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In this paper a 5-unknowns generalized hybrid-type quasi-3D HSDT for the static analysis
of functionally graded single and sandwich plates is presented. Generalized hybrid-type
modeling can adopted with any kind of shear strain shape functions for the inplane and
transverse displacement, and therefore infinite hybrid-type (non-polynomial, polynomial,
mixed type) displacement based shear deformation theory complying with the free surface
boundary condition can be obtained. The key feature of this theory is that, in addition to
including stretching, it has only 5 unknowns in the displacement field modeling as the first
order shear deformation theory (FSDT). The generalized hybrid-type theory is also quasi-
3D because the 3D Hooke’s law equation is utilized, i.e. rzz – 0. The generalized governing
equations and boundary conditions are derived by employing the principle of virtual
works. A generalized Navier-type closed-form solution is obtained for functionally graded
single and sandwich plates subjected to transverse load for simply supported boundary
conditions. Analytical results from the new generalized hybrid-type quasi-3D higher order
shear deformation theory (HSDT) are compared with the FSDT, other quasi-3D HSDTs, and
refined HSDTs. The fundamental conclusions that emerge from the present numerical
results suggest that: (a) infinite shears strain shape function can be evaluated by using
the present theory; (b) polynomial shear strain functions appear to be a good choice for
the implementing of a quasi-3D HSDT based on this generalized quasi-3D hybrid type
HSDT; (c) this generalized theory can be as accurate as the 6-unknown generalized
hybrid-type quasi-3D HSDT; (d) the best HSDT with stretching effect and 5-unknows can
be obtained from the present generalized theory, this can be done by optimizing a theory
that for example has a given non-polynomial inplane and transverse shears strain shape
functions.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) have engineered gradients of composition, structure and/or specific properties in
preferred directions. FGMs have superior mechanical response for certain applications than homogeneous material com-
posed of similar constituents. The mechanical properties vary smoothly and continuously in preferred directions in FGMs
such as functionally graded plates (FGPs).
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Although the concept of FGMs is not new [1,2], and fabrication of FGMs is still a topic of research, it is interesting to see
such advanced materials and their complexity in the nature (sea shells, bones, etc.). Several areas of application for FGMs
guarantee that this kind of material will be more and more demanding in a near future. An extended literature review on
FGMs can be found in Refs. [3–9]. In what follows, in order to complete the review of the contributions on the analytical
modeling of FGPs, interesting research works contributions conducted during this decade is described.

Carrera et al. [10] investigated the influence of the stretching effect on the static responses of FGPs and shells. Neves et al.
[11,12] and Ferreira et al. [13] developed a quasi-3D hybrid type (polynomial and trigonometric) HSDT for the static and free
vibration analysis of FGPs by using both meshless numerical method, and the Carreras’s Unified Formulation (CUF). The
development of meshless-CUF as well as the best plate theory diagram based on CUF [14–19] (which can be called the second
generation of the shear deformation theories) are both very interesting research works with remarkable contribution to the
literature. Interestingly, in Refs. [11–13], the new introduced displacement fields use different non-polynomial shear strain
shape functions for in-plane displacements, and a polynomial one for the out-of-plane displacement. Moreover, Refs. [20–
25] introduced several new non-polynomial shear strain shape functions, which were found to be important to solve clas-
sical and advanced composite problems due to the achievement of accuracy in bending results. Refs. [4–8] present bending
results of FGPs by using new non-polynomial HSDTs. In Refs. [6,7], the stretching effect in non-polynomial quqasi-3D HSDTs
was studied. There appear actual demand for new non-polynomial shear strain shape functions, and in this paper, some new
ones are provided for the first time.

Based on the interesting work on the 2-unknows plate theory for isotropic and orthotropic plates [26–28], Mechab et al.
[29] investigated the bending behavior of FGPs by using 4-unknowns HSDT with polynomial shear strain shape function.
Abdelaziz et al. [30] evaluated the static analysis of FGPs with the same HSDT. Houari et al. [31] and Hamidi et al. [32] ana-
lyzed the thermoelastic behavior of FGPs by the 4-unknows HSDT with polynomial shear strain shape function. Conse-
quently, Mechab et al. [33] investigated the static and dynamic analysis of FGPs with new non-polynomial HSDT
(hyperbolic shear strain shape function). Recently, a 5-unknowns trigonometric plate theory (TPT) with thickness stretching
effect was developed by Thai and Kim [34] with good accuracy respect its counterpart the 6-unknows TPT. Based on this
work, the authors [35] developed an optimized TPT with thickness stretching effect and 5-unknowns with improved results.

Review on generalized formulations of shear deformation theories [25,36–40] for classical and advanced composites reveals
that no much work on the topic is found. Moreover, generalized formulations for advanced composites [10,41–44] are even less.
In Ref. [7], a generalized quasi-3D hybrid type HSDT for FGPs was developed. The interesting feature of this generalized theory is
its capability to reproduce the HSDTs described above with the exception of the ones formulated by Carrera [10].

The key feature of the present quasi-3D HSDTs are both the reduced number of unknowns and the thickness expansion
modeling (gðzÞ). Normally, this shear strain shape function is conditioned by the in-plane displacement model (f ðzÞ), i.e.
(gðzÞ = f 0ðzÞ). As a result, there is no freedom in selecting an arbitrary through the thickness displacement field. The present
formulation has that freedom, i.e. (gðzÞ– f 0ðzÞ), and therefore, infinite hybrid type quasi-3D shear deformation theories with
stretching effect (polynomial or non-polynomial or hybrid type) can be created just having 5 unknowns. The present gen-
eralized quasi-3D hybrid type HSDT for FGPs as well as the well-known CUF (with new non-polynomial shear strain shape
function as in Refs. [11–13]) call the attention of new non-polynomial shear strain shape functions, which can be also
included to this generalized HSDT for further evaluation.

In the present paper, a 5-unknowns generalized formulation with stretching effect for the bending analysis of functionally
graded plates is presented for the first time. Infinite quasi-3D hybrid type (polynomial, non-polynomial, and hybrid) HSDTs,
including the thickness expansion can be derived by using the present generalized theory. A free even transverse shear strain
shape function, gðzÞ, for the proper distribution of the transverse shear strains through the plate thickness, can be utilized.
The generalized theory complies with the tangential stress-free boundary conditions on the plate boundary surface, and thus
a shear correction factor is not required. The plate governing equations and its boundary conditions are derived by employ-
ing the principle of virtual works. Navier-type analytical solution is obtained for plates subjected to transverse load for sim-
ply supported boundary conditions. Referential results for the displacement and stresses of functionally graded rectangular
plates are obtained. The results are compared with 3D exact, quasi-exact, and with other closed-form solution published in
the literature. Simple and accurate quasi-3D non-polynomial and hybrid HSDTs for bending analysis of FGPs were proposed
for the first time.

