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Abstract: Inertial kinetics and kinematics have substantial influences on human biomechanical
function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented
in this work. The primary aims of this paper are to combine recent developments in improved
biosensor technology with mainstream motion-tracking hardware to measure the overall performance
of human movement based on joint axis-angle representations of limb rotation. This work describes an
alternative approach to representing three-dimensional rotations using a normalized vector around
which an identified joint angle defines the overall rotation, rather than a traditional Euler angle
approach. Furthermore, IMUs allow for the direct measurement of joint angular velocities, offering
the opportunity to increase the accuracy of instantaneous axis of rotation estimations. Although
the axis-angle representation requires vector quotient algebra (quaternions) to define rotation, this
approach may be preferred for many graphics, vision, and virtual reality software applications.
The analytical method was validated with laboratory data gathered from an infant dummy leg’s
flexion and extension knee movements and applied to a living subject’s upper limb movement.
The results showed that the novel approach could reasonably handle a simple case and provide a
detailed analysis of axis-angle migration. The described algorithm could play a notable role in the
biomechanical analysis of human joints and offers a harbinger of IMU-based biosensors that may
detect pathological patterns of joint disease and injury.

Keywords: biosensors; instantaneous axis-angle representations; IMU; inertial measurement units;
quaternions; inverse and forward kinematics; instantaneous axis of rotation; motion tracking sensors

1. Introduction

Human motion capture systems, constructed from Inertial Measurement Units (IMUs),
have been the subject of recent development and validation. Lapresa et al. (2022) presented
the validation of inertial systems using an anthropomorphic robot [1]. Recent work by
Bialecka et al. (2023) used IMUs to validate a robot arm using shoulder range of motion [2].
Perez-Sanpablo et al. (2023) [3] validated IMUs to assess trunk control in subjects with
spinal cord injury (2023). Riek et al. (2023) [4] validated IMUs to evaluate gait stability. An
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IMU system offers several advantages when compared to other motion capture systems.
For instance, marker-based optical systems have been the gold standard because of their
accuracy when measuring human motion kinematics. However, this type of system requires
complex calibration and large operating spaces. They are also expensive and can be affected
by reflective objects and occlusion [5]. IMUs are beneficial compared to other motion
capture systems because of their low cost, portability, and wearability.

These approaches rely on measuring the three-dimensional linear and angular posi-
tions and accelerations of subject joints and limbs generated by micro-electromechanical
systems (MEMS) such as an IMU. Effectively, an IMU is a localized biosensor accelerometer
and gyroscope that estimates an object’s biomechanical position and orientation. IMUs
can be single-point sensors or more complex single-pack arrays when including an addi-
tional magnetometer and sensor fusion algorithm, providing more accurate movement
data and reduced sensor drift. A common artifact of accelerometer measurements is man-
ifested in velocity and displacement trajectory drift obtained when integrating the raw
acceleration record.

MEMS-based IMU sensors can be used in computer vision techniques that track the lo-
cation of a person through a combination of their pose and orientation with applications in
robotics, personal navigation, and virtual reality. Furthermore, recent studies confirm IMU
sensor applications for human motion analysis, enhancing biomechanics, rehabilitation,
ergonomics, and sports assessments [6]. This research includes refined quantification of
human movements and movement classification. These studies concentrate on obtaining
the kinematic identification of a particular activity, which helps identify biomechanical dis-
orders such as disease or injury, as well as longer-term patterns of atypical neuromuscular
control. Compact, self-contained systems for the kinematic identification of human motion,
such as that offered by IMUs, are independent of the subject’s mobility environment and
free of obstructions that may affect optical position sensors [7].

Previous work addressing joint biomechanics identified the geometric change to the
knee joint’s dynamic alignment as an influence on the stance phase of foot loading [8].
The results also elucidated the mechanical influence of osteoarthritis within knee function
when ligaments were situated such that forces acting along them equilibrated during one
degree of freedom knee joint constraint [9]. Further characterization of knee motion has
been explored in terms of instantaneous joint axes [10] utilizing benchmark data [11] as
recorded through a marker-based optoelectronic system (OS). As an enhancement to these
approaches, IMUs will commonly package linear accelerometers with angular gyroscopes
to identify multiple axes of rotation, where the accelerometer readings may be employed
directly without numerical integration [7]. The option of numerical integration may refine
the output while introducing additional sensor noise or bias sensitivities. Researchers have
also concurrently recorded a biomechanical hinge’s free swing motion using both OS and
IMU, concluding that motions measured by IMUs are more precise while the OS motions
were more accurate [12].

