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KEYWORDS Abstract This paper presents an analytical solution for static analysis of thick rectangular beams
Analytical solution; with different boundary conditions. Carrera’s Unified Formulation (CUF) is used in order to con-
Beam; sider shear deformation theories of arbitrary order. The novelty of the present work is that a bound-
Clamped; ary discontinuous Fourier approach is used to consider clamped boundary conditions in the
Fourier; analytical solution, unlike Navier-type solutions which are restricted to simply supported beams.
Unified formulation Governing equations are obtained by employing the principle of virtual work. The numerical accu-

racy of results is ascertained by studying the convergence of the solution and comparing the results
to those of a 3D finite element solution. Beams subjected to bending due to a uniform pressure load
and subjected to torsion due to opposite linear forces are considered. Overall, accurate results close
to those of 3D finite element solutions are obtained, which can be used to validate finite element
results or other approximate methods.
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1. Introduction known beam theory is the classical or Euler-Bernoulli beam
theory, which yields reasonably good results for slender beams.

ID theories are widely used to analyze behaviors of slender However, this model does not take into account shear defor-

bodies in a computationally efficient manner. For this reason, ~ mations in a beam. The Timoshenko beam theory is an
many beam models have been developed. The most well- improvement over the classical theory that considers a uniform
shear distribution across the thickness of a beam. However,

this theory requires a shear correction factor to correct the
strain energy of deformation. Discussion of shear coefficients
has been presented in Refs.' *

A large amount of Higher-order Shear Deformation Theo-
ries (HSDTs) have been developed in order to consider a
3 nonuniform shear distribution in a beam’s cross-section.
ELSEVIER Production and hosting by Elsevier HSDTs with polynomial distributions of shear deformation
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across the thickness are common due to their simplicity, and
some have been presented in Refs.” '° Theories containing
trigonometric functions in thickness coordinates are also com-
mon. A trigonometric shear deformation theory has been pre-
sented by Dahake and Ghugal."* Many polynomial and
trigonometric deformation theories have been developed for
analysis of laminated beams, as presented in Refs.'” *° First-
order shear deformation theories are popular due to their
computational efficiency, and some have been given in
Refs.”! >

In order to analyze theories with arbitrary order in a sys-
tematic manner, a unified formulation known as Carrera’s
Unified Formulation (CUF) has been developed in Ref.>’ This
formulation has been applied to solve multifield problems, as
presented in Refs.”® *® Carrera and Giunta® used the 1D-
CUF model to analyze 1D problems with complex cross-
sections, and further development has been presented by Car-
rera et al.>" ¥ The capability of these models to obtain quasi-
3D solutions has been exploited to develop accurate static®”,
free vibration’**, and buckling analysis’® of composite
beams.

Analytical solutions for bending of simply supported beams
are obtained by using a Fourier series in Navier-type solutions.
Other boundary conditions such as clamped conditions can be
considered in a finite element formulation or by using the Ritz
method, but accurate analytical solutions for these boundary
conditions are a fairly scarce topic in the literature. Since finite
element formulations or variational methods obtain approxi-
mate results, exact analytical solutions are required as a bench-
mark in order to assess the validity of the results. The present
work intends to provide such analytical solutions for clamped
boundary conditions.

A generalization of the Fourier series method known as the
boundary discontinuous Fourier method can take into account
clamped boundary conditions. This method was developed by
Chaudhuri in Refs.*”* Discontinuities are introduced in order
to satisfy boundary constraints. This solution methodology
has been applied for static and free vibration analysis of cylin-
drical panels,””*" doubly-curved panels,*' ** and plates.*’ >*
Since the rate of convergence of a Fourier series is slower in
the presence of discontinuities, a mixed Fourier solution has
also been developed in Refs.’> in order to produce acceler-
ated convergence. Oktem and Chaudhuri have applied the
boundary discontinuous Fourier method for analysis of
plates’”>? and shells®* ** using HSDTs.

In this paper, an analytical solution for static analysis of
thick beams with Clamped-Clamped (C-C) and Clamped-
Simple (C-S) boundary conditions is obtained. A general
approach to obtain such an analytical solution using a uni-
fied formulation is currently unavailable in the literature,
since the other option commonly used for static analysis
of beams is a Navier-type solution, which can only consider
simply supported edges. Theories of arbitrary order are
considered in a systematic manner by using CUF. The
principle of virtual work is used to obtain governing equa-
tions. The convergence of the solution is analyzed and 3D
finite element solutions are obtained in order to assess the
validity of results. Good results agreements with 3D finite
element solutions are obtained. The results can be used
as a benchmark for comparison with approximate solution
methods.