2. Theoretical formulation

Fig. 1a shows a rectangular plate made of FGM of uniform thickness, h. The displacement field satisfying the free surfaces
boundary conditions of transverse shear stresses (and hence strains) vanishing at a point (x, y, ±h/2) on the outer (top) and
inner (bottom) surfaces of the plate, is given as follows:
u ¼ uþ z y��
@ws

@x
þ q�

@h
@x
� @wb

@x

� �
þ f ðzÞ @ws

@x
;

v ¼ v þ z y��
@ws

@y
þ q�

@h
@y
� @wb

@y

� �
þ f ðzÞ @ws

@y
;

w ¼ ws þwb þ gðzÞh;

ð1a-cÞ
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Fig. 1. Geometry of a functionally graded plate and sandwich plate.
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where u(x, y), v(x, y), ws(x, y), wb(x, y) and h(x, y) are the five unknown displacement functions of the middle surface of the
panel, whilst for example in the case of the well known TPT y�� ¼ y� � 1, y� ¼ 0 and q� ¼ 0 (being h the thickness of the plate,
see Table 1 for more details). The constants y⁄ and q⁄ are obtained by considering the criteria to reduce the number of
unknowns in HSDTs as in Reddy and Liu [45]. They are as a function of the shear strain shape functions, f(z) and g(z), i.e.
y⁄ = �f0(h/2) and q⁄ = �g(h/2).

For deriving the equations, small elastic deformations are assumed, i.e. displacements and rotations are small, and obey
Hooke’s law. The starting point of the present generalized quasi-3D hybrid type HSDT is the 3D elasticity theory [46]. The
strain–displacement relations, based on this formulation, are written as follows:
Table 1
Shear s

Mod

Pres

Pres

Pres

Pres

Pres

+ m =
* m =
exx ¼ e0
xx þ ze1

xx þ f ðzÞe2
xx;

eyy ¼ e0
yy þ ze1

yy þ f ðzÞe2
yy;

ezz ¼ g0ðzÞe5
zz;

eyz ¼ e0
yz þ gðzÞe3

yz þ f 0ðzÞe4
yz;

exz ¼ e0
xz þ gðzÞe3

xz þ f 0ðzÞe4
xz;

exy ¼ e0
xy þ ze1

xy þ f ðzÞe2
xy;

ð2a-fÞ
where
e0
xx ¼ @u

@x ; e1
xx ¼ y�� @

2ws
@x2 þ q� @

2h
@x2 � @2wb

@x2 ; e2
xx ¼ @2ws

@x2 ;

e0
yy ¼ @v

@y ; e1
yy ¼ y�� @

2ws
@y2 þ q� @

2h
@y2 � @2ws

@y2 ; e2
yy ¼ @2ws

@y2 ;

e5
zz ¼ h;

e0
yz ¼ y� @ws

@y þ q� @h
@y ; e3

yz ¼ @h
@y ; e4

yz ¼ @ws
@y ;

e0
xz ¼ y� @ws

@x þ q� @h
@x ; e3

xz ¼ @h
@x ; e4

xz ¼ @ws
@x ;

e0
xy ¼ @v

@x þ @u
@y ; e1

xy ¼ 2y�� @
2ws
@x@y þ 2q� @2h

@x@y� 2 @2wb
@x@y ; e2

xy ¼ 2 @2ws
@x@y ;

ð3a-pÞ
train shape functions.

el f(z) and g(z) function Particularities

ent polynomial HSDT (HSDT1) f ðzÞ ¼ z3 gðzÞ ¼ z2 y� ¼ � 3
4 h2 q� ¼ � h2

4

ent trigonometric HSDT (HSDT2) f ðzÞ ¼ 4h sinð z
4hÞ gðzÞ ¼ cosð z

4hÞ y� ¼ � cosð18Þ q� ¼ � cosð18Þ
ent trigonometric HSDT (HSDT3) f ðzÞ ¼ tanð z

5hÞ gðzÞ ¼ cosð z
4hÞ y� ¼ � 1

5h sec2ð 1
10Þ q� ¼ � cosð18Þ

ent hybrid HSDT (HSDT4)+
f ðzÞ ¼ zemz2

gðzÞ ¼ nz2 q� ¼ �ð1� mh2

2 Þemh2
=4, q� ¼ � nh2

4

ent hybrid HSDT (HSDT5) *
f ðzÞ ¼ mz3 gðzÞ ¼ enz2

y� ¼ � 3m
4 h2 q� ¼ �enh2

=4

1/h2, n = 1.
1, n = 1/h2.
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An FGP of length a, width b and a total thickness h made of a mixture of metal and ceramic materials are considered in the
present analysis. The elastic material properties vary through the thickness and the power-law distribution is assumed to
describe the variation of material properties, which is expressed as
PðzÞ ¼ VPb; V ¼ epðzhþ
1
2Þ; for exponentially graded plates:

ðPt � PbÞV þ Pb; V ¼ z
hþ 1

2

� �p
; for functionally graded plates ðmixture ruleÞ:

(
; ð4a-bÞ
where P denotes the effective material property, Pt and Pb denote the property of the top and bottom faces of the panel,
respectively, and p is the power-law exponent that specifies the material variation profile through the thickness. Fig. 2 shows
the exponential function (Vz) along the thickness of an exponentially graded plate (EGP) for different values of the parameter
p. While Fig. 3 shows the corresponding function for FGMs obeying the rule of mixture.

The effective material properties of the plate, including Young’s modulus, E, and shear modulus, G, vary according to Eq.
(4a-b), and Poisson ratio, m is assumed to be constant.

The linear constitutive relations are given below:
rxx

ryy

rzz

syz

sxz

sxy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
ðzÞ

¼

Q11 Q 12 Q 13 0 0 0

Q21 Q 22 Q 23 0 0 0
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ðzÞ
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Fig. 2. Exponentially graded function V(z) along the thickness of an EG plate for different values of the parameter ‘‘p’’.
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in which, rðzÞ = {rxx, ryy, rzz, syz, sxz, sxy}T and eðzÞ = {exx, eyy, ezz, cyz, cxz, cxy}T are the stresses and the strain vectors with respect
to the plate coordinate system. The Qij expressions in terms of engineering constants are given below:
Q 11ðzÞ ¼ Q22ðzÞ ¼ Q 33ðzÞ ¼
EðzÞð1� vÞ
ð1� 2mÞð1þ mÞ ;

Q 12ðzÞ ¼ Q13ðzÞ ¼ Q 23ðzÞ ¼
EðzÞv

ð1� 2mÞð1þ mÞ ;

Q 44ðzÞ ¼ Q55ðzÞ ¼ Q 66ðzÞ ¼
EðzÞ

2ð1þ mÞ :

ð6a-cÞ
The modulus E, G and the elastic coefficients Qij vary through the thickness according to Eq. (4a-b), i.e. they are functions
of z coordinate (depending on vertical position).

