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Abstract—We present a new approach to compute the motion
estimation in digital videos using 2D amplitude-modulation
frequency-modulation (AM-FM) methods. The optical flow vec-
tors are computed using an iteratively reweighted norm for total
variation (IRN-TV) algorithm. We compare the proposed method
using synthetic videos versus a previous three-dimensional AM-
FM based method and available motion estimation methods avail-
able in free and commercial software. The results are promising,
in terms of accuracy, producing a full density estimation with
more accurate results than the other methods.

Index Terms—motion estimation, optical flow, amplitude-
modulation frequency-modulation

I. INTRODUCTION

The development of perception-based motion estimation
methods based on multiscale amplitude-modulation frequency-
modulation (AM-FM) methods has a strong interest in digital
video processing [1]. The standard use of perception-based
methods for motion estimation methods rely on the use of
Gabor filters, requiring a large number of frames to be
computed [1]. In this paper, we present a new approach that
uses a 2D multiscale AM-FM method to estimate optical flow
motion using two video frames only. This the next step of the
methodology discussed in [2].

Our motivation for the new perception-based approach
comes from the need to maintain compatibility with the ma-
jority of optical flow motion methods that are based on a small
number of video frames [3], [4]. In [5], the authors describe
the motion estimation methods applied to biomedical imaging
applications. The methods described in [5], for example [6],
require smooth variations that have a very difficult time with
ultrasound videos that are dominated by speckle noise. For
speckled ultrasound videos, there are no perception-based
methods that can produce motion estimation estimates at every
single pixel [7].

In this paper, we propose a new approach to a motion esti-
mation based on 2D AM-FM that goes beyond the 3D AM-FM
methodology described in [8] and the 2D IF-based methods
described in [2]. This method only requires two video frames:
I(x, y, t) and I(x, y, t + 1). This method takes advantage
of both the instantaneous amplitude (IA) and instantaneous
frequency (IF) estimates compared to [2]. The problem is
solved using a total variation formulation of our approach.
We present comparative results on synthetic videos where we

show that the proposed approach provides better estimates
than many other standard methods. We compare the method
versus those available in free and commercial software such
as Matlab, OpenCV and CUDA: Horn-Schunck [9], Lucas-
Kanade [10], Gunnar Farnebäck [11] and TVL1 [12].

This manuscript is organized as follows. We provide back-
ground on related work in section II. In section III, we
present the methods proposed. The results and discussion of
the proposed method is presented in section IV. Finally, we
present the conclusions and future work in section V.

II. BACKGROUND

Optical flow is the distribution of apparent velocities of
movements of brightness patterns in an image [9]. It is the
most challenging version of motion estimation (ME) because it
is about to compute an independent estimate of motion at each
pixel [13], or voxel. Ideally, the optical flow is equal to the
motion field. However, this does not always happen as these
cases [9]: (i) a motion camera recording a stationary object
produces optical flow, or (ii) a sphere of uniform intensity
in rotation does not produce optical flow. Thus, optical flow
estimation is still one of the problems in computer vision
[14]. In digital videos, the motion estimation vectors are not
recognized in a total optical flow field. The standard methods
have certain parameters that affect the final accuracy. There
are common assumptions of an image to use optical flow
methods such as grey value constancy, gradient constancy and
smoothness assumptions [13].

In the last decades, the original optical flow estimation
methods have been changing until give rise to new methods.
The basic Horn-Schunck [9] and Lucas-Kanade [[10] methods
have been modified to improve the quality of optical flow
estimation [14]. Nevertheless, these changes are not sufficient
to define accurate motion estimation. In the next lines, we will
describe the basic AM-FM definition and other methods to be
tested (methods available in Matlab, OpenCV and CUDA).

A. AM-FM representation

A digital video is represented as I(z, t), where z = (x, y),
in terms of a collection of AM-FM components given by:

I(z, t) =

n=M∑
n=1

an(z, t) cos(ϕn(z, t)), (1)



where n = 1, 2, . . . ,M denotes the different AM-FM compo-
nents, an(z, t) cos(ϕn(z, t)) denotes the n-th AM-FM com-
ponent, an denotes the n-th instantaneous amplitude (IA)
component, and ϕn denotes the n-th instantaneous phase (IP)
component. The instantaneous frequency (IF) is defined in
terms of the gradient of the instantaneous phase: ∇ϕn. Some
examples of the use of AM-FM models in medical imaging
are in [15].

