply supported beams are obtained by using a Fourier series in Navier-type solutions. Other boundary conditions such as clamped conditions can be considered in a finite element formulation or by using the Ritz method, but accurate analytical solutions for these boundary conditions are a fairly scarce topic in the literature. Since finite element formulations or variational methods obtain approximate results, exact analytical solutions are required as a benchmark in order to assess the validity of the results. The present work intends to provide such analytical solutions for clamped boundary conditions.

A generalization of the Fourier series method known as the boundary discontinuous Fourier method can take into account clamped boundary conditions. This method was developed by Chaudhuri in Refs. 37,38. Discontinuities are introduced in order to satisfy boundary constraints. This solution methodology has been applied for static and free vibration analysis of cylindrical panels, 39,40 doubly-curved panels, 41–48 and plates 49–54. Since the rate of convergence of a Fourier series is slower in the presence of discontinuities, a mixed Fourier solution has also been developed in Refs. 55,56 in order to produce accelerated convergence. Oktem and Chaudhuri have applied the boundary discontinuous Fourier method for analysis of plates 57–59 and shells 60–63 using HSDTs.

In this paper, an analytical solution for static analysis of thick beams with Clamped-Clamped (C-C) and Clamped-Simple (C-S) boundary conditions is obtained. A general approach to obtain such an analytical solution using a unified formulation is currently unavailable in the literature, since the other option commonly used for static analysis of beams is a Navier-type solution, which can only consider simply supported edges. Theories of arbitrary order are considered in a systematic manner by using CUF. The principle of virtual work is used to obtain governing equations. The convergence of the solution is analyzed and 3D finite element solutions are obtained in order to assess the validity of results. Good results agreements with 3D finite element solutions are obtained. The results can be used as a benchmark for comparison with approximate solution methods.

2. Analytical modeling

A beam of length L, width b, and total thickness h is considered in the present analysis. The rectangular Cartesian coordinate system used in the present work is shown in Fig. 1. The beam occupies the following region: \(-h/2 \leq x \leq h/2, 0 \leq y \leq L, -h/2 \leq z \leq h/2\).

2.1. Elastic stress-strain relations

A general displacement vector is introduced:

\[\mathbf{u}(x, y, z) = [u_x \quad u_y \quad u_z]^T \] (1)

The cross-sectional plane of the beam is denoted by \(\Omega \). The stress and strain components are grouped as

\[
\begin{align*}
\sigma_p &= \begin{bmatrix} \sigma_{zz} & \sigma_{zx} & \sigma_{zy} \end{bmatrix}^T \\
\varepsilon_p &= \begin{bmatrix} \varepsilon_{zz} & \varepsilon_{zx} & \varepsilon_{zy} \end{bmatrix}^T \\
\sigma_n &= \begin{bmatrix} \sigma_{xy} & \sigma_{yz} & \sigma_{yz} \end{bmatrix}^T \\
\varepsilon_n &= \begin{bmatrix} \varepsilon_{xy} & \varepsilon_{yx} & \varepsilon_{yx} \end{bmatrix}^T
\end{align*}
\] (2)

where \(\sigma_p \) and \(\varepsilon_p \) are the components of the stress and strain vectors, respectively. Subscript “p” stands for terms lying on planes orthogonal to the cross-section, while subscript “n” stands for terms lying on the cross-section. Considering small amplitude displacements, the strain-displacement relations are

\[
\begin{align*}
\varepsilon_p &= D_h \mathbf{u} \\
\varepsilon_n &= D_n \mathbf{u} = (D_{ho} + D_{hn}) \mathbf{u}
\end{align*}
\] (3)

The linear differential operators \(D_h, D_{ho}, \) and \(D_{hn} \) are given by

\[
D_h = \begin{bmatrix} 0 & 0 & \frac{\partial}{\partial z} \\
0 & 0 & 0 \\
0 & \frac{\partial}{\partial x} & 0 \\
\frac{\partial}{\partial y} & 0 & 0 \\
0 & 0 & \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial x} & 0 \\
\end{bmatrix}
\] (4)

\[
D_{ho} = \begin{bmatrix} 0 & 0 & \frac{\partial}{\partial z} \\
0 & 0 & 0 \\
0 & \frac{\partial}{\partial x} & 0 \\
\frac{\partial}{\partial y} & 0 & 0 \\
0 & 0 & \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial x} & 0 \\
\end{bmatrix}
\]

