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a b s t r a c t 

This paper presents an analytical solution for the static analysis of thick laminated rectangular beams 

with clamped boundary conditions at either or both of the beam’s edges. A unified formulation known 

as Carrera’s Unified Formulation (CUF) is used in order to consider shear deformation theories of arbi- 

trary order. The governing equations are obtained by using the principle of virtual work. The main nov- 

elty is the use of the boundary-discontinuous Fourier approach for laminated beams in the framework 

of a unified formulation. Unlike Navier-type solutions, the present development can obtain analytical so- 

lutions for beams with clamped boundary conditions. A 3D finite element solution is used to validate 

the obtained results. The present theory can analyze clamped beams accurately so benchmark results are 

provided. 
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. Introduction 

Composite materials have many advantages compared to tra-

itional metallic materials. Laminated composite beams are now

idely used in aerospace and naval structures due to their light-

ess. However, composite beams have considerable transverse

tress fields and thus require complex models to reproduce trans-

erse stresses accurately. The classical or Euler-Bernoulli theory is

nadequate to analyze these types of beams since this theory ne-

lects transverse shear deformations. The Timoshenko beam the-

ry is an improvement over the classical beam theory, but it re-

uires a shear correction factor to correct the strain energy, as dis-

ussed by Hutchinson (1981) , Hutchinson and Zillmer (1986) and

ychter (1987) . In order to overcome the limitations of the Tim-

shenko beam theory, numerous higher order shear deformation

heories (HSDTs) have been developed. HSDTs have nonuniform

hear distribution in the beam’s cross section, which can be cap-

ured by polynomial and non-polynomial shear strain shape func-

ions. Khdeir and Reddy (1997) studied the bending of laminated

eams using the Euler-Bernoulli theory and two HSDTs. Many

ther deformation theories have been developed for the analy-

is of composite laminated beams, and some are given in Sayyad

nd Ghugal (2011) , Shimpi and Ghugal (2001) , Aydogdu (2009) and

rya et al. (2002) . 
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A unified formulation known as Carrera’s Unified Formulation

CUF) has been developed by Carrera (2003) . This formulation can

nalyze deformation theories of arbitrary order in a systematic

anner, and it has been used to solve multifield problems ( Carrera,

005; Carrera et al., 2007, 2008 ). Beams are analyzed by using the

ne-dimensional CUF model, as presented in Carrera and Giunta

2010) , Carrera et al. (2010) and Carrera and Petrolo (2012) . Non-

olynomial theories for beams have been developed by Carrera et

l. (2013) . This formulation can obtain quasi-3D solutions in many

ase problems. For example, accurate static ( Catapano et al., 2011 ),

ree vibration ( Giunta et al., 2013a; Filippi et al., 2015 ) and buckling

nalysis ( Ibrahim et al., 2012 ) of laminated composite beams have

een developed. The core of the formulation is given in Carrera et

l. (2011) and Carrera et al. (2014) . Special applications of 1D CUF

odels are given in Giunta et al. (2013b,c, 2016) , Polit et al. (2015) .

Analytical solutions are available for simply supported beams

y using Navier-type solutions. Clamped boundary conditions can

e considered in finite element solutions or by using the Ritz

ethod, but these methods require analytical solutions to validate

he results. Unlike simply supported boundary conditions, accurate

nalytical solutions for clamped boundary conditions are seldom

eveloped, which represents a gap in the literature. 

A method known as the boundary discontinuous Fourier

ethod was developed by Chaudhuri (1989,2002) and it can

e used to analyze beams with clamped boundary conditions.

his method has been used for the analysis of cylindrical pan-

ls ( Chaudhuri and Abu-Arja, 1991, Kabir and Chaudhuri, 1993 ),

oubly-curved panels ( Chaudhuri and Kabir, 1989; Kabir and

http://dx.doi.org/10.1016/j.ijsolstr.2017.04.017
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Fig. 1. Coordinate frame of the beam model. 
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Chaudhuri, 1991b; Chaudhuri and Kabir, 1992; Chaudhuri and

Kabir, 1993c,d,e 1994; Kabir and Chaudhuri, 1994 ) and plates

( Chaudhuri and Kabir, 1993a,b; Kabir and Chaudhuri, 1991a;

Chaudhuri, 1994; Kabir, 1994; Chaudhuri et al., 2005 ). The disconti-

nuities introduced reduce the speed of convergence of the Fourier

series, and in order to balance this issue mixed Fourier solutions

have been developed in ( Chaudhuri and Kabir, 2005; Kabir et al.,

2003 ) which have superior rate of convergence. The boundary dis-

continuous Fourier method has been applied for the analysis of

plates and shells using HSDTs, as presented in Oktem and Chaud-

huri (2007a,b,c, 2008, 2009) . 