2. Analytical modeling

A beam of length L, width b, and total thickness /% is consid-
ered in the present analysis. The rectangular Cartesian coordi-
nate system used in the present work is shown in Fig. 1. The
beam occupies the following region: —b/2 < x <b/2,
0<y<L,—h/2<z<h/2.

2.1. Elastic stress-strain relations

A general displacement vector is introduced:

u(x,y,2) = [ue wu, w]' (1)

The cross-sectional plane of the beam is denoted by Q. The
stress and strain components are grouped as

T
GP = [(;z: Oxx O_zx]

& = [8:2 Exx  &zx ]T
T 2
o,=[0, 0y, 0,]
T
&y = [gzy Exy 8){1‘}

where o; and ¢; are the components of the stress and strain
vectors, respectively. Subscript “p” stands for terms lying on
planes orthogonal to the cross-section, while subscript “n”
stands for terms lying on the cross-section. Considering small

amplitude displacements, the strain-displacement relations are

{sp = Dyu

3
& = Dnu - (DnQ + Dny)” ( )

The linear differential operators D,,, Dy, and Dy, are given
by
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Fig. 1 Coordinate frame of beam model.
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The stress components are given by constitutive laws:
6= Ce )
where o is the stress vector, ¢ is the strain vector and C is the
constitutive matrix. Eq. (5) can be split by using Eq. (2):
{ o, = z'ppsp + E'pnan

- - (6)
6, = Cnpép + Cinéy

In the case of an isotropic material, the matrices z'pp, a,n,
C,p, and C,, are given by

. —611 612 0 1
Cop = 612 622 0
L0 0 Cul
[Css 0 0]
6nn = 0 666 0 (7)
Lo 0 Cul
00 Cp
Cw=ClL=10 0 Cy
00 O

The coefficients C ;7 depend on the material properties. They
can be derived from the generic case of an orthotropic

material.**

2.2. Displacement field

The displacement field is expressed within the framework of
CUF:

u(x,y,2) = Fo(x, 2)uc(v)

where F, are the functions of coordinates x and z on the cross-
section, M stands for the number of terms used in the expansion,
u, is the vector of the generalized displacements, and the
repeated subscript ©“ 7 7 indicates summation. A Taylor-type
expansion is used to determine the functions F;, consisting of
a MacLaurin series that uses the 2D polynomials x'z/ as a base.
Table 1 presents M and F, as functions of the expansion order N.

For example, the displacement field of the second-order
(N = 2) Taylor-type expansion model can be expressed as

t=1,2,.... M (8)

2 2
Uy = Uy, + Xy, + ZUy, + X Uy, + XZUy + Z Uy

— 2 . 2
uy =y, + Xy, + zuy, + Xuy, + X2y + 27Uy, 9)

U, = U, + Xy, + zu,, + X7u,, + xzu., + 2%,

Table 1 MacLaurin’s polynomials.

Expansion M F,

order

0 1 F =1

1 3 F=xF=z

2 6 Fy = x* Fs = xz, Fg = 2*

3 10 F; =x3, Fy = x%z, Fy = x22, Fig = 2°
N (N+ DNV +2) Fiviniop = xV,

-l
Foeaniap =X 20

Fywvaayz = X2" Y, Fivnaayp = 2

Classical beam theories can be obtained as a special case of
the generalized formulation. For example, the Timoshenko
beam theory is obtained in two steps: (a) a first-order displace-
ment field is considered:

Uy = Uy, + XUy, + ZUy,

Uy = Uy, + Xy, + ZUy, (10)

U, = Uy + Xu., + zu,
and (b) the displacements u, and u. must be constant in the
cross-section:

Uyy = Uy, = U, = U, =0 (11)

2.3. Principle of virtual work

The static version of the principle of virtual work is applied:
OLiy = /(Ssgap + SEEU,I)dV = 0Ly (12)
Vv

where & stands for the virtual variation operator, L;, stands
for the strain energy, and L.y, is the external work. Substituting
Egs. (3), (4), and (6) in Eq. (12), the following expression is
obtained:

SLy — / / {1Dy8u"[CypDy + Coa(Da + Doyl
y JQ
+[(Dug + Duy)ou] " [Cop Dy + Con(Dugy + Dn},)}u}dgdy

= 8Ley (13)
Substituting Egs. (4), (7), and (8) in Eq. (13) and integrating by
parts results in the following:

SLin = / Sul K*u.dy + [SulIT*u.]'"y = 8Ly (14)
v

where K™ is the stiffness matrix and II” is the matrix of the
natural boundary conditions. The components of K* are
provided as

s 22 4 6 & s 23 0 6 9
K(rll Er\\\ +E“‘t‘; Efv d}z’ KEIZ) - EIY&()\ E?Vv\,a_",v
s pl2 4
KTH 7E‘[ Sz +E4 S

K3, = ES 0o

TS ()} TS5 Oy

S N R

I((E23 E’[ s 01 ET.S‘,; %
s pl2 4 s _ pl3 55

K3y = EZ +EN K =ES 2 —ES 2

T, s{)} TSz 0}
s __ gl 4
K(r33) - EI.:S._— + Ej_,\s

s 55 6 33 02
KTZ'J 7Er.; +E‘f\a\_E

5 Jy?

55 9°
EIS 7

(15)

where a cross-sectional moment parameter has been used, and
a generic term is defined as

ES = / CopFeyFypdQ (16)
Q

The suffix after the comma denotes the derivatives. The
components of II* are provided as follows:

117 Effa Gy = EY Gy =0
i3
g, = = F¥ TG, = = E3 — Iy = E”; (17)

50 s a
Hm' _ O Hrs _ ESS Hrs ESS 8
(31) — Y4 (32) w20 (33) T s a
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Letting P, = [P, P,. P ]T define a vector of the gener-
alized forces, the natural boundary conditions can be obtained
by substituting Eq. (17) in Eq. (14):

Sty 1 Py = Ei’fux,,y + Eff Uy, (18a)
duy : P = Efj\,um + Eilfuyw, + El: Uz, (18b)
Suog:  Po= Effu}I + Effuzw, (18¢)

2.4. Boundary discontinuous solution

Geometric boundary conditions for simply supported beams,
in terms of the displacement variables given in Eq. (8), are
expressed as

{ Uy (0) = uyr,,\’(o) = u:r(o) =0

Uy (L) = ttye (L) = u (L) =0 (19)

Geometric boundary conditions for clamped-clamped
beams, in terms of the displacement variables given in
Eq. (8), are additional constraints to those given in Eq. (19),
which are given as

uy:(0) =0 (20a)
”}’I(L) =0 (20b)
The displacement variables are assumed as follows:
P
e =Y Uwnsin(e,y)  0<y<L (21a)
m=1
P
Uy, = ZU)'“” cos(e,y) O0<y<L (21b)
m=0
P
Uy = ZUZ”" sin(o,,y) 0<y<L (21c)
m=1

where m is the wave number of the trigonometric term and p is
the number of trigonometric terms of the series. The coefficient
o, 18 given by
_mn
L

The total number of unknown Fourier coefficients intro-
duced in Eq. (21) is M(3p + 1). The assumed solution satisfies
the simply supported geometric boundary conditions given in
Eq. (19). However, the clamped support boundary condition,
given in Eq. (20), is not satisfied. In order to obtain an analyt-
ical solution for clamped beams, the boundary discontinuous
method is used. The details of the procedure are given in
Refs.?"%

The boundary discontinuous method introduces boundary
Fourier coefficients arising from discontinuities of a solution
at the edges y = 0, L. The displacement variable u,. as given
by Eq. (21b) does not satisfy the boundary condition for
clamped supports given in Eq. (20). Therefore, it is forced to
vanish at these edges. The partial derivative u,., is seen to van-
ish at the edges, thus violating the complementary boundary
constraint or boundary discontinuities at these edges; see
Refs.””*¥ For further differentiation, u,.,, is expanded in a
Fourier series in order to satisfy the complementary boundary

O (22)

constraint. It is important to note that the derivative of the
Fourier series of a given function is not necessarily the same
as the Fourier series of the derivative of the function when this
function has discontinuities.