The present study describes the characteristics of an IMU wearable sensor platform
that provides a critical biomechanical parameter during the assessment of joint disease and
injury. Here, the instantaneous axis-angle representation (IAA) of limb function is a vector
identified as a metric to assist human movement analysis for rehabilitation and sports. The
estimation of the IAA and its variant motion is strongly related to the joint’s functionality
and ligament health [10] as well as the overall performance of locomotion perception and
motor control [13]. Joint kinematics depend on postural balance or equilibrium, meaning
that the components of the resultant moment about the axis of rotation sum to zero. In this
study, we confirmed the accuracy of IMU-based inverse and forward kinematics as applied
to the lower kinematics of an infant dummy and then applied to the upper limb movement
of a living subject.

The specific objective of this study is to present a new algorithm for Inertial mea-
surements unit (IMU)-based motion tracking with quaternions. Axis-angle representation
for rotation, instead of representing a 3D rotation using a sequence of rotations around
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the sensor coordinates system, as Euler angles do, the axis-angle representation uses a
normalized vector (S) around which the rotation is defined by some angle (θ) and can track
a sequence of events in terms of a one-one correspondence of IAA. Although the IAA is
not fixed, it is indeed moving about in such an intricate way that has unity relative to the
posture and behaviors of the subject being considered.

There are two main advantages to using the axis angle representation for describing
limb kinematics. The first is that they allow a global description of rigid body motion that
does not suffer from singularities due to local coordinates. Such singularities are inevitable
when one represents rotation via Euler angles. The second advantage is that the axis-
angle provides a very geometric description of rigid motion, which significantly simplifies
biomechanism analysis and is handy for describing the kinesthesis, “feeling of move-
ment,” in all skeletal and muscle structures. The axis vector is not moving instantaneously,
occupying a stationary axis in the global frames.

2. Materials and Methods
2.1. Inertial Measurement Unit Device and Model Foundation

The newest generation of cost-efficient inertial motion trackers features a lightweight
design, wireless connectivity (Bluetooth Low Energy, BLE (Nokia, Karaportti, Finland)), and
robust sensor fusion algorithms to provide accurate data for human movement applications
(DOT Wearable Sensor, Xsens Technologies B.V., Enschede, The Netherlands). Software
manipulation tools are provided (Software Development Kit, SDK Movella DOT 2023.6)
to facilitate the customization of mobile applications based on the available output data,
thereby allowing developers to integrate the sensor into a wide range of solutions. Robust
algorithms (Strap Down Integration, SDI) and a sensor fusion framework (Xsens Kalman
Filter Core, XKF) run onboard the sensor to provide accurate physical orientation estimates
and minimize the effects of magnetic distortion [6].

The IMUs applied in this work contain MEMS-type gyroscopes, accelerometers, and
magnetometers. These individual sensor signals are fused through a statistical estimation
framework to obtain three-dimensional (3D) limb and joint orientation. The output pro-
vided by the three main device components is then fed into the signal processing pipeline.
The two main algorithms noted above are run onboard the motion tracking sensor [14].
The sensors are primarily designed to connect to mobile devices such as smartphones that
must be BLE-capable (Figure 1). The wearable device proposed for use in experiments
integrates smart sensors to track a user’s physical behavior, specifically the gyration and
orientation of their hand, in high spatial and temporal resolution. This enables real-time
multi-parameter tracking as a significant wearable sensor system [15].

Before describing the output data, the different types of reference systems used in the
study are presented. Data shall be expressed in terms of local (Sensor Coordinate System,
SCS) and global, earth-fixed (Global Reference Coordinate System, GRCS) coordinate
systems. The SCS is a right-handed, cartesian coordinate system that is body-fixed within
each sensor identified with lowercase x, y, and z axes (Figure 2). The local earth-fixed GRCS
is also defined as a right-handed, cartesian coordinate system identified with uppercase X,
Y, and Z axes with the following global orientations:

• X positive to the East (E).
• Y positive to the North (N).
• Z positive when pointing Up (U)

This coordinate system is known as East-North-Up (ENU) and is the standard frame-
work in inertial navigation for aviation and geodetic applications. Note that positive
global orientations can be established for any application while maintaining the right-hand
configuration, i.e., X positive to the South (S).