\[
D_{hn} = \begin{bmatrix} 0 & 0 & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
0 & \frac{\partial}{\partial x} & 0 \\
\frac{\partial}{\partial y} & 0 & 0 \\
0 & 0 & \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial x} & 0 \\
\end{bmatrix}
\]
The stress components are given by constitutive laws:
\[\sigma = \widetilde{C} \varepsilon \]
(5)
where \(\sigma \) is the stress vector, \(\varepsilon \) is the strain vector and \(\widetilde{C} \) is the constitutive matrix. Eq. (5) can be split by using Eq. (2):
\[
\begin{align*}
\sigma_p &= \tilde{C}_{pp} \varepsilon_p + \tilde{C}_{pn} \varepsilon_n \\
\sigma_n &= \tilde{C}_{np} \varepsilon_p + \tilde{C}_{nn} \varepsilon_n
\end{align*}
(6)
In the case of an isotropic material, the matrices \(\tilde{C}_{pp}, \tilde{C}_{pn}, \tilde{C}_{np}, \) and \(\tilde{C}_{nn} \) are given by
\[
\begin{align*}
\tilde{C}_{pp} &= \begin{bmatrix}
\tilde{C}_{11} & \tilde{C}_{12} & 0 \\
\tilde{C}_{12} & \tilde{C}_{22} & 0 \\
0 & 0 & \tilde{C}_{44}
\end{bmatrix} \\
\tilde{C}_{nn} &= \begin{bmatrix}
\tilde{C}_{55} & 0 & 0 \\
0 & \tilde{C}_{66} & 0 \\
0 & 0 & \tilde{C}_{33}
\end{bmatrix} \\
\tilde{C}_{pn} &= \tilde{C}^{T}_{np} = \begin{bmatrix}
0 & 0 & \tilde{C}_{13} \\
0 & 0 & \tilde{C}_{23} \\
0 & 0 & 0
\end{bmatrix}
\end{align*}
(7)
The coefficients \(\tilde{C}_{ij} \) depend on the material properties. They can be derived from the generic case of an orthotropic material.

2.2. Displacement field

The displacement field is expressed within the framework of CUF:
\[u(x, y, z) = F_i(x, z)u_i(y) \quad \tau = 1, 2, \ldots, M \]
(8)
where \(F_i \) are the functions of coordinates \(x \) and \(z \) on the cross-section, \(M \) stands for the number of terms used in the expansion, \(u_i \) is the vector of the generalized displacements, and the repeated subscript “ \(\tau \) ” indicates summation. A Taylor-type expansion is used to determine the functions \(F_i \), consisting of a MacLaurin series that uses the 2D polynomials \(x^2z \) as a base. Table 1 presents \(M \) and \(F_i \) as functions of the expansion order \(N \).

For example, the displacement field of the second-order (\(N = 2 \)) Taylor-type expansion model can be expressed as
\[
\begin{align*}
\varphi &= u_{x_1} + xu_{x_1} + zu_{x_2} + x^2u_{x_1} + z^2u_{x_2} \\
y &= u_{x_1} + xu_{x_2} + z^2u_{x_1} + x^2u_{x_2} + z^2u_{x_1} \\
z &= u_{x_1} + x^2u_{x_2} + z^2u_{x_1} + x^2u_{x_2}
\end{align*}
(9)
Classical beam theories can be obtained as a special case of the generalized formulation. For example, the Timoshenko beam theory is obtained in two steps: (a) a first-order displacement field is considered:
\[
\begin{align*}
\varphi &= u_{x_1} + xu_{x_2} + z^2u_{x_2} \\
y &= u_{x_2} + xu_{x_1} + z^2u_{x_1} \\
z &= u_{x_1} + xu_{x_2} + z^2u_{x_2}
\end{align*}
(10)
and (b) the displacements \(u_x \) and \(u_z \) must be constant in the cross-section:
\[u_{x_1} = u_{x_2} = u_z = 0 \]
(11)

2.3. Principle of virtual work

The static version of the principle of virtual work is applied:
\[\delta L_{int} = \int_I \left(\delta \sigma^T \varepsilon - \delta \sigma^T \varepsilon \right) dV = \delta L_{ext} \]
(12)
where \(\delta \) stands for the virtual variation operator, \(L_{int} \) stands for the strain energy, and \(L_{ext} \) is the work. Substituting Eqs. (3), (4), and (6) in Eq. (12), the following expression is obtained:
\[
\delta L_{int} = \int_I \int_N \left\{ (D_{pp}u_{x_1})^T \left[\tilde{C}_{pp}D_{pp} + \tilde{C}_{pn}(D_{nat} + D_{by}) \right] u \right. \\
\left. + ((D_{nat} + D_{by})u_{x_2})^T \left[\tilde{C}_{np}D_{pp} + \tilde{C}_{nn}(D_{nat} + D_{by}) \right] u \right\} d\Omega dy
\]
(13)
Substituting Eqs. (4), (7), and (8) in Eq. (13), and integrating by parts results in the following:
\[
\delta L_{int} = \int_I \int_N \delta_u T^{s}u_{x_1}^T u_{x_1} dy + \left[\delta_u T^{s}u_{x_2}^T u_{x_2} \right]_{y=0} = \delta L_{ext} \]
(14)
where \(K^{s} \) is the stiffness matrix and \(\Pi^{s} \) is the matrix of the natural boundary conditions. The components of \(\Pi^{s} \) are provided as
\[
\Pi^{s}_{i,j} = \begin{cases}
E_{22}^{s} & \text{if } i = j \neq x, y, z \\
\frac{E_{22}^{s}}{E_{33}} & \text{if } i = j = x, y, z \\
0 & \text{otherwise}
\end{cases}
\]
(15)
where a cross-sectional moment parameter has been used, and a generic term is defined as
\[E_{i,j}^{s} = \int_B \tilde{C}_{i,j} F_i F_j d\Omega \]
(16)
The suffix after the comma denotes the derivatives. The components of \(\Pi^{s} \) are provided as follows:
\[
\Pi^{s}_{i,j} = \begin{cases}
E_{22}^{s} & \text{if } i = j \neq x, y, z \\
\frac{E_{22}^{s}}{E_{33}} & \text{if } i = j = x, y, z \\
0 & \text{otherwise}
\end{cases}
\]
(17)
Table 1 MacLaurin’s polynomials.