The Fourier series of the derivative u,., is given by

P
Uyey = ZU-"T’"»" sin(a,,y) 0<y<L (23a)
m=1
2 L
Uvrm v = z ‘/0 Uyry Sin(“m}')dy (23b)

where U, , is the Fourier term associated with the Fourier
series of the function u,.,. Integrating Eq. (23b) by parts and
using the vanishing boundary conditions given in Eq. (20)
obtains:
2. - 2 ("
Uypem y = =ty in(at,,) L2 / Uy Oy €OS(04,7) Ay
YL =0 L

(24)

2 L
Uyrm vy = —0n7 / Uyt COS(OCmy)dy
0

L
The Fourier term U, of the Fourier series of the function
u,; is recognized:

Uy‘rm Y= O Uyrm (25)

Thus, the first derivative can be obtained through term-by-
term differentiation. However, it will be demonstrated that the
second derivative has a different form. The Fourier series of
the second derivative u,.,, is given by

1 P
Uyegy = 5+ ZU«“T’“ greos(any) 0<y<L (26a)
m=1
2 L
Upom yy = 7 / Uyeyy €OS (0, p)dy (26b)
0

where U,y 5, is the Fourier term of the function u,. , and a, is

a Fourier coefficient. Integrating Eq. (26b) by parts obtains:
2 = 2 [t 4

Usan gy = +ttyey €08(np)[Z + 5 [ thyeyttm sin(o,y)dy — (27)
L =L

Note that the function u,., is not necessarily zero at the

edges since discontinuities are introduced at y=0,L

(Eq. (21b) is not valid at the edges). Substituting Egs. (23b)

and (25) in Eq. (27), the Fourier term is obtained as

2
L
Substituting Eq. (28) in Eq. (26a) the following expression
is obtained:
1 2 )
Upryy = Ear + Z(_“m Uyom + ymae + W,,b:) cos(et,,y) (29)

m=1

[(=1)"ttye (L) = 4y (0)] = o3, Uy (28)

Uyom yy =

where the Fourier coefficients a, and b, introduce 2M new
unknowns, resulting in a total of M(3p + 3) unknowns. These
coefficients are given by

2

ac = = [ty (L) = 13z (0)]

7 (30a)

be = =2 (L) + 1, (0)]

- (30b)
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and v,,,¥,, are defined as

n [(1,0)
() ={ o1

m = even
m = odd

2.5. Virtual work of load

The external work of a load ¢, applied on the surface z = i/2
is given by

L b2
8Ly = / / qo0uz|._;,,dxdy (32)
o Jobp

Substituting Eq. (8) in Eq. (32) obtains:

L /2
6Lexl = 81/1_73/ </ ‘I(;FS: Z/,/zdx> dy (33)
0 —b)2

The load is expressed using a Fourier series:

P
qo = ZQm sin(a,,)
m=1 (34)

2 L
Qm = Z / ‘) Sln(amy)dy
0

where Q,, is a Fourier coefficient associated with the Fourier
series of the load. Other types of loads can be analyzed in a
similar manner.”’

2.6. Governing equations

Substituting Eqs. (21a)-(21c) and their appropriate partial
derivatives in Eq. (14), in conjunction with Egs. (15), (29),
(33), and (34), the following expressions are obtained for the
case of a beam subjected to a distributed load on the surface
z="h/2:

p
Z SiIl(O(my) { (E%z\SY + Ej‘,‘&: + Ef?ai) U,\’rm
m=1

(B2 it + B o) Upen( B2, + B, YUeon} =0

P
> cos(o){ (S o — 2 2,)Usen + (S,
m=1

6 33,2 55 13
+Eg‘,3_\, + E; o )Uynn(ET.:S‘“m - Ets,: am) Uzmi

s 'm

_Efs(’yma‘f + lpmbf)} - 0 (35b)

)4

sin(ocmy) { (Elz:s‘ + E44 ¢ )erm
1

TSz
m=

+(—Ei?\,0(m + Ef\S: O(m) U\'”"(Eii‘\': + E‘44‘"\ + ESSO(Z )U_-Tm

b2
_Qm / F |z:/1/2dx =0
—b/2

—ER S+ (ED, +ES, YUy =0 (36)

Equating the coefficients of the trigonometric functions of
Egs. (35) and (36) to zero yields M(3p + 1) linear algebraic
equations. Additional equations are supplied by the geometric

(35¢)

boundary conditions related to vanishing of the displacement
variables u,. at the edges y =0, L:

)4

U(0)=0 = Y Uy =0 (37a)
m=0
P

Ue(L) =0 = > (=1)"Upow =0 (37b)
m=0

These equations can be expressed in a more convenient
form>*:

P
Um() + Z Uyrm =0 (383)
m=2,4
P
> Upew=0 (38b)
m=1,3

This step generates 2M additional equations, resulting in a
total of M(3p + 3) linear algebraic equations with as many
unknowns.

