UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA ESCUELA DE POSGRADO

METODOLOGÍA PARA LA CARACTERIZACIÓN FÍSICA DE RÍOS DE MONTAÑA: ANÁLISIS INTEGRAL DEL RÍO HUALLAGA, TRAMO CERRO DE PASCO - TINGO MARÍA

TESIS

Para optar el grado de Maestro en Ingeniería Civil

AUTOR:

Ing. Hernan Arturo, Chicchon Justiniano 💿

ASESOR

PhD. Kensuke Naito 🕓

CO-ASESOR

PhD. Horacio Toniolo 💿

Lima - Perú 2024

DECLARACIÓN JURADA

Yo, Mónica Cecilia Santa María Fuster identificada con DNI No 18226712 en mi condición de autoridad responsable de validar la autenticidad de los trabajos de investigación y tesis de la UNIVERSIDAD DE INGENIERIA Y TECNOLOGIA, DECLARO BAJO JURAMENTO:

Que la tesis denominada "METODOLOGÍA PARA LA CARACTERIZACIÓN FÍSICA DE RÍOS DE MONTANA: ANÁLISIS INTEGRAL DEL RÍO HUALLAGA, TRAMO CERRO DE PASCO - TINGO MARÍA" ha sido elaborada por el señor Hernan Arturo Chicchon Justiniano, con la asesoría de Kensuke Naito, identificado con el pasaporte : TT1752164 y Horacio Antonio Toniolo identificado con el pasaporte: 674611658 , y que se presenta para obtener el grado de Maestro en Ingeniería Civil, ha sido sometida a los mecanismos de control y sanciones anti plagio previstos en la normativa interna de la universidad, encontrándose un porcentaje de similitud de 0%.

En fe de lo cual firmo la presente.

Dra. Mónica Santa María Fuster Directora de Investigación

En Barranco, el 19 de febrero de 2024

Dedicatoria:

A mi madre, por su constante apoyo y por enseñarme a luchar por mis sueños. Gracias por ser mi ejemplo a seguir y por estar siempre ahí, dispuesta a ayudar y darme ánimo. A mis abuelos, por su sabiduría y por haberme transmitido sus valores. Su ejemplo y su amor incondicional han sido fundamentales en mi vida. A todos ustedes, muchas gracias por estar siempre presentes y por ser mi fuerza. Sin ustedes, esta tesis no habría sido posible.

Agradecimientos:

Agradezco al centro de investigación y tecnología del agua (CITA-UTEC) que a través del proyecto "Evaluación científica de la forma y el caudal de los ríos: información de referencia para las directrices de infraestructura en la Amazonía peruana (Grant ID: GBMF7711)" financiado por la fundación Gordon y Betty Moore; proyecto del cual fuí parte, lo cual permitió el desarrollo de ésta tesis.

Al PhD. Horacio Toniolo, profesor en la Universidad de Alaska Fairbanks, EE.UU. y co-asesor. Le agradezco por su guía, orientación y enérgicas críticas que retroalimentaron mi motivación por la ingeniería de sedimentos y la hidráulica fluvial al desarrollar ésta tesis.

Al PhD. Kensuke Naito mi asesor de la Universidad de Ingeniería y Tecnología (UTEC) por su constante paciencia, dedicación, orientación, críticas. sugerencias, recomendaciones y guía en la realización de ésta investigación.

Mi especial agradecimiento al SENAMHI por compartir sus datos generados con CITA-UTEC a través del convenio marco de cooperación interinstitucional entre UTEC y SENAMHI.

Quiero expresar mi profundo agradecimiento a Kensuke Naito, Horacio Toniolo, Leo Guerrero Asmad, Kimberly Blas Castañeda, Gerles Medina Orellano y Clinton Chaupis Adriano por su valiosa colaboración en la recolección de muestras de campo. Asimismo, quiero expresar mi gratitud a Lynn Marin Flores, Fernando Miranda Camarena, Jose Velarde Espinoza, Joseph Peña Quino y Junior Montoya Sanchez, integrantes del equipo de tecnología del CITA-UTEC, por su ayuda en la fabricación de instrumentación a bajo costo para las mediciones de campo. También quiero agradecer a Yulissa Estrada Terrel, Maby Gavilan Abanto y Grecia Valdivia Vergaray, integrantes del equipo de laboratorio del CITA-UTEC, por su dedicación y esmero en el análisis de las muestras en el laboratorio. Sin su invaluable colaboración,

Finalmente quiero expresar mi más sincero agradecimiento a todos los miembros del CITA-UTEC con los que compartí estadía desde 2018 hasta 2022 y que de alguna manera contribuyeron a la realización de esta investigación. A todos ellos, muchas gracias por los conocimientos compartidos y las gratas experiencias.