<table>
<thead>
<tr>
<th>Expansion order</th>
<th>(M)</th>
<th>(F_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(F_1 = 1)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>(F_2 = x_1, F_3 = x_2)</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>(F_4 = x_1^2, F_5 = x_2, F_6 = x_3^2)</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>(F_7 = x_1^3, F_8 = x_2^2, F_9 = x_1 x_2, F_{10} = x_3^3)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>((N+1)(N+2))/2</td>
<td>(N+1)(N+2)/2</td>
<td>(x^N), (F_{(N+1)(N+2)/2} = x^N)</td>
</tr>
<tr>
<td>(N)</td>
<td>((N+1)(N+2)/2)</td>
<td>(F_{(N+1)(N+2)/2} = x^N)</td>
</tr>
</tbody>
</table>

The suffix after the comma denotes the derivatives.
Letting $\mathbf{P} = [P_{x1}, P_{y1}, P_{z1}]^T$ define a vector of the generalized forces, the natural boundary conditions can be obtained by substituting Eq. (17) in Eq. (14):

$$
\begin{align*}
\delta u_{x1} : \quad & P_{x1} = E\eta_{1}^{2}u_{x1,y} + E\eta_{1}^{2}u_{y1,x} \\
\delta u_{y1} : \quad & P_{y1} = E\eta_{1}^{2}u_{y1,x} + E\eta_{1}^{2}u_{x1,y} + E\eta_{1}^{2}u_{z1} \\
\delta u_{z1} : \quad & P_{z1} = E\eta_{1}^{2}u_{x1,y} + E\eta_{1}^{2}u_{y1,x} + E\eta_{1}^{2}u_{z1}
\end{align*}
$$

(18a, 18b, 18c)

2.4. Boundary discontinuous solution

Geometric boundary conditions for simply supported beams, in terms of the displacement variables given in Eq. (8), are expressed as

$$
\begin{align*}
\begin{cases}
\begin{align*}
u_{x1}(0) &= u_{y1,y}(0) = u_{z1}(0) = 0 \\
u_{x1}(L) &= u_{y1,y}(L) = u_{x1}(L) = 0
\end{align*}
\end{cases}
\end{align*}
$$

(19)

Geometric boundary conditions for clamped-clamped beams, in terms of the displacement variables given in Eq. (8), are additional constraints to those given in Eq. (19), which are given as

$$
\begin{align*}
u_{y1}(0) &= 0 \\
u_{x1}(L) &= 0
\end{align*}
$$

(20a, 20b)

The displacement variables are assumed as follows:

$$
\begin{align*}
u_{y1} &= \sum_{m=1}^{p} U_{y1,m} \sin(x_m y) \quad 0 \leq y \leq L \\
u_{z1} &= \sum_{m=0}^{p} U_{z1,m} \cos(x_m y) \quad 0 < y < L \\
u_{x1} &= \sum_{m=0}^{p} U_{x1,m} \sin(x_m y) \quad 0 \leq y \leq L
\end{align*}
$$

(21a, 21b, 21c)

where m is the wave number of the trigonometric term and p is the number of trigonometric terms of the series. The coefficient x_m is given by

$$
x_m = \frac{m\pi}{L}
$$

(22)

The total number of unknown Fourier coefficients introduced in Eq. (21) is $M(3p + 1)$. The assumed solution satisfies the simply supported geometric boundary conditions given in Eq. (19). However, the clamped support boundary condition, given in Eq. (20), is not satisfied. In order to obtain an analytical solution for clamped beams, the boundary discontinuous method is used. The details of the procedure are given in Refs. [37,38].