2.7. Extension to other boundary conditions

In addition to the clamped-clamped boundary condition, the
clamped-simple boundary condition can also be analyzed by
the present method. A clamped support is considered at
y=0 and a simple support at y = L. Since the geometric
boundary condition given in Eq. (20b) has been relaxed, the
function u,. is no longer forced to vanish at y =L, and
Eq. (37b) is no longer required. This step reduces the available
equations in M compared to the clamped-clamped case. In
addition, discontinuities are no longer introduced at y = L,
and thus u,., is equal to zero at this point. By substituting
uy.,(L) =0 in Egs. (30a), (30b), the following relation is
obtained:

a. = b, (39)

This step eliminates M unknowns, and thus the system
remains determinate.

3. Numerical results and discussion

The present development has been programmed in MATLAB,
and numerical examples are given in the present section. An
isotropic square beam, i.e., with b = A, is considered in the
numerical examples. The displacements, stresses, and geomet-
ric parameters are expressed in the following non-dimensional
forms:

- 6}{1’ - 02z _ _ O-yz — _ O'xy
Oy = —02 = 3 O0pz = ——,0xp = ——
4o 4o 4o 4o
100/°E 100/’ E
U, = ——5 U, ll, = ——F U (40)
qoL qL"
L z
Aspect ratio =—,z =
spect ratio ; \Z 7

where E is the modulus of elasticity. The Poisson’s ratio is con-
sidered to be v = 0.3. The boundary conditions of the beam are
indicated by letters C (Clamped support) and S (Simple
support).
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3.1. Convergence study

A study of the convergence is performed first in order to assess
the stability of the results. Fig. 1 shows the geometry of the
beam considered. Fig. 2 shows the locations of evaluation
points of the studied displacements and stresses.

The beam is subjected to a uniform load ¢, on the surface
z="n/2. Fig. 3 show the transverse displacement and axial
stress of a C-C square beam with L/h = 10 as the number of
terms in the Fourier series is increased for various expansion

o,
(0, L2,

©, LA, h2)

\ 7
(0, Li2,0)

z,
(0, 174, 0)

Fig. 2 Location of evaluation points of transverse displacement
il-, axial stress G,,, axial displacement #,, transverse stress &.., and
shear stress G,..

3.45
-
3
344
1=t 3431
342f —©—N=3
—¥—N=5
——N=7
=41 500 1000 1500 2000
Number of terms
(a) Transverse displacement #_at (0, /2, 0)
25.6
——N=3
—¥— N=5
——N=7
255F
IS
254
3
253 I L 1
0 500 1000 1500 2000

Number of terms
(b) Axial stress g, at (0, L2, hi2)

Fig. 3 Convergence of transverse displacement i, at (0, L/2, 0)
and axial stress a,, at (0, L/2, h/2) of a C-C square beam with L/
h = 10 subjected to a uniform load.

orders N. While Navier-type solutions converge quickly and
25 terms are usually sufficient’, a Fourier series converges
slowly if the function has discontinuities. Due to this, the
boundary discontinuous method has a slower convergence
compared to that of a Navier solution.

Table 2 presents numerical results for the displacements
and stresses as the number of terms in the Fourier series is
increased, considering N = 4. The transverse stress a.. is seen
to have a slower convergence. At least 4 significant figures
can be expected from the numerical results when the number
of terms is m = 15000, except for the transverse stress a..,
and this number of terms is used in the remainder of the
manuscript.

3.2. Bending loads

In order to validate the results, a 3D finite element solution of
static analysis of the beam has been obtained using ANSYS
general purpose program. The 20-noded Solid186 element
was used to model the beam, and the mesh was constructed
using equally sized cubic elements. In the tables, the 3D finite
element solution is denoted by ANS3D,,y, where the subscript
indicates the number of elements in the beam axis. For exam-
ple, for a beam with L/h =5, the notation ANS3D;q, stands
for a mesh with 200 elements in the beam axis and 40 elements
in each axis of the cross-section, resulting in a mesh of
200 x 40 x 40. The error between the results from the present
model and the 3D finite element solution (FEM) is defined as

Error — |Present — FEM|
N FEM

where the most refined finite element mesh solution (i.e. the
ANS3D,,x model with the largest numerical subscript) is used
for calculation of the error

The beam considered and the points of evaluation are the
same as those in the previous section, as shown in Figs. |
and 2. Table 3 presents the values of displacements and stresses
at specified points of C-C and C-S square beams with
L/h =10, as obtained by the present model, and the corre-
sponding results obtained by the 3D FEM. In order to cor-
rectly predict the shear stress &,., an expansion order of at
least N = 3 is required. Very close agreements can be obtained
for all the displacements and stresses using an expansion order
of N =6 or higher. For higher expansion orders (N > 95), a

x 100% (41)

Table 2 Convergence of transverse displacement #., axial
stress &,,, transverse normal stress &.., axial displacement i,

and shear stress 6,. for a C-C isotropic square beam with L/
h = 10 subjected to a uniform load.