Índice general

Pág
RESUMEN
CAPÍTULO 1 INTRODUCCIÓN 8
CAPÍTULO 2 PROBLEMA 13
CAPÍTULO 3 OBJETIVOS 14
3.1 Objetivo General
3.2 Objetivos Específicos
CAPÍTULO 4 MARCO TEORICO 15
4.1 Clasificación de ríos por su morfología en planta 15
4.2 Sedimento
4.2.1 Ciclo sedimentológico en el medio ambiente
4.2.2 Tipos de transporte de sedimentos 21
4.2.2.1 La carga suspendida:
4.2.2.2 La carga de lavado:
4.2.2.3 La carga de sedimento del lecho:
4.2.2.4 La carga total de sedimentos:
4.2.3 Caracterización de las propiedades de los sedimentos del lecho del río 24
4.2.3.1 Forma de partícula de sedimento

	4.2.3.2	Distribución del tamaño de las partículas de sedimento .	25
4.2.4 Técnicas p	ara caract	terización de sedimentos	30
	4.2.4.1	Distribución granulométrica en ríos de montaña	34
	4.	2.4.1.1 Granulometría óptica:	35
4.2.5 Técnicas d	e medició	ón usadas para caracterización del transporte de sedimentos	38
	4.2.5.1	Transporte de fondo	38
	4.2.5.2	Carga suspendida	42
4.2.6 Principales	s fórmulas	s para transporte de sedimentos	44
	4.2.6.1	Transporte de carga de lecho	45
	4.2.6.2	Transporte en suspensión	51
4.3 Agua			53
4.3.1 Técnicas in	ntrusivas p	para medición de caudal	53
	4.3.1.1	Medición con ADCP	53
	4.	3.1.1.1 Aforos con ADCP haciendo uso de embarca-	
		ciones	55
	4.	3.1.1.2 Waro	56
	4.	3.1.1.3 Puentes	57
	4.3.1.2	Medición con vadeo haciendo uso de un medidor de co-	
		rriente portátil	58
4.3.2 Técnicas n	o intrusiv	as para medición de caudal	62
	4.3.2.1	Obtención del caudal a partir del monitoreo continuo	
		por velocimetría de imágenes de partículas a gran escala	
		(LSPIV)	63
CAPÍTULO 5	ESTADO	O DE ARTE	66
5.1 Investigacio	ones más r	relevantes por cada parámetro de estudio	68
5.1.1 Caudal .			70
5.1.2 Pendiente			73
5.1.3 Geometría	de valle		73
			IV

0.11	4 Suministro de sedimentos	73
5.1.	5 Sedimentos suspendidos	74
5.1.	6 Transporte de carga de fondo o lecho	75
5.1.	7 Formas de fondo	76
5.2	Listado de estudios existentes sobre el área de estudio	79
CA	PÍTULO 6 DESCRIPCIÓN DE ÁREA DE ESTUDIO	83
6.1	Cuenca del río Huallaga	83
6.2	Area de estudio: Alto Huallaga	85
6.3	Hidrología	86
6.4	Geología	91
6.5	Geomorfología	93
CA	PÍTULO 7 METODOLOGÍA	96
7.1	Aforos	98
7.2	Obtención de distribución de velocidades superficiales por velocimetría de	
	imágenes de partículas a gran escala (LSPIV)	102
7.3	imágenes de partículas a gran escala (LSPIV)Topografía y Batimetría	102 106
7.3 7.4	imágenes de partículas a gran escala (LSPIV)Topografía y BatimetríaCaracterización de sedimentos por granulometría óptica	102 106 107
7.3 7.4 7.5	imágenes de partículas a gran escala (LSPIV)Topografía y BatimetríaCaracterización de sedimentos por granulometría ópticaTransporte de carga de lecho	102 106 107 114
7.3 7.4 7.5 7.6	imágenes de partículas a gran escala (LSPIV)	102 106 107 114 117
7.3 7.4 7.5 7.6 CA I	imágenes de partículas a gran escala (LSPIV)	 102 106 107 114 117 119
7.3 7.4 7.5 7.6 CA I 8.1	imágenes de partículas a gran escala (LSPIV)	102 106 107 114 117 119 119
 7.3 7.4 7.5 7.6 CAI 8.1 8.1. 	imágenes de partículas a gran escala (LSPIV) Topografía y Batimetría Caracterización de sedimentos por granulometría óptica Transporte de carga de lecho Transporte de carga de suspendidos PÍTULO 8 RESULTADOS Caudal 1 San Rafael	102 106 107 114 117 119 119 119
 7.3 7.4 7.5 7.6 CAI 8.1 8.1.2 	imágenes de partículas a gran escala (LSPIV) Topografía y Batimetría Caracterización de sedimentos por granulometría óptica Transporte de carga de lecho Transporte de carga de suspendidos PÍTULO 8 RESULTADOS Caudal 1 San Rafael 2 Huancapata	102 106 107 114 117 119 119 121
 7.3 7.4 7.5 7.6 CAI 8.1 8.1.2 8.1.2 	imágenes de partículas a gran escala (LSPIV) Topografía y Batimetría Caracterización de sedimentos por granulometría óptica Transporte de carga de lecho Transporte de carga de suspendidos PÍTULO 8 RESULTADOS Caudal 1 San Rafael 2 Huancapata 3 Puente Tingo Confluencia	102 106 107 114 117 119 119 121 122
 7.3 7.4 7.5 7.6 CAI 8.1 8.1.2 8.1.4 	imágenes de partículas a gran escala (LSPIV) Topografía y Batimetría Caracterización de sedimentos por granulometría óptica Transporte de carga de lecho Transporte de carga de suspendidos Transporte de carga de suspendidos PÍTULO 8 RESULTADOS Caudal 1 San Rafael 2 Huancapata 3 Puente Tingo Confluencia 4 Chinchavito	102 106 107 114 117 119 119 121 122 123
 7.3 7.4 7.5 7.6 CAI 8.1 8.1.2 8.1.4 8.1.4 8.2 	imágenes de partículas a gran escala (LSPIV) Topografía y Batimetría Caracterización de sedimentos por granulometría óptica Transporte de carga de lecho Transporte de carga de suspendidos PÍTULO 8 RESULTADOS Caudal 1 San Rafael 2 Huancapata 3 Puente Tingo Confluencia 4 Chinchavito Sedimento suspendido	102 106 107 114 117 119 119 121 122 123 124
 7.3 7.4 7.5 7.6 CAI 8.1 8.1. 8.1. 8.1. 8.1. 8.2 8.2. 	imágenes de partículas a gran escala (LSPIV) Topografía y Batimetría Caracterización de sedimentos por granulometría óptica Transporte de carga de lecho Transporte de carga de suspendidos PÍTULO 8 RESULTADOS Caudal 1 San Rafael 2 Huancapata 3 Puente Tingo Confluencia 4 Chinchavito 5 Sedimento suspendido 1 San Rafael	102 106 107 114 117 119 119 119 121 122 123 124 124