The boundary discontinuous method introduces boundary Fourier coefficients arising from discontinuities of a solution at the edges $y = 0, L$. The displacement variable u_{y1} as given by Eq. (21b) does not satisfy the boundary condition for clamped supports given in Eq. (20). Therefore, it is forced to vanish at these edges. The partial derivative $u_{y1,y}$ is seen to vanish at the edges, thus violating the complementary boundary constraint or boundary discontinuities at these edges; see Refs. [37,38]. For further differentiation, $u_{y1,y}$ is expanded in a Fourier series in order to satisfy the complementary boundary constraint. It is important to note that the derivative of the Fourier series of a given function is not necessarily the same as the Fourier series of the derivative of the function when this function has discontinuities.

The Fourier series of the derivative $u_{y1,y}$ is given by

$$
u_{y1,y} = \sum_{m=1}^{p} U_{y1,m} \sin(x_m y) \quad 0 < y < L
$$

(23a)

$$
U_{y1,m} = \frac{2}{L} \int_{0}^{L} u_{y1,y} \sin(x_m y) dy
$$

(23b)

where $U_{y1,m}$ is the Fourier term associated with the Fourier series of the function $u_{y1,y}$. Integrating Eq. (23b) by parts and using the vanishing boundary conditions given in Eq. (20) obtains:

$$
\begin{align*}
\begin{cases}
U_{y1,m} &= \frac{2}{L} u_{y1,y} \sin(x_m y) \bigg|_{y=0}^{L} - \frac{2}{L} \int_{0}^{L} u_{y1,y} \sin(x_m y) dy \\
U_{y1,m} &= -\frac{2}{L} \int_{0}^{L} u_{y1,y} \cos(x_m y) dy
\end{cases}
\end{align*}
$$

(24)

The Fourier term $U_{y1,m}$ of the Fourier series of the function u_{y1} is recognized:

$$
u_{y1,m} = -\frac{2}{L} \int_{0}^{L} u_{y1,m} \sin(x_m y) dy
$$

(25)

Thus, the first derivative can be obtained through term-by-term differentiation. However, it will be demonstrated that the second derivative has a different form. The Fourier series of the second derivative $u_{y1,yy}$ is given by

$$
u_{y1,yy} = \frac{1}{2} a_t + \sum_{m=1}^{p} U_{y1,yy,m} \cos(x_m y) \quad 0 < y < L
$$

(26a)

$$
U_{y1,yy,m} = \frac{2}{L} \int_{0}^{L} u_{y1,yy} \cos(x_m y) dy
$$

(26b)

where $U_{y1,yy,m}$ is the Fourier term of the function $u_{y1,yy}$ and a_t is a Fourier coefficient. Integrating Eq. (26b) by parts obtains:

$$
u_{y1,yy} = \frac{2}{L} \int_{0}^{L} u_{y1,yy} \cos(x_m y) dy + \frac{2}{L} \int_{0}^{L} u_{y1,yy} x_m \sin(x_m y) dy
$$

(27)

Note that the function $u_{y1,yy}$ is not necessarily zero at the edges since discontinuities are introduced at $y = 0, L$ (Eq. (21b) is not valid at the edges). Substituting Eqs. (23b) and (25) in Eq. (27), the Fourier term is obtained as

$$
u_{y1,yy} = \frac{2}{L} \int_{0}^{L} u_{y1,yy} x_m \sin(x_m y) dy
$$

(28)

Substituting Eq. (28) in Eq. (26a) the following expression is obtained:

$$
u_{y1,yy} = \frac{1}{2} a_t + \sum_{m=1}^{p} (-z_m^2 U_{y1,yy,m} + \gamma_m a_t + \psi_m b_t) \cos(x_m y)
$$

(29)

where the Fourier coefficients a_t and b_t introduce $2M$ new unknowns, resulting in a total of $M(3p + 3)$ unknowns. These coefficients are given by

$$
a_t = \frac{2}{L} [u_{y1,yy}(L) - u_{y1,yy}(0)]
$$

(30a)

$$
b_t = -\frac{2}{L} [u_{y1,yy}(0)]
$$

(30b)
and \(\gamma_m, \psi_m \) are defined as

\[
(\gamma_m, \psi_m) = \begin{cases}
(1, 0) & m = \text{even} \\
(0, 1) & m = \text{odd}
\end{cases}
\] (31)

2.5. Virtual work of load

The external work of a load \(q_0 \) applied on the surface \(z = h/2 \) is given by

\[
\delta L_{\text{ext}} = \int_0^L \int_{-h/2}^{h/2} q_0 \partial u_z |_{z=h/2} \, dx \, dy
\] (32)

Substituting Eq. (8) in Eq. (32) obtains:

\[
\delta L_{\text{ext}} = \int_0^L \left(\int_{-h/2}^{h/2} q_0 F_z |_{z=h/2} \, dx \right) \, dy
\] (33)

The load is expressed using a Fourier series:

\[
q_0 = \sum_{m=1}^p Q_m \sin(\pi_m y) \\
Q_m = \frac{2}{L} \int_0^L q_0 \sin(\pi_m y) \, dy
\] (34)

where \(Q_m \) is a Fourier coefficient associated with the Fourier series of the load. Other types of loads can be analyzed in a similar manner.29