Number of terms . Gyy G- ity Oy

400 34342 25406 1.0436 0.46820 3.5096
600 3.4375 25386 1.0314 0.46853  3.5096
1000 3.4402 25370 1.0206 0.46879  3.5096
1500 3.4415 25361 1.0150 0.46892  3.5096
2500 3.4426 25355 1.0105 0.46902 3.5096
4000 3.4431 25351 1.0079 0.46908  3.5096
6000 3.4435 25349 1.0065 0.46911  3.5096
10000 3.4437 25347 1.0053 0.46914  3.5096
15000 3.4439 25347 1.0048 0.46915  3.5096




1714

F.G. CANALES, J.L. MANTARI

Table 3 Comparison of transverse displacement ., axial stress a,,, transverse normal stress &.., axial displacement #,, and shear
stress @,. for C-C and C-S isotropic square beams with L/h = 10 subjected to a uniform load.

Boundary condition Model 7A o [ ity Gy:
C-C FEM ANS3D34g 3.4502 25.341 1.0004 0.46907 3.4931
ANS3Dyg 3.4500 25.340 1.0006 0.46905 3.4939
ANS3Dy5g 3.4497 25.338 1.0010 0.46902 3.4954
Present N=2 3.3813 (2.00) 25.034 (1.21) 1.0125 (1.20) 0.46145 (1.63) 2.5000 (28.43)
N=3 3.4355 (0.42) 25.427 (0.34) 1.2627 (26.22) 0.46841 (0.14) 3.5096 (0.47)
N=4 3.4439 (0.18)  25.347(0.02)  1.0048 (0.43) 0.46915 (0.02)  3.5096 (0.47)
N=5 3.4464 (0.11) 25.321 (0.08) 0.9882 (1.22) 0.46874 (0.07) 3.4885 (0.13)
N=6 3.4479 (0.06) 25338 (0.01)  1.0027 (0.23) 0.46888 (0.04)  3.4885 (0.13)
N=17 3.4487 (0.04) 25.337 (0.01) 0.9999 (0.05) 0.46890 (0.04) 3.4932 (0.00)
C-S FEM ANS3D3yg 6.6287 37.909 1.0004 0.85226 5.2319
ANS3Dyg 6.6285 37.908 1.0006 0.85224 5.2331
ANS3D;, 6.6282 37.906 1.0010 0.85221 5.2354
Present N =2 6.5478 (1.22)  37.557 (0.93)  1.0122 (1.18) 0.84330 (1.05)  3.74%2 (28.36)
N=3 6.6128 (0.24) 37.988 (0.21) 1.2624 (26.19) 0.85194 (0.04) 5.2593 (0.52)
N=4 6.6218 (0.10)  37.911 (0.01)  1.0045 (0.40) 0.85266 (0.05)  5.2577 (0.49)
N=5 6.6246 (0.06) 37.886 (0.06) 0.9878 (1.26) 0.85194 (0.04) 5.2258 (0.12)
N=6 6.6263 (0.04) 37.904 (0.01) 1.0023 (0.19) 0.85209 (0.02) 5.2255 (0.12)
N=17 6.6271 (0.02) 37.904 (0.01) 0.9995 (0.10) 0.85208 (0.02) 5.2322 (0.01)

Note: The values in the brackets are the Error (%), and Error = (|Present —

higher reported error is obtained for the transverse stress ..;
however, for N =7, the higher reported error is around
0.05% and within the margin of error of the 3D FEM solution.
Similar trends are observed between the results for C-C and
C-S beams.

Fig. 4 show the distributions of the transverse displacement
i1, across the thickness of C-C and C-S beams with L/h = 10,
respectively. As the expansion order increases, the results con-
verge to those of the 3D finite element solution in an increas-
ingly slow manner.

0.50

0.25

-0.25

-0.50

0.50

0.25

-025

-0.50
6.

(b) C-S square beam

Fig. 4 Distribution of transverse displacement . at (0, L/2, z)
through thickness of C-C and C-S square beams subjected to
uniform load with L/h = 10.

ANS3D340‘/ANS3D340) x 100%.