8.2.2 Huancapata	. 127
8.2.3 Chinchavito	. 129
8.3 Transporte de carga de suspendidos	. 132
8.4 Pendiente	. 137
8.4.1 Medición de Pendientes Locales	. 137
8.4.2 Análisis de Pendientes	. 138
8.5 Transporte de carga de fondo	. 139
8.5.1 Chinchavito	. 139
8.6 Caracterización granulométrica de sedimentos gruesos	. 143
8.7 Precipitaciones Areales	. 145
CAPÍTULO 9 DISCUSIONES	149
9.1 Caudal	. 149
9.1.1 Aplicabilidad y limitaciones del LSPIV	. 151
9.2 Sedimento suspendido	. 152
9.3 Transporte de carga de suspendidos y carga de lecho	. 158
9.3.1 Contraste entre ríos de montaña y ríos llanos	. 161
9.3.2 Especificaciones sobre ríos llanos	. 162
9.4 Granulometría Óptica	. 162
9.5 Caracterización granulométrica de sedimentos gruesos	. 163
9.6 Consolidado	. 166
CONCLUSIONES	. 168
RECOMENDACIONES	. 171
ANEXOS	. 189
ANEXO A: Constancia de uso de datos, CITA-UTEC	. 190
ANEXO B: Distribución granulométrica de sedimentos gruesos	. 191
ANEXO C: Datos de sedimentos suspendidos y caudal	. 193
ANEXO D: Datos medidos de sedimentos gruesos	. 243

Índice de tablas

4.1	Características morfológicas de los principales tipos de ríos. Adaptado de	
	[7], p. 9	19
4.2	Clasificación de carga de sedimentos. Adaptado de [65], cap. 2, p. 60	23
4.3	Escala sedimentológica de Udden-Wentworth. Extraido de [68], cap. 3, p.	
	109	29
4.4	Análisis requerido por cada tipo de material sedimentológico. Extraido de	
	[69]	30
4.5	Tipos de análisis para obtención de la distribución granulométrica. Extra-	
	ido de [69]	31
4.6	Cantidad de muestra necesaria por cada método de análisis. Extraido de [69]	32
4.7	Ventajas y desventajas de los principales métodos para determinar la con-	
	centración de sedimentos suspendidos. Extraído de [69]	33
4.8	Ecuaciones más conocidas de transporte de fondo o de lecho. Adaptado	
	de [84], pp. 51-61	45
4.9	Valores de k para Q_S , Q y CC en las unidades indicadas. Adaptado de	
	[85], p. 2	52
4.10	Características de los ADCP más utilizados. Información extraída y adap-	
	tada de [90] y [91]	55
4.11	Medidor de corriente y método de medición de velocidad para varias pro-	
	fundidades. Adaptado de [88]	59

5.1	Tendencias descendiente de los parámetros seleccionados de ríos de mon-	
	taña en función al descenso de la cuenca y documentación relativa de estas	
	tendencias basadas en datos de campo de diversos entornos. Adaptado de	
	[1], p. 8	67
5.2	Principales estudios existentes sobre el área de estudio. Elaboración propia.	79
6.1	Ubicación geográfica - Cuenca Huallaga. Extraído de [125], p. 9	83
6.2	Coordenadas del punto inicial y final del área de estudio. Elaboración propia	85
6.3	Geología del área de estudio cuantificado en función a su área. Elabora-	
	ción propia	92
6.4	Descripción fisiográfica o geomorfológica de la zona de estudio. Elabora-	
	ción propia con datos del INGEMMET	95
7.1	Resultados de aforos en el río Huallaga. Elaboración propia con datos del	
	CITA-UTEC	101
8.1	Características de las áreas de drenaje de los principales afluentes y que-	
	bradas. Elaboración propia.	146
C.1	Localización de las estaciones LSPIV a lo largo del cauce del río Huallaga	193
C.2	Diámetros característicos de sedimentos gruesos obtenidos mediante gra-	
	nulometría óptica	194
D.2	Diámetros característicos de sedimentos gruesos obtenidos por granulo-	
	metría óptica.	244