Considering the static version of the principle of virtual works, the following expressions can be obtained:
0 ¼
Z h=2

�h=2

Z
X
½rxxdexx þ ryydeyy þ rzzdezz þ ryzdeyz þ rxzdexz þ rxydexy�dxdy

� �
dz

" #
�
Z

X
qdwdxdy

� �
; ð7Þ

0 ¼
Z

X
ðN1de0

xx þM1de1
xx þ P1de2

xx þ N2de0
yy þM2de1

yy þ P2de2
yy þ R3de4

zz þ N4de0
yz þ Q4de3

yz þ K4de4
yz þ N5de0

xz

þ Q 5de3
xz þ K5de4

xz þ N6de0
xy þM6de1

xy þ P6de2
xy � qdwÞdxdy; ð8Þ
where e or r are the stresses and the strain vectors, q is the distributed transverse load; and Ni, Mi, Pi, Qi, Ki and Ri are the
resultants of the following integrations:
ðNi;Mi; PiÞ ¼
Z

riðzÞð1; z; f ðzÞÞdz; ði ¼ 1;2;6Þ;

Ni ¼
Z

riðzÞdz; ði ¼ 4;5Þ;

ðQ i;KiÞ ¼
XN

k¼1

Z z

z
riðzÞðgðzÞ; f 0ðzÞÞdz; ði ¼ 4;5Þ;

Ri ¼
Z

rðkÞiðzÞg
0ðzÞdz: ði ¼ 3Þ:

ð9a-dÞ
From Eq. (8), the generalized static version of the governing equations can be derived by integrating the displacement
gradients by parts and setting the coefficients of du, dv , dws, dwb, and dh to zero separately. The generalized bending equa-
tions obtained are as follows:
du :
@N1

@x
þ @N6

@y
¼ 0;

dv :
@N2

@y
þ @N6

@x
¼ 0;

dws : y��
@2M1

@x2 þ
@2M2

@y2 þ 2
@2M6

@x@y

 !
� y�

@N5

@x
þ @N4

@y

� 	
þ @

2P1

@x2 þ
@2P2

@y2 þ 2
@2P6

@x@y
� @K5

@x
� @K4

@y
¼ q;

dwb : � @
2M1

@x2 �
@2M2

@y2 � 2
@2M6

@x@y
¼ q;

dh : q�
@2M1

@x2
1

þ @
2M2

@x2
2

þ 2
@2M6

@x1@x2
� @N4

@x2
� @N5

@x1

 !
� @Q 4

@x2
� @Q 5

@x1
� R3 ¼ �q�q:

ð10a-eÞ
By substituting the stress–strain relations into the definitions of force and moment resultants (Eq. (9a-d)), the following
constitutive equations are obtained:
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Ni ¼ Aije0
j þ Bije1

j þ Cije2
j þ Dije3

j þ Eije4
j þ Fije5

j ; ði ¼ 1;2;4;5;6; j ¼ 1;2; . . . ;6Þ;

Mi ¼ Bije0
j þ Gije1

j þ Hije2
j þ Iije3

j þ Jije4
j þ K 0ije

5
j ; ði ¼ 1;2;6; j ¼ 1;2; . . . ;6Þ;

Pi ¼ Cije0
j þ Hije1

j þ Lije2
j þM0

ije
3
j þ N0ije

4
j þ Oije5

j ; ði ¼ 1;2;6; j ¼ 1;2; . . . ;6Þ;

Q i ¼ Dije0
j þ Iije1

j þMije2
j þ P0ije

3
j þ Q 0ije

4
j þ R0ije

5
j ; ði ¼ 4;5; j ¼ 1;2; . . . ;6Þ;

Ki ¼ Eije0
j þ Jije1

j þ N0ije
2
j þ Q 0ije

3
j þ Sije4

j þ Tije5
j ; ði ¼ 4;5; j ¼ 1;2; . . . ;6Þ;

Ri ¼ Fije0
j þ K 0ije

1
j þ Oije2

j þ R0ije
3
j þ Tije4

j þ Uije5
j ði ¼ 3; j ¼ 1;2; . . . ;6Þ;

ð11a-fÞ
where
ðAij;Bij;Cij;Dij; Eij; FijÞ ¼
R h=2
�h=2 Q ijðzÞð1; z; f ðzÞ; gðzÞ; f

0ðzÞ; g0ðzÞÞdz;

ðGij;Hij; Iij; Jij;K
0
ijÞ ¼

R h=2
�h=2 QijðzÞðz2; zf ðzÞ; zgðzÞ; zf 0ðzÞ; zg0ðzÞÞdz;

ðLij;M
0
ij;N

0
ij;OijÞ ¼

R h=2
�h=2 Q ijðzÞðf

2ðzÞ; f ðzÞgðzÞ; f ðzÞf 0ðzÞ; f ðzÞg0ðzÞÞdz;

ðP0ij;Q
0
ij;R

0
ijÞ ¼

R h=2
�h=2 Q ijðzÞðg2ðzÞ; gðzÞf 0ðzÞ; gðzÞg0ðzÞÞdz;

ðSij; TijÞ ¼
R h=2
�h=2 QijðzÞðf

02ðzÞ; f 0ðzÞg0ðzÞÞdz;

Uij ¼
R h=2
�h=2 QijðzÞg02ðzÞdz:

ðj ¼ 1;2; . . . ;6Þ: ð12a-fÞ
In the expressions Ni, Mi, Pi, Qi, Ki, and Ri, the variables depending on x and y are the strains, eb
j (b = 0, . . .,5) (see Eq. (11a-f)).

Therefore, the terms in each of the generalized bending governing equations of a plate (Eq. (10a-e)), for example @2Ni
@x2 , @

2Mi
@x2 , can

be obtained by using Eq. (11a-f) as follows.
First of all, closed-form solutions of PDEs (like Eq. (10a-e)) for general boundary conditions are difficult. Navier type solu-

tions can be used to validate the present theory; however, more general boundary conditions as in Ref. [47] will require other
solution strategies which are also available in the literature.

It should be also kept in mind that the strains (see also Eq. (11a-f)) are expressed as a function of the 5-unknowns,
described in Eq. (1a-c). These unknowns are expressed as Fourier series (see Eqs. (13a-e) and (14)), i.e. Navier type solution,
in order to: (a) comply with the simply supported (SS3) boundary conditions (see Eq. (15a-b)); and (b) solve the partial dif-
ferential equations (PDEs) given in Eq. (10a-e).
uðx; yÞ ¼
X1
r¼1

X1
s0¼1

Urs0 cosðaxÞ sinðbyÞ; 0 6 x 6 a; 0 6 y 6 b;

vðx; yÞ ¼
X1
r¼1

X1
s0¼1

Vrs0 sinðaxÞ cosðbyÞ; 0 6 x 6 a; 0 6 y 6 b;

wbðx; yÞ ¼
X1
r¼1

X1
s0¼1

Wb
rs0 sinðaxÞ sinðbyÞ; 0 6 x 6 a; 0 6 y 6 b;

wsðx; yÞ ¼
X1
r¼1

X1
s0¼1

Ws
rs0 sinðaxÞ sinðbyÞ; 0 6 x 6 a; 0 6 y 6 b;

hðx; yÞ ¼
X1
r¼1

X1
s0¼1

Hrs0 sinðaxÞ sinðbyÞ; 0 6 x 6 a; 0 6 y 6 b;