In this paper, an analytical solution for the static analysis of

composite thick beams with clamped boundary conditions at ei-

ther or both of the beam’s edges is obtained. The displacement

field is expressed within the framework of CUF in order to consider

theories of arbitrary order in a systematic manner. The govern-

ing equations are obtained by using the principle of virtual work.

The validity of the results is assessed by analyzing the convergence

of the results and by comparing the present results with a 3D fi-

nite element solution. Good agreement of the results between the

present model and 3D finite element solution is obtained. Conse-

quently, the present results can be used as benchmark for compar-

ison with approximate solution methods. 

2. Analytical modeling 

A beam of length L , width b and a total thickness h is consid-

ered in the present analysis. The rectangular cartesian coordinate

system used in the present work is shown in Fig. 1 . The beam oc-

cupies the following region: 

−b/ 2 ≤ x ≤ b/ 2 ; 0 ≤ y ≤ L ; −h/ 2 ≤ z ≤ h/ 2 

2.1. Elastic stress-strain relations 

A general displacement vector is introduced: 

u ( x , y , z ) = 

{
u x u y u z 

}T 
(1)

The cross-sectional plane of the beam is denoted by �. The

stress and strain vectors are expressed as follows: 

σ = 

{
σzz σxx σxz σzy σxy σyy 

}
T 

ε = 

{
ε zz ε xx ε xz ε zy ε xy ε yy 

}
T 

(2)

The constitutive equation can be written as follows: 

σ = 

˜ C ε (3)
here ˜ C is a matrix of stiffness coefficients. For an orthotropic ma-

erial, it is given by: 

˜ 
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ C 11 
˜ C 12 0 0 0 

˜ C 13 

˜ C 12 
˜ C 22 0 0 0 

˜ C 23 

0 0 

˜ C 44 0 0 0 

0 0 0 

˜ C 55 0 0 

0 0 0 0 

˜ C 66 0 

˜ C 13 
˜ C 23 0 0 0 

˜ C 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(4)

The orientation of the laminas is defined using the Y axis as a

eference. Only laminated materials with cross-ply layups, i.e. with

aminas oriented at 0 or 90 ° from the Y axis, can be analyzed us-

ng the present boundary-discontinuous method. The limitation is

imilar as for Navier-type solutions. For ease of development, the

tress and strain vectors in Eq. (2) are partitioned: 

p = 

{
σzz σxx σxz 

}
T , ε p = 

{
ε zz ε xx ε xz 

}
T 

n = 

{
σzy σxy σyy 

}
T , ε n = 

{
ε zy ε xy ε yy 

}T 
(5)

Considering small amplitude displacements, the strain are given

y: 

 p = 

⎧ ⎨ 

⎩ 

u z,z 

u x,x 

u x,z + u z,x 

⎫ ⎬ 

⎭ 

, ε n = 

⎧ ⎨ 

⎩ 

u y,z + u z,y 

u y,x + u x,y 

u y,y 

⎫ ⎬ 

⎭ 

(6)

here the comma denotes a partial derivative. Using vector nota-

ion, Eq. (6) can be expressed as: 

 p = D p u 

 n = D n u = ( D n� + D ny ) u 

(7)

The subscript “p ” stands for terms lying on planes orthogonal

o the cross-section, while the subscript “n ” stands for terms lying

n the cross section. The linear differential operators D p , D n � and

 ny are given by: 

 p = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 

∂ 

∂z 

∂ 

∂x 
0 0 

∂ 

∂z 
0 

∂ 

∂x 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, D n� = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 

∂ 

∂z 
0 

0 

∂ 

∂x 
0 

0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

 ny = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 

∂ 

∂y 

∂ 

∂y 
0 0 

0 

∂ 

∂y 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(8)

The constitutive equation, given by Eq. (3) , can be split by using

he partition of the stress and strain vectors given in Eq. (5) : 

p = 

˜ C pp ε p + ̃

 C pn ε n 

n = 

˜ C np ε p + ̃

 C nn ε n 
(9)

The matrices ˜ C pp , ˜ C pn , ˜ C np and 

˜ C nn are obtained as partitions of

q. (4) , and are given by: 
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Table 1 

MacLaurin’s polynomials. 

N M F τ

0 1 F 1 =1 

1 3 F 2 =x , F 3 =z 

2 6 F 4 =x 2 , F 5 =xz , F 6 =z 2 

3 10 F 7 =x 3 , F 8 =x 2 z , F 9 =xz 2 , F 10 =z 3 

… … …

N 

( N+1 )( N+2 ) 
2 

F ( N 2 +N+2 ) / 2 = x N , F ( N 2 +N+4 ) / 2 = x N −1 z... F N( N+3 ) / 2 = x z N −1 , 

F ( N+1 )( N+2 ) / 2 = z N 
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˜ 
 pp = 

⎡ 

⎢ ⎣ 

˜ C 11 
˜ C 12 0 

˜ C 12 
˜ C 22 0 

0 0 

˜ C 44 

⎤ 

⎥ ⎦ 

, ̃  C nn = 

⎡ 

⎢ ⎣ 

˜ C 55 0 0 

0 

˜ C 66 0 

0 0 

˜ C 33 

⎤ 

⎥ ⎦ 

˜ 
 pn = 

˜ C 

T 
np = 

⎡ 

⎢ ⎣ 

0 0 

˜ C 13 

0 0 

˜ C 23 

0 0 0 

⎤ 

⎥ ⎦ 

(10) 

The coefficients ˜ C ij depend on the material properties. They can

e found in standard texts of laminated materials, as presented in

eddy (2004) . 