Índice de figuras

4.1	Clasificación de ríos aluviales. Adaptado de [60], cap. 9.36, p. 732	16
4.2	Principales categorías de patrones de canales. Adaptado de [61], p. 187.	17
4.3	[a] Vistas longitudinales, transversales y en planta de los principales tipos	
	de corrientes. Adaptado de [64], p. 697. [b] Forma de la sección transver-	
	sal, tamaño del material del lecho y criterios morfométricos delineadores	
	de los 41 tipos principales de corrientes. Adaptado de [7], p. 10	18
4.4	Ciclo sedimentológico y cambios morfológicos en una cuenca. Adaptado	
	de [65], cap. 2. p. 23	21
4.5	Tipos de transporte de sedimentos. Extraído de [66], p. 185	23
4.6	Clasificación de forma de sedimento. Adaptado de [65], cap. 2, p. 40	25
4.7	Distribución del tamaño de grano de sedimento. [a] Escala semi logarítmi-	
	ca, [b] Φ escala . P_f denota la fracción en peso del material en la muestra	
	de material más fino que el tamaño D. Adaptado de [65], cap. 2, p. 37	28
4.8	Flujo de trabajo de granulometría óptica mediante el uso del software BA-	
	SEGRAIN: [a] imagen sin procesar original, [b] imagen rectificada, [c] es-	
	calado y configuración de las propiedades de la imagen, [d] identificación	
	de objetos de destino, [e] imagen procesada, [f] configuración de clasifi-	
	cación y análisis de imágenes y [g] curvas resultantes de distribución del	
	tamaño de los sedimentos. Extraido de [80], p. 5	37

4.9	Proceso de excavación de zanja como técnica para cuantificar el transporte	
	de sedimentos de lecho. [a] Excavación en lecho del río. [b] Batimetría	
	resultante. Fuente: Mediciones de campo realizadas por el CITA-UTEC	
	el 10/2019	41
4.10	Sistema de muestreo de sedimentos tipo grúa, propiedad de CITA-UTEC,	
	para uso desde puentes. Fotografía tomada en 2020	43
4.11	Ilustración de medición con ADCP mediante un soporte fijo a una embar-	
	cación. Extraído de [87], p. 2	54
4.12	Captura de pantalla del software WinRIVeR [89] II donde se muestra la	
	intensidad del haz, la trayectoria del instrumento, el campo de velocidad	
	y otros. Elaboración propia con datos del CITA-UTEC.	55
4.13	[a] Medición ADCP con embarcación tripulado en el río Huallaga cerca de	
	Tingo María, Huánuco y [b] Medición ADCP con kayak en el río Marañón	
	cerca de Jaén, Cajamarca. Fotos de CITA-UTEC, campañas de campo	
	06/2019 y 08/2019	56
4.14	[a] Anclaje fijo para medición ADCP en río Huallaga, Huánuco. [b] Siste-	
	ma de cuerdas con anclajes para medición ADCP. CITA-UTEC, 10/2019.	
		57
4.15	Medición con ADCP desde un puente en el río Alto Marañón cerca del la	
	ciudad de Balsas en la Región Amazonas. CITA-UTEC, 08/2019	58
4.16	Definición del método de sección media del medidor de corriente para cal-	
	cular el área de sección transversal para mediciones de descarga. Adapta-	
	do de [88], p. 3	61
4.17	Aforo con correntómetro en el río Huallaga, Ambo, Huánuco, aguas aba-	
	jo de la confluencia de los ríos Huallaga e Higueras. Fecha: 08/11/2020.	
	Ancho del río: 32.5 m, Tirante máximo: 1.2 m, Caudal: 12.86 m^3/s .	
	Realizado por CITA-UTEC	62
4.18	Diagrama de flujo del procedimiento LSPIV. Adaptado de [47], p. 292	65

6.1	Mapa político de la cuenca Huallaga. Extraído de [125], p. 10	84
6.2	Distribución de pendientes promedio a lo largo de todo el río Huallaga.	
	Elaboración propia.	86
6.3	Precipitación acumulada anual (mm). Elaboración propia con datos del	
	producto PISCO de SENAMHI.	87
6.4	Precipitación promedio mensual (mm). Elaboración propia con datos del	
	producto PISCO de SENAMHI.	88
6.5	Precipitación promedio del acumulado anual (mm). Elaboración propia	
	con datos del producto PISCO de SENAMHI.	89
6.6	Precipitación promedio del acumulado anual (mm) de toda la cuenca del	
	río Huallaga. Elaboración propia con datos del producto PISCO de SE-	
	NAMHI	90
6.7	Mapa geológico del área de estudio. Elaboración propia con datos de IN-	
	GEMMET	91
6.8	Estratigrafía geológica predominante. Adaptado de [127], p. 100	93
6.9	Mapa geomorfológico del área de estudio. Elaboración propia con datos	
	de INGEMMET.	94
7.1	Diagrama de flujo de la metodología de investigación. Elaboración propia	97
7.2	Diagrama de flujo de mediciones de campo. Elaboración propia	98
7.3	Puntos de Aforos. Elaboración propia	99
7.4	Aforo con correntómetro para profundidades menores a 1 metro y acce-	
	so al cauce posible. Detalles adicionales en la tabla 4.11. Realizado por	
	CITA-UTEC, 11/2020	99
7.5	Técnicas de aforo con ADCP en ríos de alta montaña: [a] sistema de cuer-	
	das, [b] desde embarcación, [c] desde puente, [d] anclaje para sistema	
	de cuerdas. Detalles en tabla 4.10. Mediciones por CITA-UTEC, fechas:	
	10/2019, 06/2019, 08/2019 y 10/2019	100