ð13a-eÞ
where
a ¼ rp
a
; b ¼ s0p

b
; ð14Þ

N1 ¼ M1 ¼ P1 ¼ v ¼ wb ¼ ws ¼
@ws

@y
¼ h at x ¼ 0; a;

N2 ¼ M2 ¼ P2 ¼ u ¼ wb ¼ ws ¼
@ws

@x
¼ h at y ¼ 0; b:

ð15a-bÞ
Then, by using Eqs. (13a-e) and (11a-f) along with the terms in the PDEs (Eq. (10a-e)), Eq. (16) can be obtained. Note that

the term @2Mi
@x2 is important for Eq. (10c-e), but @2Ni

@x2 is just presented for generalization; actually, it is not presented in any of the
PDEs’ terms.
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@2ðNi;MiÞ
@x2

¼ðAij;BijÞ

a3 0 0 0 0

0 a2b 0 0 0

0 0 0 0 0

0 0 �y�a2b 0 �q�a2b

0 0 �y�a3 0 �q�a3

�a2b �a3 0 0 0

2
6666666664

3
7777777775

Urs0

Vrs0

Ws
rs0

Wb
rs0

Hrs0

2
66666664

3
77777775

2
6666666664

3
7777777775

T

�

SS

SS

SS

SC

CS

CC

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
þðBij;GijÞ

0 0 y��a4 �a4 q�a4

0 0 y��a2b2 �a2b2 q�a2b2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �y��2a3b þ2a2b �2q�a3b

2
6666666664
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ð16Þ
where SS ¼ sinðaxÞ sinðbyÞ, SC ¼ sinðaxÞ cosðbyÞ and so for, and the elements of the 6 � 5 matrices are the coefficients
obtained after taking the second derivation of the strains expression in the Eq. (11a-f).

The 6 � 5 matrices associated with @2Mi
@x2 in Eq. (16) have the notation M2;b

x (b = 0, . . .,5). The symbols used in Ma;b
v (a = 2,

b e {0,1, . . .,5} and v = x in the previous example) are as follow: the first upper and lower characters (a,v) indicate the ath
derivative with respect to v (second derivative with respect to x, in the previous example), and the second upper character,

b, indicates that the derivative is associates with the strain eb
j (b = 0, . . .,5). Thus, the expression @2ðNi ;MiÞ

@x2 , can be obtained as:
@2ðNi;MiÞ
@x2 ¼ððAij;BijÞM2;0

x þðBij;GijÞM2;1
x þðCij;HijÞM2;2

x þðDij; IijÞM2;3
x þðEij; JijÞM2;4

x þðFij;K
0
ijÞM2;5

x ÞsinðaxÞsinðbyÞ; ð17Þ
where, for example, M2;0
x is:
M2;0
x ¼

a3 0 0 0 0
0 a2b 0 0 0
0 0 0 0 0
0 0 �y�a2b 0 �q�a2b

0 0 �y�a3 0 �q�a3

�a2b �a3 0 0 0

2
666666664

3
777777775
: ð18Þ
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Fig. 4. Variations of non-dimensionalized inplane normal stresses with parameters ‘‘m’’ and ‘‘n’’ (HSDT1, a/b = 1/6, a/h = 2 and p = 1.5).
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The matrices Ma;b
v , associated with the expressions of the generalized bending governing equations (10a-e), for example

@Mi
@x or @Mi

@y , are given in the Appendix A.

3. Solution procedure

By substituting the potential solutions (Eq. (13a-e)) into the generalized bending governing equations (Eq. (10a-e)), the
following linear equations are obtained,
Table 2
Non-dim

a/h

2

4

Kijdj ¼ Fj ði; j ¼ 1; . . . ;5Þ and ðKij ¼ KjiÞ: ð19Þ
For better understanding of the linear Eq. (19), the formulation of the first row of the stiffness matrix Kij of Eq. (19) is
described in detail. First of all, notice that it is built up considering the terms @N1

@x and @N6
@y (see Eq. (10a)). This equation can

be expressed as follows:
@N1

@x
¼ ðA1jM1;0

x þ B1jM1;1
x þ C1jM1;2

x þ D1jM1;3
x þ E1jM1;4

x þ F1jM1;5
x ÞsinðaxÞ sinðbyÞ;

@Ni

@y
¼ ðA6jM1;0

y þ B6jM1;1
y þ C6jM1;2

y þ D6jM1;3
y þ E6jM1;4

y þ F6jM1;5
y ÞsinðaxÞ sinðbyÞ;

ð20a-bÞ
where all the matrices Ma;b
v related to Eq. (20a-b) is given in Annex A. Consequently, if the sum both terms is done, it will

deliver a 1 � 5 vector multiplied by sinðaxÞ sinðbyÞ, this last term will be cancel out because the right hand of Equation
10a is 0. By the same procedure, the elements of stiffness matrix Kij in Eq. (19) can be obtained. Note that:
fdjgT ¼ fU0rs Vrs0 Wb
rs0 Ws

rs0 Hrs0 g;
fFjgT ¼ f0 0 Q rs0 Q rs0 �q�Qrs0 g;

ð21a-bÞ
where Qrs0 are the coefficients in the double Fourier expansion of the transverse load,
qðx; yÞ ¼
X1
r¼1

X1
s0¼1

Qrs0 sinðaxÞ sinðbyÞ: ð22Þ
ensionalized centre deflection w (a/2, b/2, 0) for various EGM rectangular plates, a/h = {2, 4} (in bold the 3-D reference values).

b/a Theory n = 0.1 Diff. n = 0.3 Diff. n = 0.5 Diff. n = 0.7 Diff. n = 1.0 Diff. n = 1.5 Diff. Avrg.

6 3-D [42] 1.63774 (%) 1.48846 (%) 1.35184 (%) 1.22688 (%) 1.05929 (%) 0.82606 (%) (%)
Present HSDT1 1.6363 �0.1 1.4793 �0.6 1.3363 �1.2 1.2060 �1.7 1.0324 �2.5 0.7937 �3.9 1.7
Present HSDT2 1.6363 �0.1 1.4793 �0.6 1.3362 �1.2 1.2060 �1.7 1.0325 �2.5 0.7937 �3.9 1.7
Present HSDT3 1.6363 �0.1 1.4793 �0.6 1.3363 �1.2 1.2060 �1.7 1.0360 �2.2 0.7788 �5.7 1.9
Present HSDT4 1.6368 �0.1 1.4797 �0.6 1.3366 �1.1 1.2062 �1.7 1.0325 �2.5 0.7935 �3.9 1.7
Present HSDT5 1.6373 0.0 1.4802 �0.6 1.3371 �1.1 1.2068 �1.6 1.0332 �2.5 0.7944 �3.8 1.6
Thai and Kim [34] 1.6294 �0.5 1.4731 �1.0 1.3307 �1.6 1.2010 �2.1 1.0282 �2.9 0.7906 �4.3 2.1
TPT [42] 1.6294 �0.5 1.4731 �1.0 1.3307 �1.6 1.2010 �2.1 1.0282 �2.9 0.7906 �4.3 2.1