2.6. Governing equations

Substituting Eqs. (21a)–(21c) and their appropriate partial derivatives in Eq. (14), in conjunction with Eqs. (15), (29), (33), and (34), the following expressions are obtained for the case of a beam subjected to a distributed load on the surface \(z = h/2 \):

\[
\sum_{m=1}^p \sin(\pi_m y) \left(E_{x,y}^{52} + E_{x,z}^{44} + E_{x,z}^{66} \psi_m^2 \right) U_{x,m} \\
+ \left(-E_{x,z}^{53} + E_{x,z}^{66} \pi_m \right) U_{y,m} = 0
\] (35a)

\[
\sum_{m=1}^p \cos(\pi_m y) \left(E_{x,y}^{52} - E_{x,z}^{44} \pi_m \right) U_{x,m} + \left(E_{x,z}^{55} - E_{x,z}^{66} \pi_m^2 \right) U_{y,m} \\
+ E_{x,z}^{56} \xi_m^2 U_{y,m} - E_{x,z}^{44} \xi_m^2 U_{y,m} = 0
\] (35b)

Equating the coefficients of the trigonometric functions of Eqs. (35) and (36) to zero yields \(M(3p + 1) \) linear algebraic equations. Additional equations are supplied by the geometric boundary conditions related to vanishing of the displacement variables \(u_z \) at the edges \(y = 0, L \):

\[
u_z(0) = 0 \rightarrow \sum_{m=0}^p U_{y,m} = 0
\] (37a)

\[
u_z(L) = 0 \rightarrow \sum_{m=0}^p (-1)^m U_{y,m} = 0
\] (37b)

These equations can be expressed in a more convenient form38:

\[
U_{y,0} + \sum_{m=1}^p U_{y,m} = 0
\] (38a)

\[
\sum_{m=1}^p U_{y,m} = 0
\] (38b)

This step generates \(2M \) additional equations, resulting in a total of \(M(3p + 1) \) linear algebraic equations with as many unknowns.

2.7. Extension to other boundary conditions

In addition to the clamped-clamped boundary condition, the clamped-simple boundary condition can also be analyzed by the present method. A clamped support is considered at \(y = 0 \) and a simple support at \(y = L \). Since the geometric boundary condition given in Eq. (20b) has been relaxed, the function \(u_y \) is no longer forced to vanish at \(y = L \), and Eq. (37b) is no longer required. This step reduces the available equations in \(M \) compared to the clamped-clamped case. In addition, discontinuities are no longer introduced at \(y = L \), and thus \(u_{x,y} \) is equal to zero at this point. By substituting \(u_{x,y}(L) = 0 \) in Eqs. (30a), (30b), the following relation is obtained:

\[
a_t = b_t
\] (39)

This step eliminates \(M \) unknowns, and thus the system remains determinate.

3. Numerical results and discussion

The present development has been programmed in MATLAB, and numerical examples are given in the present section. An isotropic square beam, i.e., with \(b = h \), is considered in the numerical examples. The displacements, stresses, and geometric parameters are expressed in the following non-dimensional forms:

\[
\sigma_{xy} = \frac{\sigma_{xy}}{q_0}, \sigma_{zz} = \frac{\sigma_{zz}}{q_0}, \sigma_{xz} = \frac{\sigma_{xz}}{q_0}, \sigma_{yy} = \frac{\sigma_{yy}}{q_0} \\
\bar{u}_z = \frac{100b^2 E}{q_0 L^2} u_z, \bar{u}_y = \frac{100b^2 E}{q_0 L^2} u_y \\
\text{Aspect ratio} = \frac{L}{h}
\] (40)

where \(E \) is the modulus of elasticity. The Poisson’s ratio is considered to be \(\nu = 0.3 \). The boundary conditions of the beam are indicated by letters C (Clamped support) and S (Simple support).
3.1. Convergence study

A study of the convergence is performed first in order to assess the stability of the results. Fig. 1 shows the geometry of the beam considered. Fig. 2 shows the locations of evaluation points of the studied displacements and stresses.

The beam is subjected to a uniform load \(q_0 \) on the surface \(z = h/2 \). Fig. 3 shows the transverse displacement and axial stress of a C-C square beam with \(L/h = 10 \) as the number of terms in the Fourier series is increased for various expansion orders \(N \). While Navier-type solutions converge quickly and 25 terms are usually sufficient\(^{20} \), a Fourier series converges slowly if the function has discontinuities. Due to this, the boundary discontinuous method has a slower convergence compared to that of a Navier solution.

Table 2 presents numerical results for the displacements and stresses as the number of terms in the Fourier series is increased, considering \(N = 4 \). The transverse stress \(\sigma_{zz} \) is seen to have a slower convergence. At least 4 significant figures can be expected from the numerical results when the number of terms is \(m = 15000 \), except for the transverse stress \(\sigma_{zz} \), and this number of terms is used in the remainder of the manuscript.