.2. Displacement field 

The displacement field is expressed within the framework of

he CUF: 

 ( x , y , z ) = F τ ( x , z ) u τ ( y ) τ = 1 , 2 , ..., M (11)

here F τ are functions of the coordinates x and z on the cross-

ection, M stands for the number of terms used in the expansion,

 τ is the vector of the generalized displacements, and the repeated

ubscript “τ ” indicates summation. A Taylor-type expansion is used

o determine the functions F τ , consisting on Maclaurin series that

ses the 2D polynomials x i z j as base. Table 1 shows M and F τ as

unctions of the order expansion N. For example, the displacement

eld of the second-order (N = 2) Taylor-type expansion model can

e expressed as: 

 x = u x 1 + x u x 2 + z u x 3 + x 2 u x 4 + xz u x 5 + z 2 u x 6 

 y = u y 1 + x u y 2 + z u y 3 + x 2 u y 4 + xz u y 5 + z 2 u y 6 

 z = u z 1 + x u z 2 + z u z 3 + x 2 u z 4 + xz u z 5 + z 2 u z 6 

(12) 

.3. Principle of virtual work 

The static version of the principle of virtual work is applied: 

L int = 

∫ 
V 

(
δε T p σp + δε T n σn 

)
dV = δL ext (13) 

here δ stands for the virtual variation operator, L int stands for the

train energy and L ext is the external virtual work. Substituting Eqs.

7) and (9) in Eq. (13) the following expression is obtained: 

L int = 

∫ 
y 

∫ 
�

{
[ D p δu ] 

T 
[

˜ C pp D p + ̃

 C pn ( D n� + D ny ) 
]
u 

+ [ ( D n� + D ny ) δu ] 
T 
[

˜ C np D p + ̃

 C nn ( D n� + D ny ) 
]
u 

}
d�dy 

= δL ext (14) 

Substituting Eqs. (11) and (10) in Eq. (14) and integrating by

arts results in the following: 

L int = 

∫ 
y 

δu 

T 
s K 

τ s u τ dy + 

[
δu 

T 
s �

τ s u τ

]y=L 

y=0 
= δL ext (15) 

here K 

τ s is the stiffness matrix and �τ s is the matrix of the nat-

ral boundary conditions. The components of K 

τ s are provided as
ollows: 

 

τ s 
( 11 ) = E 

22 
τ, x s , x 

+ E 

44 
τ, z s , z 

− E 

66 
τ s 

∂ 2 

∂ y 2 

 

τ s 
( 12 ) = E 

23 
τ, x s 

∂ 

∂y 
− E 

66 
τ s , x 

∂ 

∂y 

 

τ s 
( 13 ) = E 

12 
τ, x s , z 

+ E 

44 
τ, z s , x 

 

τ s 
( 21 ) = E 

66 
τ, x s 

∂ 

∂y 
− E 

23 
τ s , x 

∂ 

∂y 

 

τ s 
( 22 ) = E 

55 
τ, z s , z 

+ E 

66 
τ, x s , x 

− E 

33 
τ s 

∂ 2 

∂ y 2 

 

τ s 
( 23 ) = E 

55 
τ, z s 

∂ 

∂y 
− E 

13 
τ s , z 

∂ 

∂y 

 

τ s 
( 31 ) = E 

12 
τ, z s , x 

+ E 

44 
τ, x s , z 

 

τ s 
( 32 ) = E 

13 
τ, z s 

∂ 

∂y 
− E 

55 
τ s , z 

∂ 

∂y 

 

τ s 
( 33 ) = E 

11 
τ, z s , z 

+ E 

44 
τ, x s , x 

− E 

55 
τ s 

∂ 2 

∂ y 2 
(16)

here a cross-sectional moment parameter has been used, and a

eneric term is defined below: 

 

αβ
τ,γ s ,θ

= 

∫ 
�

˜ C αβF τ,γ F s ,θ d� (17) 

The components of �τ s are provided as follows: 

τ s 
( 11 ) 

= E 

66 
τ s 

∂ 

∂y 
�τ s 

( 12 ) 
= E 

66 
τ s , x 

�τ s 
( 13 ) 

= 0 

τ s 
( 21 ) 

= E 

23 
τ s , x 

�τ s 
( 22 ) 

= E 

33 
τ s 

∂ 

∂y 
�τ s 

( 23 ) 
= E 

13 
τ s , z 

τ s 
( 31 ) 