1 3-D [42] 0.57693 0.52473 0.47664 0.43240 0.37269 0.28904
Present HSDT1 0.5776 0.1 0.5222 �0.5 0.4716 �1.1 0.4255 �1.6 0.3640 �2.3 0.2792 �3.4 1.5
Present HSDT2 0.5776 0.1 0.5221 �0.5 0.4716 �1.1 0.4255 �1.6 0.3640 �2.3 0.2793 �3.4 1.5
Present HSDT3 0.5777 0.1 0.5222 �0.5 0.4716 �1.1 0.4255 �1.6 0.3677 �1.3 0.2650 �8.3 2.2
Present HSDT4 0.5784 0.3 0.5229 �0.4 0.4722 �0.9 0.4260 �1.5 0.3644 �2.2 0.2794 �3.3 1.4
Present HSDT5 0.5790 0.4 0.5234 �0.2 0.4727 �0.8 0.4265 �1.4 0.3649 �2.1 0.2800 �3.1 1.3
Thai and Kim [34] 0.5731 �0.7 0.5181 �1.3 0.4679 �1.8 0.4222 �2.4 0.3612 �3.1 0.2771 �4.1 2.2
TPT [42] 0.5731 �0.7 0.5181 �1.3 0.4679 �1.8 0.4222 �2.4 0.3612 �3.1 0.2771 �4.1 2.2

6 3-D [42] 1.17140 1.06218 0.96331 0.87378 0.75501 0.59193
Present HSDT1 1.1703 �0.1 1.0582 �0.4 0.9563 �0.7 0.8636 �1.2 0.7403 �1.9 0.5713 �3.5 1.3
Present HSDT2 1.1703 �0.1 1.0582 �0.4 0.9563 �0.7 0.8636 �1.2 0.7403 �1.9 0.5713 �3.5 1.3
Present HSDT3 1.1703 �0.1 1.0582 �0.4 0.9563 �0.7 0.8636 �1.2 0.7403 �1.9 0.5713 �3.5 1.3
Present HSDT4 1.1702 �0.1 1.0582 �0.4 0.9562 �0.7 0.8635 �1.2 0.7402 �2.0 0.5711 �3.5 1.3
Present HSDT5 1.1696 �0.2 1.0576 �0.4 0.9557 �0.8 0.8631 �1.2 0.7400 �2.0 0.5711 �3.5 1.4
Thai and Kim [34] 1.1668 �0.4 1.0551 �0.7 0.9534 �1.0 0.8611 �1.5 0.7382 �2.2 0.5697 �3.8 1.6
TPT [42] 1.1668 �0.4 1.0551 �0.7 0.9535 �1.0 0.8611 �1.5 0.7382 �2.2 0.5697 �3.8 1.6

1 3-D [42] 0.34900 0.31677 0.28747 0.26083 0.22534 0.18054
Present HSDT1 0.3486 �0.1 0.3152 �0.5 0.2848 �0.9 0.2571 �1.4 0.2203 �2.2 0.1697 �6.0 1.9
Present HSDT2 0.3486 �0.1 0.3152 �0.5 0.2848 �0.9 0.2571 �1.4 0.2203 �2.2 0.1697 �6.0 1.9
Present HSDT3 0.3486 �0.1 0.3152 �0.5 0.2848 �0.9 0.2571 �1.4 0.2203 �2.2 0.1697 �6.0 1.9
Present HSDT4 0.3486 �0.1 0.3152 �0.5 0.2847 �1.0 0.2571 �1.4 0.2202 �2.3 0.1697 �6.0 1.9
Present HSDT5 0.3485 �0.1 0.3151 �0.5 0.2847 �1.0 0.2570 �1.5 0.2202 �2.3 0.1697 �6.0 1.9
Thai and Kim [34] 0.3475 �0.4 0.3142 �0.8 0.2839 �1.2 0.2563 �1.7 0.2196 �2.5 0.1692 �6.3 2.2
TPT [42] 0.3475 �0.4 0.3142 �0.8 0.2839 �1.2 0.2563 �1.7 0.2196 �2.5 0.1692 �6.3 2.2
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4. Numerical results and discussion

The results of the present generalized hybrid quasi-3D HSDT with 5-unknowns contemplates the recommendations
regarding the stretching effect (see Ref. [10]). The target of this paper is present: (a) the mathematical formulation for
the generalized hybrid quasi-3D HSDT with 5 unknowns; and (b) some new shear strain shape functions, which allows to
produce polynomial, non-polynomial and quasi-3D hybrid type HSDTs.

It was not the intent of this paper to present the best quasi-3D HSDT having 5DOF. Future works may be conduced in
order to find out the most accurate HSDT having a limited degree of freedom for classical and advanced composite plates.
However, so far very accurate quasi-3D HSDT with 5 unknowns can be obtained by simply using referential shear strain
shape functions developed previously by the authors [6–13,20–44,54–61,48] and some new ones presented in this paper
for the first time (see Table 1).

Table 1 presents different couples of shear strain shape functions to be evaluated in the present generalized quasi-3D
hybrid type HSDT with 5-unknowns. The first quasi-3D HSDT is a polynomial HSDT, the second HSDT is the well-known trig-
onometric quasi-3D HSDT, the third one is a new trigonometric quasi-3D HSDT, and the last two ones are of hybrid type
(which combines polynomial with non-polynomial shape strain functions and vice versa, respectively), i.e. quasi-3D hybrid
type HSDTs. For simplicity, the theories are called HSDT1, HSDT2 and so for (see Table 1).

In case of the present quasi-3D hybrid type HSDTs it is important to properly select the shears train function in order to
get accurate results. However, for some hybrid shear strain functions such as exponential and trigonometric, this is not easy
task. This is alleviated when one of the hybrid shears strain function is polynomial as in HSDT4 and HSDT5 (see Table 1). In
this table, the shear strain shape function are expressed as a function of m and n, and by changing properly these parameters
Figs. 4 and 5 can be plotted for HSDT4 and HSDT5, respectively. Regarding to m and n, it can be said that those are just
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Fig. 7. Distribution of non-dimensionalized shear stress, rxz (0, b/2, z), through the thickness of a thick (a/h = 4) EGP (n = 0.5).
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parameters of the shear strain shape functions to be properly selected in order to improve the accuracy of the solutions. Such
parameters, in slightly different manner, are of paramount importance in 4-unknowns quasi-3D HSDTs as in Zenkour [49].
Figs. 4 and 5 show the nondimensionalized vertical displacement at (a/2, b/2, 0) (left side) and normal stresses at (a/2, b/2,
h/2) (right side) as the function of the parameters m and n.