7.6	Puntos de control, hardware y patrón de velocidades superficiales obteni-	
	dos mediante software RIVeR. Elaboración propia.	103
7.7	Distribución espacial de las 5 estaciones LSPIV en el río Huallaga. Ela-	
	boración propia.	104
7.8	Velocidades superficiales obtenidas mediante técnica de LSPIV para la	
	estación Chinchavito. Elaboración propia.	105
7.9	[a] Batimetría de zanja en Ambo, [b] Topografía del perfil de la quebrada	
	Santa Fe - Ambo, [c] Levantamiento de la sección transversal del río -	
	Ambo. Campaña de mediciones CITA-UTEC, 10/2019	106
7.10	[a] Ortofoto del área de estudio de Chinchavito, 10 m de altura de vuelo;	
	[b] Sedimento grueso predominante muestreado con marco de referencia.	
	Técnicas de granulometría óptica, CITA-UTEC, 10/2019	109
7.11	Distribución longitudinal de los puntos de muestreo de sedimentos grue-	
	sos, lo cual nos presenta el material grueso predominante. Elaboración	
	propia	110
7.12	Distribución en sección del sedimento caracterizado. Elaboración propia	111
7.13	Curva granulométrica del sedimento grueso predominante en la estación	
	Chinchavito, el diámetro característico D50 presente encontrado es de 10	
	cm. Elaboración propia	111
7.14	[a] Flujograma de recopilación de datos in-situ con drone; [b] Ortofoto	
	con zonas de estudio (márgenes, barras, quebras y/o afluentes). Uso de	
	granulometría óptica. Elaboración propia.	112
7.15	[a] Flujograma de procesamiento de datos para ortofotos; [b] Obtención	
	de diámetros característicos con Basegrain. Elaboración propia.	112
7.16	Flujograma de procesamiento de datos para el caso de fotografías con	
	marco de referencia. Elaboración propia	113
7.17	Distribución típica del tipo de sedimento en una cuenca. Extraido de [66],	
	p. 56	115

7.18	Localización de las zanjas realizados. Elaboración propia
7.19	[a] Batimetría de zanja N° 1 con ADCP, [b] Batimetría de zanja N° 2
	con ADCP, [c] Batimetría de zanja Nº 3 con GPS RTK, [d] Batimetría de
	zanja N° 4 con GPS RTK. Elaboración propia, con datos de la campaña
	de mediciones del CITA-UTEC, 10/2019
8.1	Hidrograma - San Rafael. Elaboración propia
8.2	Hidrograma - Huancapata. Elaboración propia
8.3	Hidrograma - Tingo Confluencia. Elaboración propia
8.4	Hidrograma - Chinchavito. Elaboración propia.
8.5	Sedimentograma - San Rafael. Elaboración propia
8.6	Relación Caudal Sedimento suspendido - San Rafael. Elaboración propia. 126
8.7	Sedimentograma - Huancapata. Elaboración propia
8.8	Relación Caudal Sedimento suspendido - Huancapata. Elaboración pro-
	pia
8.9	Sedimentograma - Chinchavito. Elaboración propia
8.10	Relación Caudal Sedimento suspendido - Chinchavito. Elaboración propia. 130
8.11	LSPIV - Variabilidad de los valores diarios de caudal y concentración
	de las estaciones de monitoreo (San Rafael, Huancapata y Chinchavito).
	Elaboración propia.
8.12	Relación concentración de suspendidos y caudal: [a] Datos SENAMHI +
	LSPIV, [b] Datos SENAMHI, [c] Datos LSPIV. Elaboración propia 133
8.13	Carga diaria de sedimentos suspendidos obtenido a partir de la CC y Q
	diaria. Elaboración propia
8.14	Rango de variación del transporte de sedimentos suspendidos diario, pre-
	sentado de manera mensual. Elaboración propia
8.15	Transporte de sedimentos mensual obtenido por el método directo para el
	año 2020. Elaboración propia

8.16	[a] Volumen de transporte anual, [b] Sedimentograma mensual, [c] Puntos	
	de medición de sedimentos suspendidos. Elaboración propia	136
8.17	Ubicación y pendientes medidas en zonas de estudio del río Huallaga.	
	Elaboración propia a partir de datos del CITA-UTEC.	138
8.18	Análisis de pendientes por zona de estudio (2019-2021). Elaboración pro-	
	pia a partir de datos del CITA-UTEC.	139
8.19	Transporte de carga de lecho de la estación Chinchavito la cual está ubi-	
	cada a 250 metros aguas abajo de la confluencia de los ríos Huallaga y	
	Chinchao y a 27 km aguas abajo de la central hidroeléctrica de Chaglla.	
	[a] Hidrograma, [b] Sedimentogramas por ecuación usada, [c] Transporte	
	anual de sedimento de carga de fondo. Elaboración propia	141
8.20	Comparación gráfica de los valores calculados de sedimentos suspendidos	
	y sedimentos de carga de lecho. Los valores de carga de lecho se obtuvie-	
	ron utilizando la plataforma BedloadWeb [129] y se emplearon todas las	
	ecuaciones presentadas en la tabla 4.8. Los valores de sedimentos suspen-	
	didos se calcularon mediante el uso de la ecuación 4.12. La línea verde	
	corresponde a las dimensiones de la zanja de mayor tamaño. Fuente: Ela-	
	boración propia.	142
8.21	Localización en perfil longitudinal de las zonas donde se muestrearon se-	
	dimentos gruesos (e.g. grava), dichas zonas fueron muestreadas mediante	
	fotografías tomadas con marco de referencia y mediante fotogrametría a	
	baja altura mediante el uso de drones. Las fotografías de la parte inferior	
	representan el tipo de sedimento presente en cada zona de estudio. Elabo-	
	ración propia.	143
8.22	Diámetros característicos (D10, D50 y D90) de sedimento grueso super-	
	ficial el cual fue obtenido por granulometria óptica a partir de imágenes	
	tomadas en campo. Elaboración propia.	144