The wearable sensors produce instantaneous 3D coordinate axis orientation and
acceleration data. The data available for the experiment can be classified into two categories:
inertial data and sensor fusion data. The inertial data is comprised of linear acceleration
(units of m/s2) and angular velocity (units of ◦/s) as provided in the SCS. These IMU-based
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sensors output angular velocities as a direct measurement from the internal gyroscopes.
The 3D orientation output takes the quotient of the axis vectors as unit quaternions. The
orientation can be represented by a normalized quaternion, q = [W X Y Z], with W being
the real component and X, Y, Z as the imaginary global coordinate components. This sensor
output is within the ENU localized global reference coordinate system. The output IMU
measurement vector Sraw contains the individual measurements stacked together as ten
state variables:

Sraw =
[
ax, ay, az, ωx, ωy, ωz, q0, q1, q2, q3

]
(1)

where a represents the linear acceleration, w represents the angular velocity in the sensor’s
local coordinate system, and q represents the quaternion. The optimal filtering problem is
then to determine the angular acceleration state variables,

[
αx, αy, αz

]
as well as their

numerical derivatives as the angular velocity vector components
[
ωx, ωy, ωz

]
. Further,

the problem is then constructing the new state variables, which provide the best match with
the data within Sraw but also have a degree of numerical smoothness. The regularization
method is then applied to solve this numerical challenge [16].
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In this study, we estimated the identified state variables by applying L-curve Tikhonov
regularization filtering (TRF). The TRF algorithm was previously applied in the optimiza-
tion of smoothing parameters [17] during multiscale cell-tissue level [18] and joint level [19]
biomechanical analyses.

As a result of the TRF, thirteen numerically smoothed state variables are then present
in the filtered vector Ssmooth:

Ssmooth =
[
ax, ay, az, vx, vy, vz, q0, q1, q2, q3, αx, αy, αz

]
(2)

The data in this application were then recorded through local resources (VR Motion
Laboratory, Department of Mechanical Engineering, UTEC, Lima, Peru). One healthy male,
well-trained subject provided his written informed consent to participate in this study.
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Figure 2. The local sensor coordinate system (SCS) is associated with the sensor as indicated by the
(x, y, z) cartesian coordinate system, while the global reference coordinate system (GRCS) is matched
to the elbow joint and anatomic orientation as indicated by the (X, Y, Z) cartesian coordinate system.
Since the SCS is not aligned with the GRCS in this anatomic configuration, the data measured by
the SCS is transformed through vector algebra by applying the unit quaternion

[
cos π

4 , 0, 0, sin π
4
]
,

which rotates data in SCS by 90 degrees about the Z axis.

It has frequently been assumed in previous methods that the point of observation
for motion is unoccupied because it is measured in a SCS, while the point of observation
in this work is occupied in GRCS. When a point of observation is occupied, there is also
information to specify the motion of the subject, and the limb of the person in action
instantaneously occupies some portion of the space in a way that is unique to the person as
presented as the instantaneous axis-angle representation (IAA.) This information is unique
to that person. The IAA is not moving but stationary in the GRCS, occupying the specific
axis in the freedom space. Therefore, the innovation brought by this research is to propose
the measure of the feeling of the self-movement, i.e., proprioception, in terms of the IAA
meaning that it specifies the self-movement as distinguished from an object moving in
the environment.

2.2. Inverse Kinematic Solutions Using Quaternions

Our solution method is based on an axis-angle representation by applying vector
algebra quaternions as a motion operator. All rotating screw motions are represented as a
rotation about an axis with respect to the global GRCS. Two quaternions describe general
movement positioning: one for orientation and the second for translation.

All the data processing was implemented in a commercial programming and comput-
ing platform (MATLAB, The MathWorks, Natick, MA, USA). Here, the module “Quater-
nion.m” was applied [20]. Quaternion.m implements quaternion mathematical operations,
including three-dimensional rotations, transformations, and numerical propagation of the
governing equations of rotational motion, most of which are fully vectorized.