For a 3D AM-FM motion estimation method [6], we
consider a single AM-FM component given by I(z, t) =
a(z, t) exp(jϕ(z, t)). Next, we consider the Optical Flow
Constraint Equation (OFCE, [9]) given by

〈∇I, ζ〉+
∂

∂t
I = 0, (2)

where ζ = (u, v), 〈.〉 represents inner product, and we apply it
to I(z, t). Then, the AM constraint is described by analyzing
the real part 〈∇a, ζ〉 + ∂

∂ta = 0, and similarly, the FM
constraint by analyzing the imaginary part 〈∇ϕ, ζ〉+ ∂

∂tϕ = 0.
One of the advantages here is the use of two equations per

voxel. The motion estimation vectors u(x, y) and v(x, y) are
computed using an iterative method based on finite difference
approximations [1].

B. Horn-Schunck method

The Horn-Schunck (HS) method assumes that image bright-
ness constraint is constant and the frames have a global
smoothness. The HS algorithm has two processes to follow in
order to find the desired results. The first one is to estimate the
partial derivatives of the frames. The second is to minimize the
error of the sum of the partial derivatives because in practice
the measurement of brightness can be different at each pixel
[9]. The method is based on (2) and it seeks to minimize both
I(x, y, t) = I(x+u, y+ v, t+ 1) and ε = uIx + vIv + It = 0
at the same time.

C. Lucas-Kanade method

This method divides the original image in smaller sections
and assumes that constant speed exists in every region between
frame k and frame k+1. Thus, it should satisfy the following
equation [10]: Ix(Qi)u+ Iy(Qi)v = −It(Qi), where Qi are the
pixels inside the section, Ix(Qi), Iy(Qi), It(Qi) are the partial
derivatives of the image I with respect to position x, y and
time t, evaluated at the point Qi and at the current time.

Then, it performs a weighted least-square fit of opti-
cal flow constraint equation to a constant model for (u, v)
in each section Ω, by minimizing the following equation:∑

x=ΩW
2[uIx + vIv + It]

2, where W is a window function
that emphasizes the constraints at the center of each section.

D. TVL1 method

This method assumes that brightness is constant. So
its partial derivatives are equal to 0 [12]: ∇I · (u, v) +
∂I/∂t = 0. Applying the chain rule and replacing u(x, y) =
(u1(x, y), u2(x, y)), we find the optical flow constraint equa-
tion.

E. Gunnar Farnebäck method

This method assumes that the displacement field is only
slowly varying. The first equation of this method is in the
case that a polynomial undergoes an ideal translation [11]:
f1(x) = xTA1x + bT1 x + c1. Then construct a new signal
f2 by a global displacement by d: f2(x) = f1(x − d) =
(x − d)TA1(x − d) + bT1 (x − d) + c1. By comparison of the
coefficients in the quadratic polynomials yields to: A2 = A1,
b2 = b1 − 2A1d, and c2 = dTA1d− bT1 d+ c1.

III. METHODS

A. Single AM-FM Component

We propose to solve the motion estimation problem using
only two consecutive frames from a digital video I(z, t). Let’s
define I1(z) = I(z, t) as the image intensity function at
time t. Also, let’s define I2(z) = I(z, t + 1) as the image
intensity at time t + 1. Thus, we define the optical flow
motion estimation problem for each pixel z = (x, y) as one of
determining the optical flow functions ζ(z) = (u(z), v(z)) =
(u(x, y), v(x, y)) from I1 and I2.

We assume small changes in image intensity as given by
I(z, t) to I(z, t+ 1). Next, let’s consider the basic model for
a single AM-FM component given by:

I(z, t) = a(z, t) exp[jϕ(z, t)]. (3)

Thus, for two consecutive frames we have:

I(z, t+ 1) = I(z+ ζ, t) = a(z+ ζ, t) exp[jϕ(z+ ζ, t)]. (4)

Given that Ik(z) = ak(z) cosϕk(z), with k ∈ {1, 2}, and
based on (2), we have that:

I2(z) = a2(z) cosϕ2(z)

= I1(z + ζ) = a1(z + ζ) cosϕ1(z + ζ).

In [2], the derivation was based on the FM component by
dividing the image output by the IA as given by: Ī(z, t) =
(a(z, t) exp[jϕ1(z, t)])/a(z, t) = exp[jϕ1(z, t)]. The idea is
to consider the simplest case given by ϕ(z) = 〈ω, z〉 +
c, where c is a phase constant, ω = (ω1(z), ω2(z)) =
(ω1(x, y), ω2(x, y)), 〈.〉 represents inner product, and ϕ1(z) =
ϕ(z).