= 0 �τ s 
( 32 ) 

= E 

55 
τ s , z 

�τ s 
( 33 ) 

= E 

55 
τ s 

∂ 

∂y 

(18) 

Letting P τ ={ P x τ P y τ P z τ } T define a vector of generalized forces,

he natural boundary conditions can be obtained by substituting

q. (18) in Eq. (15) : 

u xs : P x τ = E 

66 
τ s u x τ, y + E 

66 
τ s , x 

u y τ (19a) 

u ys : P y τ = E 

23 
τ s , x 

u x τ + E 

33 
τ s u y τ, y + E 

13 
τ s , z 

u z τ (19b)

u zs : P z τ = E 

55 
τ s , z 

u y τ + E 

55 
τ s u z τ, y (19c) 

.4. Boundary discontinuous solution 

Geometric boundary conditions for simply supported beams, in

erms of the displacement variables given in Eq. (11) , are expressed

s: 

 x τ ( 0 ) = u y τ, y ( 0 ) = u z τ ( 0 ) = 0 

 x τ ( L ) = u y τ, y ( L ) = u z τ ( L ) = 0 

(20) 

Geometric boundary conditions for clamped – clamped beams,

n terms of the displacement variables given in Eq. (11) are addi-

ional constraints to those given in Eq. (20) : 

 y τ ( 0 ) = 0 (21a) 

 y τ ( L ) = 0 (21b) 
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The displacement variables are assumed as follows: 

u x τ = 

p ∑ 

m=1 

U x τm 

sin ( αm 

y ) 0 ≤ y ≤ L (22a)

u y τ = 

p ∑ 

m=0 

U y τm 

cos ( αm 

y ) 0 < y < L (22b)

u z τ = 

p ∑ 

m=1 

U z τm 

sin ( αm 

y ) 0 ≤ y ≤ L (22c)

where m is the wave number of the trigonometric term and p the

number of trigonometric terms of the series. The coefficient αm 

is

given by: 

αm 

= 

m π

L 
(23)

The total number of unknown Fourier coefficients introduced

in Eqs. (22) is M(3p + 1). The assumed solution satisfies the sim-

ply supported boundary condition given in Eq. (20) . However, the

clamped support boundary condition, given in Eq. (21) , is not sat-

isfied. In order to obtain analytical solution for clamped beams, the

boundary discontinuous method is used. The details of the proce-

dure are given in Refs. Chaudhuri (1989, 2002) . 

The boundary discontinuous method introduces boundary

Fourier coefficients arising from discontinuities of the solution at

the edges y = 0, L. The displacement variable u y τ , as defined by Eq.

(22b) , does not satisfy the boundary condition for clamped sup-

ports given in Eq. (21) . Therefore, it is forced to vanish at these

edges. The partial derivative u y τ ,y is seen to vanish at the edges,

thus violating the complementary boundary constraint or bound-

ary discontinuities at these edges; see Chaudhuri (1989, 2002) . For

further differentiation, u y τ ,yy is expanded in a Fourier series in or-

der to satisfy the complementary boundary constraint. It is impor-

tant to note that the derivative of the Fourier series of a given

function is not necessarily the same as the Fourier series of the

derivative of the function when this function has discontinuities. 

The Fourier series of the partial derivative u y τ ,y is given by: 

u y τ, y = 

p ∑ 

m=1 

U y τm , y sin ( αm 

y ) 0 < y < L (24a)

U y τm , y = 

2 

L 

∫ L 

0 

u y τ, y sin ( αm 

y ) dy (24b)

where U y τm ,y is the Fourier term associated with the Fourier series

of the function u y τ ,y . Integrating Eq. (24b) by parts and using the

vanishing boundary conditions given in Eq. (21) : 

U y τm , y = 

2 

L 
u y τ sin ( αm 

y ) | y=L 
y=0 

− 2 

L 

∫ L 
0 u y ταm 

cos ( αm 

y ) dy 

U y τm , y = −( αm 

) 
2 

L 

∫ L 
0 u y τ cos ( αm 

y ) dy 

(25)

The Fourier term U y τm 

of the Fourier series of the function u y τ

is recognized: 

U y τm , y = −αm 

U y τm 

(26)

Thus, the first partial derivative can be obtained through term-

by-term differentiation. The Fourier series of the second partial

derivative u y τ ,yy is given by: 

u y τ, yy = 

1 

2 

a τ + 

p ∑ 

m=1 

U y τm , yy cos ( αm 

y ) 0 < y < L (27a)

U y τm , yy = 

2 

L 

∫ L 

0 

u y τ, yy cos ( αm 

y ) dy (27b)
here U y τm ,yy is the Fourier term of the function u y τ ,yy and a τ is

 Fourier coefficient. Integrating Eq. (27b) by parts, the following

xpression is obtained: 

 y τm , yy = 

2 

L 
u y τ, y cos ( αm 

y ) | y=L 
y=0 

+ 

2 

L 

∫ L 

0 

u y τ, y αm 

sin ( αm 

y ) dy (28)