Quaternions represent complex numbers within a four-dimensional vector space
(rank 4) over a real number field [21]. A quaternion is generalized as

q = w + xi + yi + zk = (q0, q1, q2, q3) (3)

or
q = (q0, qv) (4)

where q0 represents a scalar and qv = (q1, q2, q3) represents a vector. A quaternion
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of qv = 0 is called a real quaternion, and a quaternion of q0 = 0 is identified as a pure
quaternion. Multiplication of two quaternion vectors can be expressed as

qa ⊗ qb = qa0qb0 − qav·qbv, qa0qbv + qb0qa0 + qav × qbv (5)

where the symbols “⊗”, “·”, “×” denote the quaternion product, dot product, and cross
product actions, respectively. Quaternion multiplication is not considered commutative.

The conjugate of the quaternion can be expressed as:

q∗ = (q0,−qv) = (q0,−q1,−q2,−q3) (6)

and thus, defining the quaternion norm ‖q‖ as:

|q|2 = q⊗ q∗ = q2
0 + q2

1 + q2
2 + q2

3 (7)

with the relationship |q|2 = 1, a unit quaternion is present whereby any quaternion (q) can
be normalized by dividing by its norm. The inverse of a quaternion is then expressed as:

q−1 =
1

‖q‖2 q∗ and ‖q‖ 6= 0 (8)

and thereby for a unit-quaternion, the relationship is reduced to:

q−1 = q∗ (9)

A unit quaternion can be further defined as a vector rotation operator. Rotation about
a unit axis ω with an angle θ is then defined by the axis-angle representation (Figure 3)

q =

(
cos
(

θ

2

)
, sin

(
θ

2

)
ω

)
(10)Electronics 2023, 12, 3694 7 of 17 
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2.3. Biomechanical Orientation Tracking with Quaternions

Earlier work has demonstrated how human perception and motor control interact
continuously with external physical systems [22]. The axis-angle representation effectively
establishes a global description of the individual as a rigid body during environmental
interactions and avoids mathematical singularities due to the use of the local coordinates.
The benefits of using quaternions during axis-angle representation, as described in the pre-
sented approach, are the well-defined sets of operations for vector addition, multiplication,
and interpolation while converting the representations directly to rotational matrices. Such
singularities are inevitable when representing rotations traditionally via Euler angles.

A general rigid-body transformation has 6 degrees of freedom (DOF) accounting for
linear and angular translations or as defined here: 3 DOF for orientation and 3 DOF for
translation. A unit-quaternion can be used as a rotation operator as shown in Equation (10)
and Figure 3.

A vector v can be transformed into a vector w such that:

w = q⊗ v⊗ q∗ (11)

where q is a unit quaternion and v is a pure quaternion. The unit quaternion can be used
to transform a vector, but not through rigid transformation. Therefore, an alternative
quaternion will implement translation:

t = p− q⊗ p⊗ q∗ (12)

where p is the position vector of an arbitrary point on the axis within a pure quaternion.
In this application, we use the axis-angle representation to obtain the inverse kinemat-

ics solution of the kinematics of the dummy and then apply it to the elbow during simple
flexion and extension within the healthy range of motion of upper limb movement. The
immediate objective is to identify the forward kinematics of the hand. For this purpose,
it suffices to identify the values of the axis-angle of the elbow joint and its location with
respect to the GRCS system. The estimation of the IAA representation of limb movement,
also known as a biomechanical screw axis [23], can play a notable role in the biomechanical
analysis of biological joints (healthy, diseased, and injured). We assume that the ampli-
tude of the angle of the instantaneous axis is minute, in conformity with a small angle
assumption when combined in the same manner as force values.

2.4. Instantaneous Axis Angle Origin Location Algorithm

Poor accuracy and precision when determining the IAA origin obtained from the
IMU data are typically due to the lack of a consistent ground reference system within the
sensor [12]. Therefore, it is necessary to align the SCS to the GRCS to allow the IAA to be
operated on by the quaternions.