Fig. 5 shows the distribution of the transverse normal stress
.. across the thickness of a C-C beam with L/h = 10. An
overshoot in the maximum stress is observed for an expansion
order of N = 3. However, this is corrected by using a higher
expansion order. It can be seen that the distributions of the
transverse stress across the thickness obtained by using expan-
sion orders of N =4 and N =5 are in close agreements with
that of the 3D finite element solution.

Fig. 6 shows the distribution of the shear stress &,. across
the thickness of a C-C beam with L/# = 10. Higher expansion
orders are required in order to obtain zero shear stress on the
top and bottom surfaces of the beam.

Tables 4 and 5 present the values of displacements and
stresses at specified points of C-C and C-S square beams with
L/h =5 and 2, respectively. For the critical case of a thick
beam with L/h =2, using an expansion order of N =7, the
higher reported error is 0.23%.

Fig. 7 shows the distributions of the transverse displace-
ment i. across the thickness of C-C and C-S beams with
L/h =35, respectively. Results obtained from higher expansion
orders gradually converge to that of the 3D FEM solution,
similar to the case with L/h = 10.

0.50

0251

-0.25}

~0.50%

Fig. 5 Distribution of transverse normal stress a.. at (0, L/2, z)
through thickness of C-C square beam subjected to uniform load
with L/h = 10.
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Fig. 6 Distribution of transverse shear stress a,. at (0, L/4, z)
through thickness of C-C square beam subjected to uniform load

with L/h = 10.

Fig. 8 shows the distribution of the transverse displacement
i1, across the thickness of a C-C beam with L/h = 2. Tt can be
observed that the thickness stretching effect, i.e., variation of
the transverse displacement across the thickness, is more pro-
nounced for beams with lower aspect ratios.

3.3. Torsional loads

A beam subjected to two linear loads of equal magnitude g,
and opposite directions is considered, as shown in Fig. 9.
Classic beam models are unable to detect displacement and
stresses for this loading case. Table 6 presents results of the
shear stress &, evaluated at Point 4 with coordinates (0, 0,

Table 4 Comparison of transverse displacement ., axial stress ,,, transverse normal stress ¢.., axial displacement #,, and shear
stress G,. for C-C and C-S isotropic square beams with L/h = 5 subjected to uniform load.

Boundary condition Model il By G.. i, Gy
Cc-C FEM ANS3D5g9 4.5224 6.7009 1.0003 0.96188 1.7507
ANS3D; 7o 4.5221 6.7006 1.0004 0.96183 1.7510
ANS3D 4 4.5217 6.7000 1.0006 0.96174 1.7514
Present N =2 4.2873 (5.20) 6.4219 (4.16) 1.0117 (1.14) 0.90712 (5.69) 1.2522 (28.48)
N=3 4.4846 (0.84) 6.8092 (1.61) 1.2619 (26.15) 0.96112 (0.08) 1.7566 (0.33)
N =4 4.5062 (0.36) 6.7152 (0.21) 1.0040 (0.37) 0.96467 (0.29) 1.7578 (0.40)
N=5 4.5131 (0.21) 6.6844 (0.25) 0.9871 (1.32) 0.96049 (0.14) 1.7481 (0.15)
N=6 4.5171 (0.12) 6.6994 (0.02) 1.0016 (0.13) 0.96116 (0.07) 1.7485 (0.13)
N=1 4.5190 (0.08) 6.6971 (0.06) 0.9987 (0.16) 0.96108 (0.08) 1.7510 (0.01)
C-S FEM ANS3D, 7.8717 9.9033 1.0003 1.6867 2.5995
ANS3D, 7 7.8714 9.9030 1.0004 1.6866 2.5998
ANS3D 49 7.8709 9.9024 1.0006 1.6865 2.6005
Present N = 7.5936 (3.53) 9.5885 (3.18) 1.0116 (1.13) 1.6205 (3.92) 1.8640 (28.29)
N=3 7.8332 (0.49) 10.0082 (1.06) 1.2618 (26.14) 1.6888 (0.13) 2.6111 (0.45)
N = 7.8550 (0.21) 9.9160 (0.13) 1.0039 (0.36) 1.6921 (0.32) 2.6112 (0.45)
N = 7.8622 (0.12) 9.8859 (0.18) 0.9870 (1.33) 1.6854 (0.07) 2.5963 (0.12)
N = 7.8662 (0.07) 9.9011 (0.02) 1.0015 (0.12) 1.6860 (0.04) 2.5965 (0.11)
N=1 7.8682 (0.05) 9.8989 (0.04) 0.9986 (0.17) 1.6858 (0.05) 2.6001 (0.03)

Table S Comparison of the transverse displacement #., axial stress d,,, transverse normal stress ¢.., axial displacement i,, and shear
stress &,. for C-C and C-S isotropic square beams with L/h = 2 subjected to a uniform load.