8.23	Caudales necesarios para transportar el sedimento grueso correspondiente	
	a los diámetros característicos D10, D50 y D90 - Estación Chinchavito.	
	Elaboración propia	144
8.24	Principales afluentes y quebradas a lo largo del área de estudio. Elabora-	
	ción propia	145
8.25	Precipitación areal diaria. Elaboración propia con datos del producto PIS-	
	CO de SENAMHI.	147
8.26	Precipitación areal de las áreas de drenaje de los principales afluentes y	
	quebradas del tramo de estudio. Elaboración propia con datos del producto	
	PISCO de SENAMHI.	148
9.1	Ubicación de las estaciones comparadas. La primera estación corresponde	
	a la estación de monitoreo LSPIV usada para el área de estudio y la segun-	
	da estación corresponde a la estación hidrométrica que tiene SENAMHI	
	en Amazonia baja. Elaboración propia	150
9.2	Comparación de hidrogramas mensuales de caudales: [a] Estación Chin-	
	chavito ubicado en el kilómetro 222 de recorrido del río Huallaga respecto	
	a su naciente, correspondiente al tramo de montaña; [b] Estación Chazu-	
	ta ubicado en el kilómetro 737 de recorrido del río Huallaga respecto a su	
	naciente, correspondiente al tramo de Amazonia baja. Elaboración propia,	
	[b] adaptado de [130], p. 54	151
9.3	Fotografías de aporte de quebradas y afluentes, obtenidas en las campañas	
	de medición del CITA-UTEC: [a] Estación San Rafael-Aguas arriba, Fe-	
	cha: 08/11/2020; [b] Estación Ambo-Aguas arriba, Fecha: 08/11/2020; [c]	
	Estación Ambo-Aguas abajo, Fecha: 21/06/2019.	153

9.4	Comparación de hidrograma de caudales y sedimentos suspendidos en	
	dos estaciones a lo largo del río Huallaga. [a] Localización de los puntos	
	comparados, [b] Hidrograma - Estación Chinchavito, Montaña, [c] Hidro-	
	grama - Estación Chazuta, Amazonia baja. Elaboración propia, figura [c]	
	adaptada de [130]	154
9.5	Delimitación de la cuenca del río San Juan. Fuente: Elaboración propia	155
9.6	Variabilidad de caudal y concentración de sedimentos suspendidos en las	
	estaciones de estudio. Elaboración propia.	155
9.7	Principales aportantes de sedimentos suspendidos presentes en el río Hua-	
	llaga sobre el área de estudio. Elaboración propia.	156
9.8	Variabilidad de precipitaciones mensual promedio diario y promedio men-	
	sual máximo. Elaboración propia	157
9.9	Aporte de sedimentos suspendidos del río Chinchao al río Huallaga. Fo-	
	tografía de la Estación Chinchavito, tomada por el CITA-UTEC, 06/2019.	
		158
9.10	Fotografías que muestran el aporte de sedimentos suspendidos en el tramo	
	km 50 - 80 del río Huallaga: [a] Aporte extremo máximo en la estación	
	Huancapata, fotografía obtenida por el CITA-UTEC mediante el sistema	
	LSPIV de la estación Huancapata 03/2019; [b] Quebrada Huamanpari,	
	Ambo, aporte extraordinario, fuente: diario Ahora, Huánuco, 03/2019	159
9.11	[a] Comparación del transporte de sedimentos en suspensión y carga de	
	lecho en la estación Chinchavito. El transporte de carga de lecho fue cal-	
	culado utilizando la plataforma BedloadWeb [129], y se emplearon todas	
	las ecuaciones presentadas en la tabla 4.8. El transporte de carga de sóli-	
	dos en suspensión fue calculado mediante el uso de la ecuación 4.12. La	
	línea verde corresponde a las dimensiones de la zanja de mayor tamaño.	
	[b] Zoom del intervalo del eje Y (0-8000). Fuente: Elaboración propia	161

9.12	Estación Ambo-Upstream, donde se puede apreciar la pendiente consi-			
	derable y la configuración sedimentaria del lecho. Fotografía por CITA-			
	UTEC, 09/07/2021	163		
9.13	Estación Ambo-Downstream: [a] Vista aguas arriba, [b] Vista aguas aba-			
	jo. Configuración sedimentaria y geomorfología con baja pendiente. Fo-			
	tografías por CITA-UTEC, 03/06/2019.	164		
9.14	Resultados obtenidos mediante el uso de la técnica de granulometría ópti-			
	ca. [a] Localización en perfil longitudinal de los puntos de medición de			
	sedimento grueso (grava), la obtención de los diámetros característicos			
	se realizó mediante la técnica de granulometría óptica. [b] Distribución			
	de diámetros característicos por cada punto de medición. [c] Caudal re-			
	querido para el transporte de los diámetros característicos de la estación			
	Chinchavito. Elaboración propia.	165		
B .1	Ubicación de las zonas de muestreo de sedimentos gruesos	191		
B.2	Distribución granulométrica de los puntos de muestreo de sedimento grue-			
	so a lo largo del tramo de estudio	192		
C .1	Localización de estaciones de monitoreo LSPIV a lo largo del perfil lon-			
	gitudinal del río respecto al área de estudio.	193		
D.1	Localización en el perfil longitudinal de las zonas donde se realizó el			
	muestreo de sedimento grueso por granulometría óptica dentro del cau-			
	ce del río Huallaga	243		