Note in Figs. 4 and 5 that the non-polynomial shear strain shape functions should be optimized to properly select the val-
ues of m for HSDT4 and n in this case of HSDT5, in order to get close to 3D results (readers may consult Refs. [48,50]). This is
because polynomial shear strain functions (g(z) in HSDT4 and f(z) in the case of HSDT5) cannot be optimized following this
idea, thus n and m does not have much influence in the results in Figs. 4 and 5, respectively (see HSDT4 and HSDT 5 in
Table 1); ideas belonging to Matusanga [43], Xiang [51], Carrera et al. [10,52], Demasi [38] are good to produce accurate
results in polynomial HSDTs. However, it is remarkable to mention the very recent work by Carrera et al. [40], where
non-polynomial expansions of the in plane and transverse displacement were used by introducing non-polynomial series
such as trigonometric ones. In this paper, m ¼ 1

h2 (by optimization) and n = 1 (for simplicity) is considered for HSDT4; and

m ¼ 1 (for simplicity) and n ¼ 1
h2 (by optimization) for HSDT5 considering in somehow the ideas belonging to Karama

et al. [53].

4.1. Exponentially graded plates

The bending results of this example problem are compared with the 3D exact solutions and a HSDT with stretching effect
by Zenkour [42]; a recently quasi-3D HSDT and 5 unknowns developed by Thai and Kim [34]; and the well-known trigono-
metric plate theory (quasi-3D TPT), which includes sinus function (Refs. [6,34,36,42,54–60]).

The FGM used in this section is composed by aluminum (bottom, Al), which is graded exponentially trough the thickness
of a rectangular plate. The material properties used for computing the numerical results are:
Table 3
Nondim

a/h

2

4

Eb ¼ 70 GPa; mb ¼ 0:3: ð23Þ
The following non-dimensional quantities are used:
w ¼ wða
2
;
b
2
; zÞ10Ebh3

q0a4 ; rxx ¼ rxx
a
2
;
b
2
; z

� 	
h2

q0a2 ; ryy ¼ ryy
a
2
;
b
2
; z

� 	
h2

q0a2 ; rxz ¼ rxz 0;
b
2
; z

� 	
h

q0a
; z ¼ z

h
:

ð24a-eÞ
ensionalized normal stresses ryy (a/2, b/2, h/2) for EGM rectangular plates, a/h = {2, 4} (in bold the 3-D reference values).

b/a Theory n = 0.1 Diff. n = 0.3 Diff. n = 0.5 Diff. n = 0.7 Diff. n = 1.0 Diff. n = 1.5 Diff. Avrg.

6 3-D [42] 0.2943 (%) 0.3101 (%) 0.3270 (%) 0.3451 (%) 0.3746 (%) 0.4305 (%) (%)
Present HSDT1 0.2772 �5.8 0.2965 �4.4 0.3171 �3.0 0.3390 �1.8 0.3749 0.1 0.4433 3.0 3.0
Present HSDT2 0.2773 �5.8 0.2966 �4.4 0.3171 �3.0 0.3391 �1.7 0.3750 0.1 0.4435 3.0 3.0
Present HSDT3 0.2772 �5.8 0.2965 �4.4 0.3171 �3.0 0.3390 �1.8 0.3761 0.4 0.4351 1.1 2.7
Present HSDT4 0.2751 �6.5 0.2942 �5.1 0.3145 �3.8 0.3363 �2.6 0.3717 �0.8 0.4394 2.1 3.5
Present HSDT5 0.2706 �8.1 0.2892 �6.7 0.3091 �5.5 0.3304 �4.3 0.3652 �2.5 0.4318 0.3 4.6
5DOF Quasi-3D [34] 0.2912 �1.0 0.3118 0.6 0.3339 2.1 0.3573 3.5 0.3955 5.6 0.4679 8.7 3.6
TPT [42] 0.2912 �1.1 0.3118 0.6 0.3339 2.1 0.3573 3.5 0.3955 5.6 0.4679 8.7 3.6

1 3-D [42] 0.3103 0.3292 0.3495 0.3713 0.4068 0.4741
Present HSDT1 0.2927 �5.7 0.3149 �4.3 0.3385 �3.1 0.3636 �2.1 0.4039 �0.7 0.4790 1.0 2.8
Present HSDT2 0.2927 �5.7 0.3149 �4.3 0.3386 �3.1 0.3636 �2.1 0.4039 �0.7 0.4790 1.0 2.8
Present HSDT3 0.2925 �5.7 0.3148 �4.4 0.3384 �3.2 0.3634 �2.1 0.4066 0.0 0.4611 �2.7 3.0
Present HSDT4 0.2892 �6.8 0.3111 �5.5 0.3343 �4.4 0.3589 �3.3 0.3986 �2.0 0.4725 �0.3 3.7
Present HSDT5 0.2928 �5.6 0.3151 �4.3 0.3387 �3.1 0.3637 �2.0 0.4039 �0.7 0.4787 1.0 2.8
5DOF Quasi-3D [34] 0.2955 �4.8 0.3181 �3.4 0.3421 �2.1 0.3675 �1.0 0.4085 0.4 0.4851 2.3 2.3
TPT [42] 0.2955 �4.8 0.3181 �3.4 0.3421 �2.1 0.3675 �1.0 0.4085 0.4 0.4851 2.3 2.3

6 3-D [42] 0.2181 0.2321 0.2470 0.2628 0.2886 0.3373
Present HSDT1 0.2141 �1.8 0.2271 �2.2 0.2411 �2.4 0.2563 �2.5 0.2817 �2.4 0.3319 �1.6 2.1
Present HSDT2 0.2143 �1.8 0.2273 �2.1 0.2413 �2.3 0.2565 �2.4 0.2819 �2.3 0.3321 �1.5 2.1
Present HSDT3 0.2143 �1.8 0.2272 �2.1 0.2413 �2.3 0.2565 �2.4 0.2818 �2.3 0.3320 �1.5 2.1
Present HSDT4 0.2136 �2.1 0.2265 �2.4 0.2405 �2.6 0.2556 �2.7 0.2809 �2.7 0.3309 �1.9 2.4
Present HSDT5 0.2021 �7.3 0.2139 �7.8 0.2268 �8.2 0.2408 �8.4 0.2644 �8.4 0.3119 �7.5 7.9
5DOF Quasi-3D [34] 0.2369 8.6 0.2521 8.6 0.2683 8.6 0.2858 8.7 0.3144 9.0 0.3699 9.7 8.9
TPT [42] 0.2369 8.6 0.2520 8.6 0.2683 8.6 0.2857 8.7 0.3144 9.0 0.3699 9.7 8.9