Note that the function u y τ ,y does not necessarily vanish at the

dges (contrary to what may be suggested by Eq. (22b) ) since dis-

ontinuities are introduced at y = 0, L . Substituting Eqs. (24b) and

26) in Eq. (28) the Fourier term is obtained as: 

 y τm , yy = 

2 

L 

[
( −1 ) 

m u y τ, y ( L ) − u y τ, y ( 0 ) 
]

− α2 
m 

U y τm 

(29)

Substituting Eq. (29) in Eq. (27a) the following expression is ob-

ained: 

 y τ, yy = 

1 

2 

a τ + 

p ∑ 

m=1 

(
−α2 

m 

U y τm 

+ γm 

a τ + ψ m 

b τ

)
cos ( αm 

y ) (30)

here the Fourier coefficients a τ and b τ introduce 2M new un-

nowns. These coefficients are given by: 

 τ = 

2 

L 
[ u y τ, y ( L ) − u y τ, y ( 0 ) ] (31a)

 τ = −2 

L 
[ u y τ, y ( L ) + u y τ, y ( 0 ) ] (31b)

nd γ m 

, ψ m 

are defined as: 

( γm 

, ψ m 

) = 

{
( 1 , 0 ) , m = even 

( 0 , 1 ) , m = odd 

(32)

.5. Virtual work of the load 

The external work of the uniform load q 0 applied in the surface

 = h/2 (see Fig. 1 ) is given by: 

L ext = 

∫ L 

0 

∫ b / 2 

−b / 2 

q 0 δu z | z=h / 2 dxdy (33)

Substituting Eq. (11) in Eq. (33) : 

L ext = δu sz 

∫ L 

0 

(∫ b / 2 

−b / 2 

q 0 F sz | z=h / 2 dx 

)
dy (34)

he load is expressed using a Fourier series: 

 0 = 

p ∑ 

m=1 

Q m 

sin ( αm 

y ) , Q m 

= 

2 

L 

∫ L 

0 

q 0 sin ( αm 

y ) dy (35)

here Q m 

is a Fourier coefficient associated with the Fourier se-

ies of the load. Other types of loads can be analyzed in a similar

anner, see Ref. Carrera and Giunta (2010) . 

.6. Governing equations 

Substituting Eqs. (22) and their appropriate partial derivatives

n Eq. (15) , in conjunction with Eqs. (16) , (30) , (34) and (35) , the

ollowing expressions are obtained: 

p ∑ 

=1 

sin ( αm 

y ) 
{(

E 

22 
τ, x s , x 

+ E 

44 
τ, z s , z 

+ E 

66 
τ s α

2 
m 

)
U x τm 

+ 

(
−E 

23 
τ, x s 

αm 

+ E 

66 
τ s , x 

αm 

)
U y τm 

(
E 

12 
τ, x s , z 

+ E 

44 
τ, z s , x 

)
U z τm 

}
= 0 (36a)



F. Canales, J. Mantari / International Journal of Solids and Structures 118–119 (2017) 109–118 113 

m

 

m

−
 

(  

A  

d  

t  

E

u  

u  

 

a

U

m

 

o

2

 

b  

a  

s  

b  

t  

l  

p  

h  

s  

t

a

 

m  

(  

2

n  

t  

f

a

 

m  

E  

q  

t

Fig. 2. Points of evaluation of the transverse displacement ū z , axial stress σ̄yy , axial 

displacement ū y and transverse normal stress σ̄zz . 
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Fig. 3. Convergence of transverse displacement ū z at (x = 0, y = L/2, z = 0) of a C – C 

(0/90 °) laminated square beam with L/h = 10 subjected to uniform load for various 

order expansions. 
p ∑ 

=1 

cos ( αm 

y ) 
{(

E 

66 
τ, x s 

αm 

− E 

23 
τ s , x 

αm 

)
U x τm 

+ 

(
E 

55 
τ, z s , z 

+ E 

66 
τ, x s , x 

+ E 

33 
τ s α

2 
m 

)

× U y τm 

(
E 

55 
τ, z s 

αm 

− E 

13 
τ s , z 

αm 

)
U z τm 

− E 

33 
τ s ( γm 

a τ + ψ m 

b τ ) 
}

= 0 

(36b)

p ∑ 

=1 

sin ( αm 

y ) 

{(
E 

12 
τ, z s , x 

+ E 

44 
τ, x s , z 

)
U x τm 

+ 

(
−E 

13 
τ, z s 

αm 

+ E 

55 
τ s , z 

αm 

)
U y τm 

×
(
E 

11 
τ, z s , z 

+ E 

44 
τ, x s , x 

+ E 

55 
τ s α

2 
m 

)
U z τm 

− Q m 

(∫ b / 2 

−b / 2 

F τz | z=h / 2 dx 

)}
= 0 

(36c) 

E 

33 
τ s 

a τ

2 

+ 

(
E 

55 
τ, z s , z 

+ E 

66 
τ, x s , x 

)
U y τ0 = 0 (37) 

Equating the coefficients of the trigonometric functions of Eqs.