Lista de símbolos

C	=	Factor de confinamiento del rio $(C = \frac{\text{Ancho del valle}}{\text{Ancho del rio}})$
q_b^*	=	Tasa de transporte de carga de lecho adimensional por uni-
		dad de ancho
Q_S	=	Caudal de sedimentos suspendidos (ton/dia)
k	=	Factor de conversión apropiado para las unidades utilizadas
		para Q, CC y Q_S
Q	=	Caudal instantáneo (m^3/s)
CC	=	Concentración total de sedimentos suspendidos (mg/L)
q_i	=	Descarga parcial del tramo i
v_i	=	Velocidad media para la ubicación i
b_i	=	Distancia desde el punto inicial hasta la ubicación i
$b_{(i-1)}$	=	Distancia desde el punto inicial hasta la ubicación anterior
$b_{(i+1)}$	=	Distancia desde el punto inicial hasta la siguiente ubicación
d_i	=	profundidad del agua en el lugar i
Gss	=	Transporte de sedimentos suspendidos
Gsf	=	Transporte de carga de fondo
S	=	Pendiente
Q_{LSPIV}	=	Caudal instantáneo diario obtenido por LSPIV (m^3/s)
$Q_{SENAMHI}$	=	Caudal instantáneo diario extraido del modelo SONICS de
		SENAMHI. (m^3/s)
D	=	Diámetro de sedimento
D_{50}	=	Diámetro medio (m)
D_x	=	Diámetro del grano (el subíndice indica $\%$ mas fino que X)

F_r	=	Número de Froude
Н	=	Altura del pelo del agua (m)
L	=	Ancho de lecho (m)
ω	=	Potencia de flujo; $\omega = \tau U$
Φ	=	Transporte sólido adimensional
Ψ	=	Diámetro geométrico
Р	=	Caudal (m^3/s)
q	=	Caudal unitario $(m^3/s/m)$
Q_S	=	Flujo Sólido (kg/s)
Q_{sv}	=	Flujo volumétrico de sólidos (m^3/s)
Q_{sapp}	=	Flujo aparente de sedimentos
q_S	=	Flujo sólido unitario $(kg/s/m)$
q_{sv}	=	Flujo volumétrico unitario de sólidos $(m^3/s/m)$
Re	=	Número de Reynolds
ρ	=	Densidad del agua (kg/m^3)
$ ho_s$	=	Densidad del sedimento (kg/m^3)
s	=	Densidad relativa ; $s=\rho_s/\rho$
S	=	Pendiente (m/m)
τ	=	Esfuerzo de corte (N/m^2)
$ au_c$	=	Esfuerzo de corte crítico (N/m^2)
$ au^*$	=	Número de Shields o esfuerzo cortante adimensional del le-
		cho
$ au_c^*$	=	Número de Shields crítico para el inicio del movimiento
U	=	Velocidad media (m/s)
u^*	=	Velocidad de fricción; $u^* = \sqrt{ au/ ho}$

Lista de siglas

AAA	=	Autoridad Administrativa del Agua
ADCP	=	Perfilador de Corrientes Acústicos Doppler
ADV	=	Velocimetro Acústico Doppler
ANA	=	Autoridad Nacional del Agua
ASCE	=	Sociedad Americana de Ingenieros Civiles
ASTM	=	Sociedad Americana para Pruebas y Materiales
CITA	=	Centro de Investigación y Tecnología del Agua
CRS	=	Sistema de referencia espacial
DPDRH	=	Dirección de Planificación y Desarrollo de los Recursos
		Hídricos del ANA
GNSS	=	Sistema global de navegación por satélite
GPS	=	Sistema de Posicionamiento Global
GRP	=	Puntos de referencia del terreno
GSD	=	Distancia de la muestra del suelo
INGEMMET	=	Instituto Geológico, Minero y Metalúrgico
INRENA	=	Instituto Nacional de los Recursos Naturales Renovables y
		del Ambiente
LSPIV	=	Velocímetria de imágenes de partículas a gran escala
ONERN	=	Oficina Nacional de Evaluación de Recursos Naturales
PIV	=	Velocimetría de imágenes de partículas
RTK	=	Navegación cinética satelital en tiempo real
SENAMHI	=	Servicio Nacional de Meteorología e Hidrología del Perú

SI-LSPIV	=	Velocímetria de imágenes de partículas a gran escala con
		pares estereoscopicos
USDA	=	Departamento de Agricultura de los Estados Unidos
USGS	=	Servicio Geológico de Estados Unidos
UTEC	=	Universidad de Ingeniería y Tecnología
UTM	=	Sistema de coordenadas universal transversal de Mercator

RESUMEN

Esta investigación analiza los primeros 250 kilómetros del río Huallaga en Perú, enfocándose en su geomorfología, sedimentología, hidráulica e hidrología. Se caracterizaron el agua y los sedimentos, destacando patrones estacionales de caudal y transporte de sedimentos en periodos de avenidas.

Se descubrió un importante aporte de sedimentos de afluentes y quebradas en meses secos, desafiando la comprensión tradicional de los procesos sedimentarios en ríos de montaña. Este aspecto es es esencial para la gestión hidráulica y la planificación ambiental, enfatizando la importancia de aportes extraordinaria de sedimentos y como influye esto en la morfología fluvial.

La investigación utilizó técnicas no intrusivas como granulometría óptica y velocimetría de imágenes de partículas a gran escala (LSPIV), proporcionando datos detallados sobre sedimentos y flujos. Estos métodos fueron clave para entender la morfología del lecho y la dinámica de transporte de sedimentos, cruciales en la conservación de ecosistemas fluviales y la mitigación de riesgos.