1 3-D [42] 0.2247 0.2400 0.2562 0.2736 0.3018 0.3589
Present HSDT1 0.2244 �0.1 0.2398 �0.1 0.2563 0.0 0.2738 0.1 0.3024 0.2 0.3567 �0.6 0.2
Present HSDT2 0.2245 �0.1 0.2399 0.0 0.2563 0.0 0.2739 0.1 0.3025 0.2 0.3568 �0.6 0.2
Present HSDT3 0.2244 �0.1 0.2399 0.0 0.2563 0.0 0.2738 0.1 0.3024 0.2 0.3567 �0.6 0.2
Present HSDT4 0.2236 �0.5 0.2389 �0.4 0.2552 �0.4 0.2727 �0.3 0.3011 �0.2 0.3551 �1.0 0.5
Present HSDT5 0.2191 �2.5 0.2341 �2.5 0.2500 -2.4 0.2670 �2.4 0.2948 �2.3 0.3480 �3.0 2.5
5DOF Quasi-3D [34] 0.2346 4.4 0.2510 4.6 0.2684 4.8 0.2870 4.9 0.3171 5.1 0.3739 4.2 4.7
TPT [42] 0.2346 4.4 0.2510 4.6 0.2684 4.8 0.2870 4.9 0.3171 5.1 0.3739 4.2 4.7
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Fig. 6 shows the nondimenzionalized distribution of vertical maximum deflection through the plate thickness (b/a = {1, 2,
3, 4}, a/h = 4, p = 0.1). HSDT1 and HSDT2 in Fig. 6a and b, respectively, are compared with the 3D elasticity solution and with
the HSDT by Thai and Kim [34]. Both predict well the no constant distribution of the central deflection. However, the results
for z > 0 not fit well to the 3D one. It is perhaps because the load is applied at z ¼ 0:5, and a refined description of the dis-
placement field is needed. Imaginary layerwise mathematical models as in Bricheto and Carrera [61] perhaps can be an
option.

Considering Fig. 6, if one has to choose a HSDT to model the displacement field, for simplicity, the polynomial HSDT can
be a really good choice. Table 2 present results of non-dimensionalized maximum plate deflection for z ¼ 0. Errors respect to
the 3D elasticity solutions are computed by using the Eq. (25a-c).
Table 4
Nondim

p

1

4

10
Errorð%Þ ¼
P6

i¼1jEij
6

;

Ei ¼
wp

present �wp
exact

wp
exact

100%;

p ¼ f0:1;0:3;0:5;0:7;1;1:5g:

ð25a-cÞ
Fig. 7 shows the nondimensionalized normal stresses, rxx, through the plate thickness. HSDT3 and HSDT4 in Fig. 7a and b,
respectively, are compared with 3D elasticity solution. Good results are achieved for both HSDTs. However, HSDT4 does not
produce as good results as HSDT1, HSDT2 and HSDT3, see the normal stresses results, ryy, in Table 3. In this table, also the
results of the hybrid type (polynomial and exponential) HSDT5 is not accurate. It evidence that when exponential (hyper-
bolic) shear strain shape functions are used, the results are not always as expected.

Fig. 8 shows nondimensionalized shear stresses, rxz, distribution through the plate thickness obtained from the five dif-
ferent quasi-3D HSDTs (see Fig. 8a–d). All these quasi-3D HSDTs produces good results compared with 3D solution and supe-
rior than the quasi-3D HSDT provided in Ref. [34]. Again, for simplicity, if one has to choose a quasi-3D HSDT, all point to the
HSDT1.
ensionalized stress and deflection of sandwich square plates embedding an FG core with a polynomial material law.

Theory rxz (0, b/2, h/6) w (a/2, b/2, 0)

a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100

Present HSDT1 0.271 0.272 0.273 0.728 0.606 0.583
Present HSDT2 0.271 0.272 0.273 0.728 0.606 0.583
Present HSDT3 0.271 0.272 0.273 0.728 0.606 0.583
Present HSDT4 0.270 0.271 0.271 0.728 0.606 0.583
Present HSDT5 0.272 0.273 0.273 0.728 0.606 0.582
Thai and Tim [34] 0.272 0.273 0.273 0.725 0.604 0.581
Quasi-3D [12] 0.274 0.279 0.279 0.742 0.631 0.609
Quasi-3D [62] 0.223 0.227 0.227 0.742 0.631 0.609
Quasi-3D [63] 0.275 0.279 0.280 0.742 0.631 0.609
Quasi-3D [10] 0.260 0.259 0.259 0.763 0.632 0.607
FSDT [10] 0.246 0.246 0.246 0.774 0.634 0.607

Present HSDT1 0.260 0.261 0.261 1.016 0.782 0.737
Present HSDT2 0.260 0.261 0.261 1.016 0.782 0.737
Present HSDT3 0.259 0.261 0.261 1.016 0.781 0.737
Present HSDT4 0.254 0.255 0.256 1.013 0.781 0.737
Present HSDT5 0.260 0.261 0.261 1.017 0.782 0.737
Thai and Tim [34] 0.265 0.266 0.267 1.017 0.780 0.734
Quasi-3D [12] 0.272 0.278 0.279 1.039 0.820 0.778
Quasi-3D [62] 0.315 0.322 0.323 1.035 0.820 0.779
Quasi-3D [63] 0.270 0.275 0.275 1.037 0.820 0.778
Quasi-3D [10] 0.240 0.240 0.240 1.093 0.831 0.780
FSDT [10] 0.188 0.188 0.188 1.029 0.819 0.780

Present HSDT1 0.190 0.191 0.191 1.153 0.832 0.770
Present HSDT2 0.190 0.191 0.191 1.153 0.832 0.770
Present HSDT3 0.190 0.195 0.088 1.153 0.833 0.770
Present HSDT4 0.185 0.186 0.187 1.147 0.831 0.770
Present HSDT5 0.190 0.191 0.192 1.152 0.828 0.766
Thai and Tim [34] 0.190 0.191 0.191 1.153 0.831 0.769
Quasi-3D [12] 0.202 0.206 0.206 1.178 0.865 0.805
Quasi-3D [62] 0.295 0.300 0.300 1.172 0.864 0.805
Quasi-3D [63] 0.200 0.203 0.204 1.175 0.865 0.805
Quasi-3D [10] 0.193 0.194 0.195 1.217 0.874 0.808
FSDT [10] 0.123 0.123 0.123 1.111 0.856 0.808
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4.2. Functionally graded sandwich plates

A FGM made of a FG core and two isotropic skins (metal and ceramic), i.e. a sandwich FG plate, as shown in Fig. 1b, is
considered for further studies in this section. The bottom skin is metal with thickness hb = 0.1h and the top skin is ceramic
with thickness ht = 0.1h. The core (hc = 0.8h) has a Young modulus varying in thickness direction according to rule of mix-
tures described in Eq. (4b), see also Fig. 3.
Eb ¼ 70 GPa; Et ¼ 380 GPa; mb ¼ mt ¼ 0:3: ð24Þ
The following non-dimensional quantities are used:
w ¼ w
a
2
;
b
2
; z

� 	
10Ebh3

q0a4 ; rxz ¼ rxz 0;
b
2
; z

� 	
h

q0a
: ð25Þ
The non-dimensional transverse displacement, w, and transverse shear stress , rxz, are presented in Table 4. The present
results are compared with accurate quasi-3D HSDTs by Carrera et al. [10] and Neves et al. [12,62,63]. The results for displace-
ment and stresses are in close agreement with refined quasi-3D solutions. In general, the results presented in this example
problem are in good agreement with Refs. [10,12,34,63]. The HSDT4 has slightly different results than the rest of HSDTs. As
mentioned above this HSDT has a hybrid displacement field model (exponential and polynomial) as in [62] (hyperbolic func-
tion can be expressed as exponential functions). This perhaps explain why in [62] (even when 91 mathematical layers were
used to model the continuous variation of properties across the thickness direction) not accurate results as in [10,63] were
achieved.