3.2. Bending loads

In order to validate the results, a 3D finite element solution of static analysis of the beam has been obtained using ANSYS general purpose program. The 20-noded Solid186 element was used to model the beam, and the mesh was constructed using equally sized cubic elements. In the tables, the 3D finite element solution is denoted by ANS3Dxxx, where the subscript indicates the number of elements in the beam axis. For example, for a beam with \(L/h = 5 \), the notation ANS3D200 stands for a mesh with 200 elements in the beam axis and 40 elements in each axis of the cross-section, resulting in a mesh of \(200 \times 40 \times 40 \). The error between the results from the present model and the 3D finite element solution (FEM) is defined as

\[
\text{Error} = \frac{|\text{Present} - \text{FEM}|}{\text{FEM}} \times 100\%
\] (41)

where the most refined finite element mesh solution (i.e. the ANS3Dxxx model with the largest numerical subscript) is used for calculation of the error.

The beam considered and the points of evaluation are the same as those in the previous section, as shown in Figs. 1 and 2. Table 3 presents the values of displacements and stresses at specified points of C-C and C-S square beams with \(L/h = 10 \), as obtained by the present model, and the corresponding results obtained by the 3D FEM. In order to correctly predict the shear stress \(\tau_{yz} \), an expansion order of at least \(N = 3 \) is required. Very close agreements can be obtained for all the displacements and stresses using an expansion order of \(N = 6 \) or higher. For higher expansion orders (\(N \geq 5 \)), a

<table>
<thead>
<tr>
<th>Number of terms</th>
<th>(\bar{u}_z)</th>
<th>(\sigma_{yz})</th>
<th>(\sigma_{zz})</th>
<th>(\bar{u}_z)</th>
<th>(\sigma_{yz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>3.4342</td>
<td>25.406</td>
<td>1.0436</td>
<td>0.46820</td>
<td>3.5096</td>
</tr>
<tr>
<td>600</td>
<td>3.4375</td>
<td>25.386</td>
<td>1.0314</td>
<td>0.46853</td>
<td>3.5096</td>
</tr>
<tr>
<td>1000</td>
<td>3.4402</td>
<td>25.370</td>
<td>1.0206</td>
<td>0.46879</td>
<td>3.5096</td>
</tr>
<tr>
<td>1500</td>
<td>3.4415</td>
<td>25.361</td>
<td>1.0150</td>
<td>0.46892</td>
<td>3.5096</td>
</tr>
<tr>
<td>2500</td>
<td>3.4426</td>
<td>25.355</td>
<td>1.0105</td>
<td>0.46902</td>
<td>3.5096</td>
</tr>
<tr>
<td>4000</td>
<td>3.4431</td>
<td>25.351</td>
<td>1.0079</td>
<td>0.46908</td>
<td>3.5096</td>
</tr>
<tr>
<td>6000</td>
<td>3.4435</td>
<td>25.349</td>
<td>1.0065</td>
<td>0.46911</td>
<td>3.5096</td>
</tr>
<tr>
<td>10000</td>
<td>3.4437</td>
<td>25.347</td>
<td>1.0053</td>
<td>0.46914</td>
<td>3.5096</td>
</tr>
<tr>
<td>15000</td>
<td>3.4439</td>
<td>25.347</td>
<td>1.0048</td>
<td>0.46915</td>
<td>3.5096</td>
</tr>
</tbody>
</table>
higher reported error is obtained for the transverse stress σ_{zz}; however, for $N = 7$, the higher reported error is around 0.05% and within the margin of error of the 3D FEM solution. Similar trends are observed between the results for C-C and C-S beams.

Fig. 4 shows the distributions of the transverse displacement u_z across the thickness of C-C and C-S beams with $L/h = 10$, respectively. As the expansion order increases, the results converge to those of the 3D finite element solution in an increasingly slow manner.

Fig. 5 shows the distribution of the transverse normal stress σ_{zz} across the thickness of a C-C beam with $L/h = 10$. An overshoot in the maximum stress is observed for an expansion order of $N = 3$. However, this is corrected by using a higher expansion order. It can be seen that the distributions of the transverse stress across the thickness obtained by using expansion orders of $N = 4$ and $N = 5$ are in close agreements with that of the 3D finite element solution.

Fig. 6 shows the distribution of the shear stress τ_{yz} across the thickness of a C-C beam with $L/h = 10$. Higher expansion orders are required in order to obtain zero shear stress on the top and bottom surfaces of the beam.

Tables 4 and 5 present the values of displacements and stresses at specified points of C-C and C-S square beams with $L/h = 5$ and 2, respectively. For the critical case of a thick beam with $L/h = 2$, using an expansion order of $N = 7$, the higher reported error is 0.23%.