36) and (37) to zero yields to M(3p + 1) linear algebraic equations.

dditional equations are supplied by the geometric boundary con-

itions relating to vanishing of the displacement variables u y τ at

he edges y = 0, L (due to the clamped boundary conditions). Using

q. (22b) : 

 y τ ( 0 ) = 0 → 

p ∑ 

m=0 

U y τm 

= 0 (38a)

 y τ ( L ) = 0 → 

p ∑ 

m=0 

( −1 ) 
m U y τm 

= 0 (38b)

These equations can be expressed in a more convenient form,

s in Oktem and Chaudhuri (2007c) : 

 y τ0 + 

p ∑ 

m=2 , 4 ,... 

U y τm 

= 0 (39a) 

p ∑ 

=1 , 3 ,... 

U y τm 

= 0 (39b) 

This step generates 2M additional equations, resulting in a total

f M(3p + 3) linear algebraic equations in as many unknowns. 

.7. Extension to other boundary conditions 

In addition to the clamped – clamped boundary condition, a

eam with clamped – simply supported boundary conditions can

lso be analyzed by the present method. A clamped edge is con-

idered at y = 0 and a simply supported edge at y = L. Since the

oundary condition given in Eq. (21b) has been relaxed, the func-

ion u y τ is no longer forced to vanish at y = L and Eq. (38b) is no

onger needed. This step reduces the available equations in M com-

ared to the clamped – clamped case. In addition, u y τ ,y no longer

as a discontinuity at y = L and it is equal to zero at this point. By

ubstituting u y τ ,y (L) = 0 in Eqs. (31) , the following relation is ob-

ained: 

 τ = b τ (40) 

This step eliminates M unknowns, and thus the system re-

ains determinate. For a simply supported beam, Eqs. (38a) and

38b) are no longer required, reducing the available equations in

M compared to the clamped – clamped case. In addition, u y τ ,y 

o longer has discontinuities at y = 0, L and it is equal to zero at

hese points. By substituting u y τ ,y (0) = u y τ ,y (L) = 0 in Eqs. (31) , the

ollowing relation is obtained: 

 τ = b τ = 0 (41) 

This step eliminates 2M unknowns, and thus the system re-

ains determinate. The remaining governing equations, given by

qs. (36a –c) , are the same as for a Navier-type solution. Conse-

uently, the present method can be considered a generalization of

he Navier solution. 
. Numerical results and discussion 

.1. Material properties and normalization 

An orthotropic (0/90 °) laminated square beam subjected to a

niform load is considered in the following numerical examples.

he following material properties are used: 

E y 

E x 
= 25 , 

E z 

E x 
= 1 , 

G xy 

E x 
= 

G yz 

E x 
= 0 . 5 

G xz 

E x 
= 0 . 2 , v xy = 0 . 01 v xz = v yz = 0 . 25 

(42) 

here E i are the Young’s modulus of elasticity, v ij are the Pois-

on’s ratios and G ij are the shear modulus of elasticity. The sub-

cripts indicate the axes of the elastic constants. The displace-

ents, stresses and geometric parameters are expressed in the fol-

owing non-dimensional form: 

¯  z = 10 

2 × E x h 

3 

q 0 L 4 
u z , ū y = 10 

3 × E x h 

3 

q 0 L 4 
u y 

¯yy = 10 

−1 × σyy 

q 0 

, σ̄zz = 

σzz 

q 0 

, σ̄yz = 

σyz 

q 0 

spectratio = 

L 
, z̄ = 

z 
(43) 
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Fig. 4. Convergence of axial stress σ̄yy at (x = 0, y = L/2, z = - h/2) of a C – C (0/90 °) 
laminated square beam with L/h = 10 subjected to uniform load for various order 

expansions. 

Fig. 5. Distribution of the transverse displacement ū z at (x = 0, y = L/2, z) through 

the thickness of a C – C (0/90 °) laminated square beam subjected to uniform load 

for aspect ratios 10 and 5. 

 

 

 

Fig. 6. Distribution of the axial displacement ū y at (x = 0, y = L/4, z) through the 

thickness of a C – C (0/90 °) laminated square beam subjected to uniform load for 

aspect ratios 10 and 5. 

Table 2 

Convergence of transverse displacement ū z at (x = 0, y = L/2, z = 0), axial stress σ̄yy 

at (x = 0, y = L/2, z = - h/2), transverse normal stress σ̄zz t (x = 0, y = L/2, z = h/2) 

and axial displacement ū y at (x = 0, y = L/4, z = h/2) for a C – C (0/90 °) laminated 

square beam with L/h = 10 subjected to a uniform load. 