Finally, it can be concluded that the present theories are more effective in the case of exponentially graded plates than in
functionally graded plates (graded by using the rule of mixture). Further studies should be carried out for other gradation
such as Mori–Tanaka.
(a) (b)
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Fig. 8. Functionally graded function V(z) along the thickness of an FG sandwich plate for different values of the parameter ‘‘p’’.
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5. Conclusions

An unavailable generalized hybrid type quasi-3D HSDT with only 5-unknowns and stretching effects is presented in this
paper. The governing equations and boundary conditions are derived by employing the principle of virtual works. A Navier-
type closed-form solution is obtained for functionally graded single and sandwich plates subjected to bi-sinusoidal load for
simply supported boundary conditions. Results show that the present TPT is capable to produce more accurate results than
the FSDT, other HSDTs with higher number of unknowns. The important conclusions that emerge from this paper can be
summarized as follows:

(a) Infinite shears strain shape function can be evaluated by using the present theory;
(b) So far polynomial shear strain functions are:

� easy to implement,
� simple to compute,
� and most important, in this type of quasi-3D HSDT produce very accurate results.

Further studies need to be performed by using the infinite open possibilities to select shear strain shape function by
the present generalized formulation.
(c) This generalized formulation with 5 unknowns and stretching effect can be as accurate as the 6-unknown generalized
hybrid-type quasi-3D HSDT;

(d) The best HSDT with stretching effect and 5-unknows can be obtained from the present theory by using an optimizing
procedure.
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Appendix A

Definition of matrices of type, Ma;b
v

The matrices associated with the terms in the generalized bending governing equations (Eq. (10a-e)) are the following:
M0;0 ¼

�a 0 0 0 0

0 �b 0 0 0

0 0 0 0 0

0 0 y�b 0 q�b

0 0 y�a 0 q�a

b a 0 0 0

2
66666666664

3
77777777775
; M0;1 ¼

0 0 �y��a2 a2 �q�a2

0 0 �y��b2 b2 �q�b2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 2y��ab �2ab 2q�ab

2
66666666664

3
77777777775
;

M0;2 ¼

0 0 �a2 0 0

0 0 �b2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 2ab 0 0

2
66666666664

3
77777777775
; M0;3 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 b

0 0 0 0 a

0 0 0 0 0

2
66666666664

3
77777777775
;

M0;4 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 b 0 0

0 0 a 0 0

0 0 0 0 0

2
66666666664

3
77777777775
; M0;5 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
66666666664

3
77777777775
;
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M1;0
x ¼

�a2 0 0 0 0

0 �ab 0 0 0

0 0 0 0 0

0 0 y�ab 0 q�ab

0 0 �y�a2 0 �q�a2

�ab �a2 0 0 0

2
66666666664

3
77777777775
;

M1;1
x ¼

0 0 �y��a3 a3 �q�a3

0 0 �y��ab2 ab2 �q�ab2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �2y��a2b 2a2b �2q�a2b

2
66666666664

3
77777777775
;

M1;2
x ¼

0 0 �a3 0 0

0 0 �ab2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �2a2b 0 0

2
66666666664

3
77777777775
; M1;3

x ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ab

0 0 0 0 �a2

0 0 0 0 0

2
66666666664

3
77777777775
;

M1;4
x ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 ab 0 0

0 0 �a2 0 0

0 0 0 0 0

2
6666666664

3
7777777775
; M1;5

x ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 a
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666666664

3
7777777775
;

M1;0
y ¼

�ab 0 0 0 0

0 �b2 0 0 0

0 0 0 0 0

0 0 �y�b2 0 �q�b2

0 0 y�ab 0 q�ab

�b2 �ab 0 0 0

2
66666666664

3
77777777775
; M1;1

y ¼

0 0 �y��a2b a2b �q�a2b

0 0 �y��b3 b3 �q�b3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �2y��ab2 2ab2 �2q�ab2

2
66666666664

3
77777777775
;

M1;2
y ¼

0 0 �a2b 0 0

0 0 �b3 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �2ab2 0 0

2
6666666664

3
7777777775
; M1;3

y ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �b2

0 0 0 0 ab

0 0 0 0 0

2
6666666664

3
7777777775
;

M1;4
y ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �b2 0 0

0 0 ab 0 0

0 0 0 0 0

2
6666666664

3
7777777775
; M1;5

y ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 b

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666666664

3
7777777775
;
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M2;0
y ¼

ab2 0 0 0 0

0 b3 0 0 0

0 0 0 0 0

0 0 �y�b3 0 �q�b3

0 0 �y�ab2 0 �q�ab2

�b3 �ab2 0 0 0

2
6666666664

3
7777777775
;

M2;1
y ¼

0 0 y��a2b2 �a2b2 q�a2b2

0 0 y��b4 �b4 q�b4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �2y��ab3 ab3 �2q�ab3

2
6666666664

3
7777777775
;

M2;2
y ¼

0 0 a2b2 0 0

0 0 b4 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �2ab3 0 0

2
66666666664

3
77777777775
; M2;3

y ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �b3

0 0 0 0 �ab2

0 0 0 0 0

2
66666666664

3
77777777775
;

M2;4
y ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �b3 0 0

0 0 �ab2 0 0

0 0 0 0 0

2
66666666664

3
77777777775
; M2;5

y ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �b2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
66666666664

3
77777777775
;

M2;0
xy ¼

�a2b 0 0 0 0

0 �ab2 0 0 0

0 0 0 0 0

0 0 �y�ab2 0 �q�ab2

0 0 �y�a2b 0 �q�a2b

ab2 a2b 0 0 0

2
6666666664

3
7777777775
;

M2;1
xy ¼

0 0 �y��a3b a3b �q�a3b

0 0 �y��ab3 ab3 �q�ab3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 2y��a2b2 �2a2b2 2q�a2b2

2
66666666664

3
77777777775
;

M2;2
xy ¼

0 0 �a3b 0 0

0 0 �ab3 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 2a2b2 0 0

2
6666666664

3
7777777775
; M2;3

xy ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �ab2

0 0 0 0 �a2b

0 0 0 0 0

2
6666666664

3
7777777775
;
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M2;4
xy ¼

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 �ab2 0 0
0 0 �a2b 0 0
0 0 0 0 0

2
666666664

3
777777775
; M2;5

xy ¼

0 0 0 0 0
0 0 0 0 0
0 0 0 0 ab

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
666666664

3
777777775
;
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