In the proposed algorithm, when estimating the IAA origin, the IAA direction s may
be identified within the GRCS frame as the positive direction of the resulting angular
velocity vector. The screw axis direction can then be readily identified from a gyroscopic
rate reading:

s =
ω

‖ω‖ (13)

Identifying the screw axis location vector s0 then follows from the different sensor
measurements. Previously, the origin of the IAA of the knee joint was determined based
on the relationship with ground reaction forces during contact while physical posture was
treated as a covariant [24]. Alternatively, an average linear distance between geometric
points or the midpoint between two anatomic landmarks and the s in Equation (13) can
be used as an origin of the IAA. Here, the midpoint of the projection of the center of the
medial and lateral aspects of the forearm and humerus was used (Figure 2)

More systematically, an IMU-based kinematic manipulator identification algorithm
can be used [7], where an identified point’s rotation about a fixed axis is considered. Here, a
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simplified limb experiences joint rotation with angular velocity ω and angular acceleration
α (Figure 4). Identification of the IAA location vector s0 follows from linear acceleration
measurements. By substituting r = s0 into the expression:

a = α× r + ω×ω× r (14)

which was derived in the rotation about a fixed axis for linear acceleration a, an IMU
located at point P will experience the translational acceleration defined as:

a = α× s0 + ω×ω× s0 (15)

Here, linear acceleration a is known with the desire to solve for s0. Conveniently, this
is a linear system of equations and may be written as follows:

a = α× s0 + ω×ω× s0
→ a = [α×+ω×ω×]s0 = Ms0

(16)

The mathematical arrangement is a skew-symmetric matrix representation of the
vector cross product where M is a 3 × 3 time-varying matrix. This formulation may be
constructed at any given time from the angular velocity vector ω (IMU output) and the
angular acceleration vector α (approximated from the finite differential of ω).
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Using Equations (11) and (12), a transformation of the end effector (palmar surface
IMU) can be given by quaternion q(t) as the set of quaternion values from the current time
step (t), where q(t−1) indicates the values at the previous time step such that:

q(t)0 = q(t−1) ⊗ s(t)0 ⊗ q(t−1)∗ − q(t) ⊗ s(t)0 ⊗ q(t)
∗
+ q(t−1)

0 (17)
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where q(t) and q(t)0 indicate rotation and translation quaternions, respectively. The position
of the end effector (ef subscript) can be given by:

q(t)e f = q(t) ⊗ pe f ⊗ q(t)
∗
+ s(t)0 (18)

As described above, the IMU consists of three linear acceleration sensors and three
rotational rate gyroscopes with the transformation from the SCS frame to the GRCS frames.

A mathematical-specific aim satisfied in this line of research is to geometrically view
the quaternion operator’s vector-frame action characterized by Equation (11). Viewing
the resultant final relationship between the input vector v, the output vector w, and the
coordinate frame with a standard orthogonal basis (i, j, k) is supported by adopting either
of the following two distinctively different perspectives.

The first perspective is through observations fixed with respect to the coordinate frame
(i, j, k). Here, the quaternion operator rotates the vector v about the IAA and through an
angle θ. From this perspective, it is convenient to think of the coordinate frames as being
fixed while the vector is rotated, often called a point rotation.

The second perspective is that observations are made with respect to the fixed vector v.
Here, the quaternion operator (Equation (11), w = q⊗ v⊗ q∗) rotates the coordinate frame
(i, j, k) about the IAA through an angle −θ. From this second perspective, the vector v is
fixed while the coordinate frame is rotated, often called a frame rotation. We will apply the
Equation (11) operator and interpret this approach geometrically.

3. Results

Experimental validation of the proposed method is carried out through soft exoskele-
tons on a dummy model. To validate our approach, the authors utilized lower limbs while
modeling was conducted using upper limbs due to data availability. It is assumed that the
motion tracking methodology can be applied to any joint [26,27]. These soft exoskeletons
consist of wearable garments with active mechanisms to support user motions on different
body parts [28]. The objective was to generate controlled and repeatable angular trajectories,
thus providing the flexion-extension angles of an infant dummy leg produced by a vacuum-
powered artificial muscle simulating a knee flexion-extension-controlled motion (Figure 5).
To characterize the various joint behaviors covering different applications, the end effector
location predicted by the quaternion model was compared against the determined angle of
inclination of the leg. It is clear from the inspection of Figure 6 that the kinematic prediction
of this algorithm correlates strongly with the actual end effector location.
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Next, we demonstrate the described IMU-based approach by applying the axis-angle
representation of healthy upper limb movements. The authors used lower limbs to validate
our approach, while modeling was conducted using upper limbs due to the availability of
data. It is assumed that the motion tracking methodology can be applied to any joint based
on previous studies [26,27]. These experiments: (i) demonstrate the calculation of the IAA
and the analysis of IAA migration using quaternion operators; (ii) check the accuracy of
both the IMU-based inverse kinematics and forward kinematics. A single male adult subject
was used to validate the mathematical approach with functional anatomic data produced
during elbow flexion-extension postures of the upper limb within the sagittal plane of
motion. The data collection for this study was approved by the UTEC’s human-subjects
ethics committee.