Number of terms ū z σ̄yy σ̄zz ū y 

400 1.0672 7.4178 0.88559 16.339 

600 1.0681 7.4138 0.88258 16.352 

10 0 0 1.0688 7.4105 0.87987 16.362 

1500 1.0692 7.4089 0.87845 16.367 

2500 1.0695 7.4076 0.87730 16.372 

40 0 0 1.0697 7.4069 0.87664 16.374 

60 0 0 1.0698 7.4065 0.87628 16.375 

10,0 0 0 1.0698 7.4062 0.87599 16.376 

3

 

o  

t  

r  

c  

t  

g  

t  

t  
The boundary conditions are denoted by the letters C and S. For

example, C – S indicates a beam clamped at y = 0 and simply sup-

ported at y = L. Fig. 2 shows the location of the points of evaluation

of the displacements and stresses provided in this paper. 
.2. Convergence analysis 

Figs. 3 and 4 show the transverse displacement and axial stress

f a C – C (0/90 °) laminated beam as the number of trigonometric

erms in the Fourier series is increased. The beam has an aspect

atio L/h = 10 and is subjected to uniform load in z = h/2. The dis-

ontinuities introduced in the displacement functions slow down

he convergence of the Fourier series. For this reason, the conver-

ence is much slower compared to an ordinary Navier-type solu-

ion. The order expansion N does not seem to greatly influence

he speed of convergence, only the final result. Table 2 presents
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Fig. 7. Distribution of the axial stress σ̄yy at (x = 0, y = L/2, z) through the thickness 

of a C – C (0/90 °) laminated square beam subjected to uniform load for aspect ratios 

10 and 5. 
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Fig. 8. Distribution of the transverse normal stress σ̄zz at (x = 0, y = L/2, z) through 

the thickness of a C – C (0/90 °) laminated square beam subjected to uniform load 

for aspect ratios 10 and 5. 

Table 3 

Comparison of transverse displacement ū z at (x = 0, y = L/2, z = 0), axial stress σ̄yy 

at (x = 0, y = L/2, z = - h/2), transverse normal stress σ̄zz at (x = 0, y = L/2, z = h/2) 

and axial displacement ū y at (x = 0, y = L/4, z = h/2) for a C – C (0/90 °) laminated 

square beam subjected to uniform load with aspect ratios 10 and 5. 

L/h Model ū z σ̄yy σ̄zz ū y 

10 FEM 3D 1.086 7.452 1.0 0 0 1.645 

N = 2 1.031 6.966 1.150 1.550 

N = 3 1.059 7.324 1.160 1.598 

N = 4 1.070 7.406 0.876 1.638 

N = 5 1.079 7.431 0.962 1.645 

N = 6 1.079 7.434 1.083 1.646 

N = 7 1.081 7.443 1.052 1.647 

5 FEM 3D 2.311 2.090 1.0 0 0 4.115 

N = 2 2.123 1.603 1.177 3.515 

N = 3 2.226 1.949 1.085 3.984 

N = 4 2.249 2.052 0.890 4.095 

N = 5 2.285 2.080 1.036 4.125 

N = 6 2.288 2.075 1.039 4.119 

N = 7 2.292 2.081 0.996 4.122 

 

t  

d  

m  

a  

d  
umerical results for the displacements and stresses as the num-

er of terms in the Fourier series is increased for N = 4. The trans-

erse normal stress σ̄zz is seen to converge slowly. At least 4 signif-

cant figures can be expected from the numerical results when the

umber of trigonometric terms is p = 10 0 0 0, except for the trans-

erse stress σ̄zz , and this number of terms is further used in the

anuscript. 

.3. Clamped – clamped laminated beam 

In order to assess the validity of the results, a 3D finite ele-

ent solution for the static analysis of the laminated beam has

een obtained using ANSYS commercial code. The 20-node brick

lement is used to model the beam. The mesh is such that dou-

ling the elements yields a change lower than 0.05% in ( ̄σy ) max .

50,0 0 0 elements were used in order to obtain sufficiently accu-

ate results. Table 3 presents values of displacements and stresses

t the specified points of a C – C (0/90 °) laminated beam by using

he present model, and the corresponding results obtained by the

D finite element solution. For a beam with L/h = 10, close agree-

ent is obtained for the transverse displacement, axial stress and

xial displacement. Slightly higher deviation in transverse normal

tress results between 3D finite element solution and the present

odel are observed. The accuracy of the transverse normal stress

s higher for a beam with L/h = 5 than for L/h = 10. On the other

and, the axial stress has higher deviations for thicker beams. 
Fig. 5 shows the distribution of transverse displacement across

he thickness of a C - C (0/90 °) beam with L/h = 5 and 10. The or-

er expansion is given by N and the corresponding 3D finite ele-

ent solution is also plotted. As expected, more accurate solutions

re obtained by using a higher order expansion. Fig. 6 shows the

istribution of the axial displacement across the thickness of a C -
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Fig. 9. Distribution of the transverse shear stress σ̄yz at (x = 0, y = L/4, z) through 

the thickness of a C – C (0/90 °) laminated square beam subjected to uniform load 

for aspect ratios 10 and 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Distribution of the transverse displacement ū z at (x = 0, y = L/2, z) through 

the thickness of a C – S (0/90 °) laminated square beam subjected to uniform load 

for aspect ratios 10 and 5. 