For the proposed method, we consider both the IA and the
IF estimates at the same time. For this, we consider the ratio
of the two consecutive frames:

I(z, t+ 1)

I(z, t)
=
a(z + ζ, t)

a(z, t)
exp[j(ϕ(z + ζ, t)− ϕ(z, t)]

=
a(z + ζ, t)

a(z, t)
exp[j〈ω, ζ〉]

Thus, for an arbitrary instantaneous amplitude, we have the
basic equation:

〈ω, ζ〉 = Arg

(
I(z, t+ 1)

I(z, t)

)
. (5)

More generally, by applying (5) to (2) we have the basic linear-
phase model approximation given by:



γ(z) = 〈φ, ζ〉 = Arg

(
I(z, t+ 1)

I(z, t)

)
, (6)

where φ = ∇ϕ(z) = (ϕx(z), ϕy(z)) are the x and y
components of the IF vectors. Over the entire image, we form
the error in solving for (6) using an energy function given by

EFM =
∑
z

[〈φ, ζ〉 − γ(z)]
2
. (7)

Since the amplitude is slowly-varying, we can use a Taylor
series expansion and assume constancy to get the following
approximation:

χ(z) = 〈a, ζ〉 = a(z, t+ 1)− a(z, t), (8)

where a = (ax, ay) = (∂a/∂x, ∂a/∂y). Thus, over the entire
image, we form the error in solving for (8) using an energy
function given by

EAM =
∑
z

[〈a, ζ〉 − χ(z)]
2
. (9)

In general, we expect independence between the instanta-
neous amplitude derivatives and the instantaneous frequency
as given by:

〈a, ζ〉 6= 0. (10)

Clearly, under (10) we have a set of two independent
equations in two unknowns as given by (6) and (8).

B. Smooth Motion

Even if (7) and (9) provide two equations in two variables,
we have an aperture-like problem in that we cannot estimate
motions that are orthogonal to the IF and IA. Assuming
smooth motions, we follow [9] by introducing a penalty
function that requires small first-order derivatives of the optical
flow [3]. Thus, we use the following penalty function based
on the `-2 norm:

Epriori =
∑
z

|∇u(z)|2 + |∇v(z)|2 = ‖ζ‖22. (11)

The overall optimization problem is to compute
the optical flow functions that minimize EGlobal =∫
E(u(z), v(z), z,∇u(z),∇v(z))dz with (7) and (11)

given by

E(u(z), v(z), z,∇u(z),∇v(z)) = Epriori +λEFM +βEAM ,
(12)

where λ and β are regularization parameters.

C. Solution using Total Variation methods

The result from (12) is similar to the general energy penalty
given in [9] for a two-dimensional flow field. However, here
the flow field comes from the AM-FM model (described in
subsection III-A).

We propose to replace the quadratic penalties [3] in (11)
with a robust version, e.g. Epriori =

∑
z |∇u(z)|+ |∇v(z)| =

‖ζ‖1, which is known to better preserve discontinuities. Thus,

the problem described by (12) is equivalent to the vector-
valued `2 Total Variation (TV) optimization:

T (ζ) =
1

2
‖A · ζ − γ(z)‖22 + λ‖∇ζ‖1, (13)

where A = diag(∇ϕ(z)). We use the Iteratively Reweighted
Norm for total variation (IRN-TV) algorithm [16] to solve
the problem because of its simplicity and good computational
performance.

Given T (ξ) = 1
2‖Aξ − b‖22 + λR(ξ), where ξ, the dataset

to be restored, represents a vector-valued dataset with L

elements per entry, R(ξ) = ‖
√∑L

1 (Dxξn)2 + (Dyξn)2‖1
is the discrete version of ‖∇ξ‖1, with Dx and Dy rep-
resenting the horizontal and vertical discrete derivative op-
erators respectively, A is the forward operator, b is the
observed noisy data and λ is a weighting factor controlling
the relative importance of the data fidelity and regularization
terms. The main idea is to express the regularization term

by the quadratic approximation Q
(k)
R (ξ) = 1

2‖W
(k)
R

1/2
Dξ‖22,

where W
(k)
R = I2L ⊗ Ω

(k)
R , D = [DT

xD
T
y ]T , Ω

(k)
R =

diag

((∑L
1 (Dxξ

(k))2 + (Dyξ
(k))2

)−0.5
)

, IN is a N × N
identity matrix, and ⊗ is the Kronecker product. The result-
ing iterations can be expressed in the form of the standard
iteratively reweighted least squares (IRLS) problem:

T (k)(u) =
1

2

∥∥∥∥∥
[

1 0

0 W
(k)
R

]1/2[
A√
λD

]
ξ −

[
b
0

]∥∥∥∥∥
2

2

.