The forward kinematics was performed in that sensor trajectories were reconstructed
as x, y, and z cartesian coordinates with the help of the IAA. The GRCS frame was defined
for the elbow joint as follows: The origin location is the midpoint of the projection between
the medial and lateral bony aspects of the distal humerus (Figure 2). The X-axis defines the
lateral aspects of the elbow joint. The X-axis is also coincident with the South (S) orientation
according to the ENU global reference coordinate system, the Y-axis is positive to the East
(E), and the Z-axis is positive when pointing up (U).

Data were generated by the IMU accelerometer and gyroscope, as provided in the
SCS, and combined through a sensor fusion algorithm measuring the orientation with
respect to the GRCS. Therefore, it was necessary to align the SCS frame in which three linear
accelerations and three rotational rate gyroscopes were measured to the global coordinates
as described above, allowing the IAA to be computed by the global system.

To visualize the inverse kinematics as a line representation of the IAA in space, we
identified the line geometry as determined by its direction and a point on the line itself. We
can write the vector equation of the line as:

Sm = S0 × S (19)
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which is the moment of the line about the origin 0. Expanding this equation leads to:

Sm =

∣∣∣∣∣∣
i j k
x y z
L M N

∣∣∣∣∣∣ = Pi + Qj + Rk (20)

The orthogonality condition can then be written as:

LP + MQ + NR = 0 (21)

with the six Plűcker coordinates of the line (L, M, N; P, Q, R) as illustrated (Figure 7).
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The (L, M, N) consists of the direction of the line, and (P, Q, R) are the x, y, and z
cartesian components of the moment of the line about the origin O.

Further, a given line (L, M, N; P, Q, R) passes through a given plane (t, u, v, s) in the
point whose coordinates are defined as:

 t u v s
0 −N M P
N 0 −L Q




x
y
z
w

 =

0
0
0

 (22)

We used a commercial programming platform as previously noted (MATLAB NULL
Operation) to solve for the coordinates

[
x, y, z, w

]
. Visualization of the results was

based on several models, including intersecting pathways of the IAAs within a virtual
sagittal plane [29]. This approach extended the previous work describing the embedded
kinematics of human joint motion during locomotion [30] including the control of skilled
manipulation [31].

The virtual sagittal plane was defined relative to the geometric representation of the
IAA from the geometric center (Figure 8). This allowed the variability assessment in the
direction of the functional IAA during the flexion-extension movement of the forearm. In
addition, the intersection of the functional IAA with this plane was analyzed, while the
migration of IAA was observed for small motion steps (acquired at 60 Hz).

When comparing the Euler angle procedure with the Axis angle procedure, Euler
angles tried to force the body to move along the certain route that it had arbitrarily chosen
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but which the body had not chosen. In fact, the body would not take any one of its routes
separately, though it would take all of them together in the most embarrassing manner-
goal-directed behavior. The axis angle procedure had no preconceived scheme as to the
nature of the movements to be expressed. A subject simply found the body in a certain
position, A, and then he coaxed the body to move, not in this way or in that particular way,
but any way the body liked to any new position B.
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Once the IAA was defined, forward kinematics obtained the vector trajectories
(Figure 9). Finally, the position of the end effector, the IMU sensor located in the palm of the
subject’s hand, is given by trajectories as viewed in the oblique and on the sagittal plane.
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In the present study, we computed 2D angular measurements obtained from IMUs
relative to those obtained from compass systems; compared to IMU angular measurements
(Figure 10), the readings from the goniometer have an error rate of approximately 11%
(Figure 11).
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Figure 10. Experimental procedure for angle measurements in two dimensions compared with the
angles obtained from the IMU system. The vertical arm of the compass (in white) was fixed onto the
lateral side of the upper arm. In contrast, the horizontal arm was mobile to perform accurate 180◦

amplitude rotations between two segment movements. IMUs and goniometer system coordinates
are presented in red and dark grey, respectively. The errors between the two systems are a range of
5% errors.
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Figure 11. The resulting angle differed by approximately 11% on average versus measurements taken
by compass (circle).