Table 4 

Comparison of transverse displacement ū z at (x = 0, y = L/2, z = 0), axial stress σ̄yy 

at (x = 0, y = L/2, z = - h/2), transverse normal stress σ̄zz at (x = 0, y = L/2, z = h/2) 

and axial displacement ū y at (x = 0, y = L/4, z = h/2) for a C – S (0/90 °) laminated 

square beam subjected to uniform load with aspect ratios 10 and 5. 

L/h Model ū z σ̄yy σ̄zz ū y 

10 FEM 3D 1.826 11.45 1.0 0 0 2.756 

N = 2 1.758 10.92 1.124 2.636 

N = 3 1.792 11.30 1.216 2.695 

N = 4 1.806 11.38 0.872 2.750 

N = 5 1.817 11.42 0.905 2.758 

N = 6 1.817 11.42 1.113 2.758 

N = 7 1.820 11.43 1.094 2.760 

5 FEM 3D 3.241 3.334 1.0 0 0 5.766 

N = 2 3.011 2.814 1.172 5.006 

N = 3 3.136 3.180 1.102 5.586 

N = 4 3.170 3.282 0.887 5.776 

N = 5 3.212 3.316 1.019 5.798 

N = 6 3.214 3.314 1.048 5.789 

N = 7 3.220 3.321 1.008 5.792 

m  

f  

i  

w

C (0/90 °) beam. In this case, accurate distributions are obtained by

using an order expansion N = 5 or higher. Fig. 7 shows the distribu-

tion of the axial stress across the thickness of a C – C (0/90 °) beam.

For a beam with L/h = 10, accurate axial stresses are obtained for

N = 4. On the other hand, for a thicker beam with L/h = 5 the error

increases, and higher order expansions are required. 

Fig. 8 shows the distribution of the transverse normal stress

across the thickness of a C - C (0/90 °) beam. While the other

stresses and displacements are obtained more accurately for beams

with higher aspect ratio, i.e. slender beams, accurate results for the

transverse normal stress are obtained for beams with lower aspect

ratio, i.e. for L/h = 5. Close agreement is obtained by using an or-

der expansion N = 7. Fig. 9 shows the distribution of the transverse

shear stress across the thickness of a C – C (0/90 °) beam. The max-

imum shear stress is predicted accurately by using an order expan-

sion N = 7. 

3.4. Clamped – simply supported laminated beam 

Table 4 presents values of displacement and stresses at certain

points of a C – S (0/90 °) laminated beam for different aspect ra-

tios, as obtained by the present model and by a 3D finite element

solution. Close agreement is obtained for the transverse and axial

displacements, as well as for the axial stress. Figs. 10 and 11 show

the distribution of the transverse displacement and transverse nor-
al stress across the thickness of a C - S (0/90 °). Similar trends as

or C – C beams are observed, with the transverse normal stress

n close agreement with the 3D finite element solution for a beam

ith L/h = 5. 
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Fig. 11. Distribution of transverse normal stress σ̄zz at (x = 0, y = L/2, z) through the 

thickness of a C – S (0/90 °) laminated square beam subjected to uniform load for 

aspect ratios 10 and 5. 
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. Conclusions 

An analytical solution for the bending of thick laminated beams

ith clamped boundary conditions at either of the beam’s edges

as been presented. Deformation theories of arbitrary order are

onsidered using Carrera Unified Formulation (CUF). The governing

quations are obtained by employing the principle of virtual work.

n order to account for clamped or mixed boundary conditions at

he beam’s edges, the boundary discontinuous Fourier approach is

sed. The results are compared with a 3D finite element solution

or validation. 

The important conclusions that emerge from this paper can be

ummarized as follows: 

(a) Accurate values of the axial and transverse displacement for

clamped laminated beams can be obtained by the present

model. 

(b) The transverse normal stresses obtained by the present the-

ory are not very accurate for long, slender beams. If re-

quired, these stresses can be obtained via the equations of

equilibrium. 

(c) The boundary discontinuous method can be considered a

generalization of the Navier solution, being able to obtain

analytical solutions for beams with clamped edges. For sim-

ply supported edges, the governing equations of the present

method reduce to those of a Navier solution. 

(d) In the case of clamped beams, the boundary discontinuous

method requires a higher computational effort compared to
Navier-type solutions, but it is much lower than the effort

required for a 3D finite element solution. 

Further studies need to be performed to assess the accuracy of

he present model for the analysis of functionally graded and thin-

alled beams. 
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