For a given current solution ξ(k), W (k)
R can be computed,

and the threshold τ may be automatically adapted to the
input image to avoid numerical instability [16]. Finally, the
resulting IRN algorithm has to iteratively solve the linear
system

(
ATA+ λDTW

(k)
R D

)
ξ(k+1) = ATb.

IV. RESULTS AND DISCUSSION

We have test this first approach using synthetic videos
using 50 video frames with 512 × 512 pixels in each frame.
We first define the reference image using I(z) = cosϕ(z),
where ϕ(z) = ϕ(x, y) = 2π

[
α1x+ β1

x2

2 + α2y + β2
y2

2

]
and ∇ϕ(z) = ∇ϕ(x, y) = 2π (α1 + β1x, α2 + β2y), with
the parameters α1, β1, α2 and β2 set to produce the instan-
taneous frequencies values in the range of ϕx ∈ [0.10, 0.15]
and ϕy ∈ [0.15,−0.13] in the normalized frequency range
[0, 1]. The relatively low frequency values give smoothness
to the video and make it more difficult to produce motion
vector estimates from higher-frequency channel filters. We
consider three cases: (u, v) = (2,−0.5), (u, v) = (1, 0), and
(u, v) = (0, 0.7).

We present the results in terms of accuracy in the motion
estimation in the x and y directions given by the vectors
u and v, respectively. Also, we analyze the density in the
estimation, which represents the percentage of pixels with
a motion estimation vector computed. This number is very
important in applications like in the medical applications,



TABLE I
RESULTS IN TERMS OF THE MEAN-SQUARED ERROR (MSE) FOR THE VECTORS (u, v) AND THE DENSITY OF ESTIMATION (%) BY VIDEO. WE COMPARE

THE PROPOSED METHOD VERSUS THOSE DESCRIBED IN SECTION II.

Method (u, v) = (2,−0.5) (u, v) = (1, 0) (u, v) = (0, 0.7)
MSE u v % u v % u v %

Proposed 2D AM-FM 1.29 0.69 1.00 0.11 0.10 1.00 0.12 0.15 1.00
2D IF-based [2] 2.29 1.29 1.00 0.17 0.20 1.00 0.24 0.30 1.00

3D AM-FM 10.95 8.37 0.85 2.58 1.29 0.85 0.07 1.01 0.85
Horn-Schunck 4.16 1.25 1.00 1.04 0.20 1.00 0.20 0.49 1.00
Lucas-Kanade 11.22 1.01 0.34 2.78 0.17 0.32 0.08 0.87 0.31

Gunnar Farnebäck 7.86 0.64 1.00 2.14 0.05 1.00 0.02 0.86 1.00
TVL1 23.74 0.76 1.00 3.26 0.16 1.00 0.11 1.09 1.00

where every single voxel must be tracked (for example [7]).
We have used the available functions in Matlab and OpenCV,
library with CPU and GPU, to compare the results. From this,
we obtain the results to discuss about the efficiency of the
all methods used. For the accuracy errors, we compute the
mean-squared error (MSE) for the vectors (u, v) in Table I.

We can see how the proposed method not only produce
the motion estimation vectors at every single voxel (density
of 100%) but also it produce the best results. Since the AM-
FM estimation methods do not produce perfect results [17],
those variations are used by the TV approach to have a better
estimation. In terms of the motion estimation functions found
in open source and commercial software, we have noted that
the CPU based functions are more accurate for synthetic
videos.

V. CONCLUSIONS AND FUTURE WORK

We have presented an improved perception-based motion
estimation method based on the use of the 2D AM-FM demod-
ulation methods over two consecutive frames. We have also
provided a solution to the problem based on the use of total
variation algorithms. We have compared the proposed solution
versus previous approaches, such as 2D IF-based methods and
3D AM-FM-based methods, and functions available in open
source and commercial software. In the synthetic examples, the
proposed approach gave significantly better motion estimation
results with a full density estimation at every single frame.
Future research will extend the method to the use of multiscale
filterbanks and to model the influence of external factors such
as not constant illumination. This method will be tested in
standard video sequences and ultrasound videos.
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