4. Discussion

Theoretically, for our study, the inverse kinematics, which is ruled by an IAA, is used
to visualize the migration of biomechanical action Another piece of information provided
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by forward kinematics as ruled by the end effector is formed by visualizing the migration of
the motion at the distal or proximal ends of the limb itself. In this way, the characteristics of
the elbow motion can be estimated intuitively based on the shape and alignment relative to
each of the limb segments. From a mechatronic perspective, we use position and orientation
data to control the end effector of a robotic arm. From that application, identifying the joint
variables that generate that desired position and orientation will ultimately control the end
effector. However, human movement control is continuous and processed concurrently
with afferent and efferent inherent modulation.

Limitations of this study are that one IMU sensor was used during the activity of a
single subject. The optimal system for joint biomechanics should be characterized using
two IMUs where each sensor is worn at the proximal and distal segments containing the
target joint. However, previous studies have validated the use of a single IMU to measure
joint angles in children with cerebral palsy [26] and to assess lower arm movements [27].
Future research will focus on increasing the use of IMUs when defining limb movements
while studying the model performance in clinical and laboratory settings. The use of a
single subject is also a limitation of this study. However, a robotic arm validation was
also performed to address the single-subject limitation, and our study does not make a
conclusion regarding the population of subjects.

By using the traditional optical-based motion tracking system, we have characterized
the concept of a “knee axis” and further the concept of “invariant [8,32]”. We found that
the line of the ground reaction force (GRF) vector is very close to the knee instantaneous
axis (KIA). It aligns the knee joint with the GRF such that the reaction forces are torqueless.
This insight shows that locating KIA is equivalent to the dynamic alignment measurement.
This method can be used for the optimal design of braces and orthoses for the conservative
treatment of knee osteoarthritis. Having validated the axis-angle with the optical-based
system, we applied the same approach with the imu-based system to track the occupied
motion of the subject.

There are several advantages of using axis-angle representations for describing limb
kinematics:

1. Global Description: Axis-angle representations allow for a global description of rigid
body motion without suffering from singularities due to local coordinates. Unlike
traditional Euler angles, which can result in singularities and ambiguities, axis-angle
representations provide a more robust and accurate representation of limb kinematics.

2. Geometric Description: Axis-angle representations provide a geometric description of
rigid motion, simplifying biomechanical analysis and facilitating the understanding of
kinesthesis (the feeling of movement) in skeletal and muscle structures. This geometric
description is useful for applications such as computer-aided graphics, vision, and
virtual reality.

3. Quaternion Operations: Axis-angle representations can be easily converted to quater-
nion representations, which have well-defined operations for vector addition, multi-
plication, and interpolation. Quaternions offer a more efficient and accurate way to
represent rotations compared to other methods.

4. Simplified Biomechanics Analysis: Axis-angle representations simplify the analysis of
joint biomechanics by providing a clear and intuitive representation of joint function
and ligament health. They can be used to study the instantaneous axis of rotation,
which plays a crucial role in joint functionality and overall locomotion perception and
motor control.

Overall, using axis-angle representations for describing limb kinematics offers advan-
tages in terms of accuracy, robustness, and simplicity of analysis.

The invariant combination of the axis-angle representation could open a new era of
quantifying biomechanical perception-action systems as interactions with the natural or
built environment. The overall performance metrics of many motor activities could be
extended to real-world and clinical settings within multiple spatial and temporal frame-
works [33]. Further, this approach may then be extended to understanding the causal
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nature of biomechanical injury and disease, especially that associated with inertial kinetics
and kinematics [34].

The kinesthesis, the awareness of one’s own motion, cannot be measured in a SCS.
However, they have unity relative to the posture and behavior of the subject being con-
sidered. The results exert goal-directed feedback control by using the IAA to guide our
motion continuously. Our assumption is that goal-directed feedback could be applied to
many more rehabilitation application routines. Real-time posture correction and motion
change instruction could ultimately optimize motor learning, reducing injuries caused by
excessive motion and bad postures.
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