Boundary condition Model il Gy G- iy Gy-
C-C FEM ANS3Dgg 11.805 1.5332 1.0002 3.0276 0.70624
ANS3Dg, 11.804 1.5330 1.0003 3.0272 0.70629
ANS3D;, 11.802 1.5328 1.0004 3.0268 0.70638
Present N=2 10.657 (9.72) 1.2885 (15.96) 1.0381 (3.79) 2.2504 (25.67) 0.50929 (27.89)
N=3 11.609 (1.65) 1.6520 (7.75) 1.2539 (25.36) 3.0482 (0.68) 0.70210 (0.59)
N =4 11.711 (0.80) 1.5495 (1.06) 0.9935 (0.67) 3.1056 (2.58) 0.71832 (1.71)
N = 11.755 (0.42) 1.5173 (1.04) 0.9868 (1.34) 3.0172 (0.34) 0.70666 (0.06)
N = 11.778 (0.23) 1.5336 (0.03) 1.0032 (0.30) 3.0191 (0.28) 0.70724 (0.14)
N = 11.788 (0.14) 1.5306 (0.17) 0.9991 (0.11) 3.0206 (0.23) 0.70699 (0.11)
C-S FEM ANS3Dyg 16.131 2.0744 1.0002 4.3212 0.98696
ANS3Dg, 16.130 2.0743 1.0003 4.3208 0.98706
ANS3D7, 16.129 2.0741 1.0003 4.3204 0.98721
Present N = 14.772 (8.42) 1.8216 (12.19) 1.0435 (4.33) 3.3495 (22.49) 0.71725 (27.33)
N=3 15.970 (0.99) 2.1934 (5.74) 1.2561 (25.58) 4.3790 (1.34) 0.98590 (0.11)
N = 16.054 (0.47) 2.0871 (0.61) 0.9903 (0.99) 4.4364 (2.67) 1.00363 (1.69)
N = 16.090 (0.25) 2.0584 (0.77) 0.9866 (1.36) 4.3126 (0.20) 0.98831 (0.14)
N = 16.110 (0.13) 2.0756 (0.06) 1.0037 (0.35) 4.3131 (0.19) 0.98861 (0.17)
N=1 16.118 (0.08) 2.0718 (0.13) 0.9988 (0.14) 4.3132 (0.18) 0.98827 (0.13)
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Fig. 7 Distribution of transverse displacement . at (0, L/2, z)
through thickness of C-C and C-S square beams subjected to
uniform load with L/h = 5.
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Fig. 8 Distribution of transverse displacement . at (0, L/2, z)
through thickness of C-C square beam subjected to uniform load
with L/h = 2.
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Fig. 9 Geometry of beam subject to torsion loads.

Table 6 Comparison of the shear stress oy, for C-C isotropic
square beam with L/h = 2 subjected to torsional loads.

Model Gy Error (%)
FEM ANS3D3; 192.69
ANS3D¢0 192.26
ANS3D5gg 191.62
Present N =2 144.26 25.1
N=3 145.88 24.3
N=4 176.32 8.5
N=1 177.16 8.1
N =38 179.73 6.7
N=9 200.17 3.9

h/2). It can be observed that higher expansion orders are
required in order to correctly predict the shear stress. These
results can be used as a benchmark for future finite element
works.

4. Conclusions

This paper presents an analytical solution for bending and tor-
sion of a thick rectangular beam with clamped or simple sup-
ports. The boundary discontinuous Fourier approach is used
in conjunction with shear deformation theories of arbitrary
order via Carrera’s Unified Formulation (CUF). The impor-
tant conclusions that emerge from this paper can be summa-
rized as follows:

(1) Accurate analytical results of the stresses and displace-
ments for clamped beams can be obtained by the present
model with a low computational effort.

(2) At least an expansion order of N = 3 is required in order
to correctly predict the maximum shear stress g,. due to
bending loads.

(3) An overshoot of the maximum transverse normal stress
o.. 1s observed for an expansion order of N =3 when
bending loads are considered. However, this is corrected
by using higher expansion orders.

(4) The boundary discontinuous method requires a higher
computational effort compared to that of Navier-type
solutions, but it is much lower than that required for a
3D finite element solution.
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