Fig. 7 shows the distributions of the transverse displacement u_z across the thickness of C-C and C-S square beams with $L/h = 5$, respectively. Results obtained from higher expansion orders gradually converge to that of the 3D FEM solution, similar to the case with $L/h = 10$.

Table 3 Comparison of transverse displacement u_z, axial stress σ_{yy}, transverse normal stress σ_{zz}, axial displacement u_y, and shear stress τ_{yz} for C-C and C-S isotropic square beams with $L/h = 10$ subjected to a uniform load.

<table>
<thead>
<tr>
<th>Boundary condition</th>
<th>Model</th>
<th>u_z</th>
<th>σ_{yy}</th>
<th>σ_{zz}</th>
<th>u_y</th>
<th>τ_{yz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>FEM</td>
<td>ANS3D</td>
<td>3.4502</td>
<td>25.341</td>
<td>1.0004</td>
<td>0.46907</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANS3D0</td>
<td>3.4500</td>
<td>25.340</td>
<td>1.0006</td>
<td>0.46905</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANS3D20</td>
<td>3.4497</td>
<td>25.338</td>
<td>1.0010</td>
<td>0.46902</td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td>$N = 2$</td>
<td>3.3813 (2.00)</td>
<td>25.034 (1.21)</td>
<td>1.0125 (1.20)</td>
<td>0.46145 (1.63)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 3$</td>
<td>3.4355 (0.42)</td>
<td>25.427 (0.34)</td>
<td>1.2627 (26.22)</td>
<td>0.46841 (0.14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 4$</td>
<td>3.4439 (0.18)</td>
<td>25.347 (0.02)</td>
<td>1.0048 (0.43)</td>
<td>0.46915 (0.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 5$</td>
<td>3.4464 (0.11)</td>
<td>25.321 (0.08)</td>
<td>0.9882 (1.22)</td>
<td>0.46874 (0.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 6$</td>
<td>3.4479 (0.06)</td>
<td>25.338 (0.01)</td>
<td>1.0027 (0.23)</td>
<td>0.46888 (0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 7$</td>
<td>3.4487 (0.04)</td>
<td>25.337 (0.01)</td>
<td>0.9999 (0.05)</td>
<td>0.46890 (0.04)</td>
</tr>
<tr>
<td>C-S</td>
<td>FEM</td>
<td>ANS3D</td>
<td>6.6287</td>
<td>37.909</td>
<td>1.0004</td>
<td>0.85226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANS3D0</td>
<td>6.6285</td>
<td>37.908</td>
<td>1.0006</td>
<td>0.85224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANS3D20</td>
<td>6.6282</td>
<td>37.906</td>
<td>1.0010</td>
<td>0.85221</td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td>$N = 2$</td>
<td>6.5478 (1.22)</td>
<td>37.557 (0.93)</td>
<td>1.0122 (1.18)</td>
<td>0.84330 (1.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 3$</td>
<td>6.6128 (0.24)</td>
<td>37.988 (0.21)</td>
<td>1.2624 (26.19)</td>
<td>0.85194 (0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 4$</td>
<td>6.6218 (0.10)</td>
<td>37.911 (0.01)</td>
<td>1.0045 (0.40)</td>
<td>0.85266 (0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 5$</td>
<td>6.6246 (0.06)</td>
<td>37.886 (0.06)</td>
<td>0.9878 (1.26)</td>
<td>0.85194 (0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 6$</td>
<td>6.6263 (0.04)</td>
<td>37.904 (0.01)</td>
<td>1.0023 (0.19)</td>
<td>0.85209 (0.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N = 7$</td>
<td>6.6271 (0.02)</td>
<td>37.904 (0.01)</td>
<td>0.9995 (0.10)</td>
<td>0.85208 (0.02)</td>
</tr>
</tbody>
</table>

Note: The values in the brackets are the Error (%), and Error = (|Present $- \ ANS3D_{340}/\ ANS3D_{340}|) \times 100\%$.
Fig. 6 Distribution of transverse shear stress \(\sigma_{xy} \) at (0, L/4, z) through thickness of C-C square beam subjected to uniform load with \(L/h = 10 \).

Table 4 Comparison of transverse displacement \(\bar{u}_t \), axial stress \(\sigma_{yy} \), transverse normal stress \(\sigma_{zz} \), axial displacement \(\bar{u}_t \), and shear stress \(\sigma_{yz} \) for C-C and C-S isotropic square beams with \(L/h = 5 \) subjected to uniform load.

<table>
<thead>
<tr>
<th>Boundary condition</th>
<th>Model</th>
<th>(\bar{u}_t)</th>
<th>(\sigma_{yy})</th>
<th>(\sigma_{zz})</th>
<th>(\bar{u}_t)</th>
<th>(\sigma_{yz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>FEM</td>
<td>4.5224</td>
<td>6.7009</td>
<td>1.0003</td>
<td>0.96188</td>
<td>1.7507</td>
</tr>
<tr>
<td></td>
<td>ANS3D0</td>
<td>4.5221</td>
<td>6.7006</td>
<td>1.0004</td>
<td>0.96183</td>
<td>1.7510</td>
</tr>
<tr>
<td></td>
<td>ANS3D10</td>
<td>4.5217</td>
<td>6.7000</td>
<td>1.0006</td>
<td>0.96174</td>
<td>1.7514</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>(N = 2)</td>
<td>4.2873 (5.20)</td>
<td>6.4219 (4.16)</td>
<td>1.0117 (1.14)</td>
<td>0.90712 (5.69)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 3)</td>
<td>4.4846 (0.84)</td>
<td>6.8092 (1.61)</td>
<td>1.2619 (26.15)</td>
<td>0.96112 (0.08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 4)</td>
<td>4.5062 (0.36)</td>
<td>6.7152 (0.21)</td>
<td>1.0040 (0.37)</td>
<td>0.96467 (0.29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 5)</td>
<td>4.5131 (0.21)</td>
<td>6.6844 (0.25)</td>
<td>0.9871 (1.32)</td>
<td>0.96049 (0.14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 6)</td>
<td>4.5171 (0.12)</td>
<td>6.6994 (0.02)</td>
<td>1.0016 (0.13)</td>
<td>0.96116 (0.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 7)</td>
<td>4.5190 (0.08)</td>
<td>6.6971 (0.06)</td>
<td>0.9987 (0.16)</td>
<td>0.96108 (0.08)</td>
</tr>
<tr>
<td>C-S</td>
<td>FEM</td>
<td>7.8717</td>
<td>9.9033</td>
<td>1.0003</td>
<td>1.6867</td>
<td>2.5995</td>
</tr>
<tr>
<td></td>
<td>ANS3D0</td>
<td>7.8714</td>
<td>9.9030</td>
<td>1.0004</td>
<td>1.6866</td>
<td>2.5998</td>
</tr>
<tr>
<td></td>
<td>ANS3D10</td>
<td>7.8709</td>
<td>9.9024</td>
<td>1.0006</td>
<td>1.6865</td>
<td>2.6005</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>(N = 2)</td>
<td>7.5936 (3.53)</td>
<td>9.5885 (3.18)</td>
<td>1.0116 (1.13)</td>
<td>1.6205 (3.92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 3)</td>
<td>7.8332 (0.49)</td>
<td>10.0082 (1.06)</td>
<td>1.2618 (26.14)</td>
<td>1.6888 (0.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 4)</td>
<td>7.8550 (0.21)</td>
<td>9.9160 (0.13)</td>
<td>1.0039 (0.36)</td>
<td>1.6921 (0.32)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 5)</td>
<td>7.8622 (0.12)</td>
<td>9.8859 (0.18)</td>
<td>0.9870 (1.33)</td>
<td>1.6854 (0.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 6)</td>
<td>7.8662 (0.07)</td>
<td>9.9011 (0.02)</td>
<td>1.0015 (0.12)</td>
<td>1.6860 (0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = 7)</td>
<td>7.8682 (0.05)</td>
<td>9.8989 (0.04)</td>
<td>0.9986 (0.17)</td>
<td>1.6858 (0.05)</td>
</tr>
</tbody>
</table>

3.3. Torsional loads

A beam subjected to two linear loads of equal magnitude \(q_{yy} \) and opposite directions is considered, as shown in Fig. 9. Classic beam models are unable to detect displacement and stresses for this loading case. Table 6 presents results of the shear stress \(\sigma_{xy} \) evaluated at Point A with coordinates (0, 0, 0).
It can be observed that higher expansion orders are required in order to correctly predict the shear stress. These results can be used as a benchmark for future finite element works.

4. Conclusions

This paper presents an analytical solution for bending and torsion of a thick rectangular beam with clamped or simple supports. The boundary discontinuous Fourier approach is used in conjunction with shear deformation theories of arbitrary order via Carrera’s Unified Formulation (CUF). The important conclusions that emerge from this paper can be summarized as follows:

(1) Accurate analytical results of the stresses and displacements for clamped beams can be obtained by the present model with a low computational effort.
(2) At least an expansion order of $N = 3$ is required in order to correctly predict the maximum shear stress σ_{xy} due to bending loads.
(3) An overshoot of the maximum transverse normal stress σ_{zz} is observed for an expansion order of $N = 3$ when bending loads are considered. However, this is corrected by using higher expansion orders.
(4) The boundary discontinuous method requires a higher computational effort compared to that of Navier-type solutions, but it is much lower than that required for a 3D finite element solution.

Acknowledgment

This paper is dedicated to Professor Reaz Chaudhuri for his outstanding contribution to computational mechanics.

References

Boundary discontinuous Fourier analysis of thick beams