El enfoque hidrológico e hidráulico ofreció comprensión sobre las respuestas del río a diversas condiciones, crucial para el diseño de estructuras hidráulicas eficientes. Este estudio multidisciplinario no solo es relevante para Perú, sino también para la gestión de ríos de montaña en general. La metodología integrada representa un avance en investigación fluvial y una base para estudios futuros y la gestión sostenible de ecosistemas fluviales.

Palabras clave:

Ríos de montaña; Grava; Sedimentos suspendidos; LSPIV; Hidrología

ABSTRACT

METHODOLOGY FOR THE PHYSICAL CHARACTERIZATION OF MOUNTAIN RIVERS: COMPREHENSIVE ANALYSIS OF THE HUALLAGA RIVER, SECTION FROM CERRO DE PASCO TO TINGO MARÍA

This research analyzes the first 250 kilometers of the Huallaga River in Peru, focusing on its geomorphology, sedimentology, hydraulics, and hydrology. Both water and sediments were characterized, highlighting seasonal patterns of flow and sediment transport during flood periods.

A significant contribution of sediments from tributaries and ravines during dry months was discovered, challenging the traditional understanding of sedimentary processes in mountain rivers. This aspect is essential for hydraulic management and environmental planning, emphasizing the importance of extraordinary sediment contributions and their influence on fluvial morphology.

The study employed non-intrusive techniques such as optical granulometry and large-scale particle image velocimetry (LSPIV), providing detailed data on sediments and flows. These methods were key to understanding the riverbed morphology and the dynamics of sediment transport, crucial in the conservation of fluvial ecosystems and risk mitigation.

The hydrological and hydraulic approach offered an understanding of the river's responses to various conditions, essential for the design of efficient hydraulic structures. This multidisciplinary study is not only relevant for Peru but also for the management of mountain rivers in general. The integrated methodology represents an advancement in

fluvial research and a foundation for future studies and sustainable management of fluvial ecosystems.

Keywords:

Mountain rivers; Gravel; Suspended Sediments; LSPIV; Hydrology

INTRODUCCIÓN

Los ríos dan forma a muchos de los paisajes del mundo. En el proceso de transportar agua, sedimentos y sustancias químicas disueltas desde las tierras altas, los ríos redistribuyen los sedimentos a través de la superficie de la Tierra. Los ríos marcan el ritmo al que la deposición y la erosión determinan los paisajes y controlan la pendiente de las laderas adyacentes. Fundamentalmente, los ríos organizan los paisajes terrestres en cuencas de drenaje. A medida que los ríos se encajonan o desplazan lateralmente en respuesta a los cambios en el nivel de la base, crean valles que influyen en el clima local [1].

Es por eso que el estudio de la dinámica de agua y sedimentos es importante para lograr la comprensión de los ríos. En el caso de los ríos de montaña su estudio es importante ya que aquí se proyectan la mayor cantidad de presas y obras de infraestructura debido a las condiciones existentes. Estudiar un río de montaña en la práctica es un desafío debido al flujo súper critico y transporte de material de fondo que se presenta en la época de máximas avenidas.

Entre las principales problemáticas para el estudio de ríos de montaña se encuentra lo siguiente:

- La mayor proyección de centrales hidroeléctricas están sobre los ríos de montaña debido a su configuración geológica con presencia de grandes cañones, alta pendiente y altas velocidades de flujo, lo cual es propicio para este fin.
- Las ecuaciones empíricas de dinámica de sedimentos, desarrolladas principalmente para ríos con lechos de arena, pueden no describir adecuadamente los ríos de

montaña con lecho grueso y pendientes altas. Sin embargo, existen ecuaciones específicas para estos ríos que consideran sedimentos de mayor tamaño, como grava y rocas [2–4], ampliando su aplicabilidad a contextos más complejos y variables.

 La cuantificación de transporte de sedimentos es crítica para la proyección de grandes obras de infraestructura sobre los ríos de montaña, requiriendo un enfoque adaptativo que considere las condiciones específicas de estos sistemas fluviales.

Un indicador clave importante para comprender la dinámica de los sedimentos de un sistema fluvial es la curva granulométrica del sedimento. La distribución del tamaño de grano se describe por sus diámetros característicos (e.g. Diámetro medio D_{50} definido por [5]) o por los diámetros característicos [6]. El tamaño de grano del lecho del río es crucial porque define la rugosidad del canal así como el movimiento incipiente del sedimento [7]. Por lo tanto, el conocimiento de la distribución del tamaño de grano es esencial para especificar las medidas de protección contra inundaciones, evaluar la estabilidad del lecho, clasificar hábitats acuáticos y evaluar los depósitos geológicos [6]

En ése sentido determinar el tamaño de sedimentos del lecho de un río de montaña de lecho de grava es clave para avanzar en la comprensión de dichos procesos [7].

El tamaño del grano de los sedimentos ejerce una influencia fundamental en la física de los flujos de agua, viento, hielo y sedimentos, los cuales juegan un papel crucial en la modelación continua de las geoformas fluviales y geomorfológicas. Estos procesos son responsables de dar forma a diversas estructuras como cauces de ríos, deltas, barras y playas, destacando la interacción entre los sedimentos y la dinámica morfológica.

Grandes conjuntos de datos sedimentológicos han llevado a descubrimientos importantes en entornos dinámicos como lechos de ríos, lechos marinos y superficies de sedimentos eólicos que cambian constantemente bajo la energía de los fluidos, por ejemplo en el transporte de sedimentos [8, 9], movilidad del lecho del canal [10], geometría del canal [11], procedencia de los sedimentos [12], abrasión de los sedimentos [13], resistencia hidráulica [14], sedimentación de partículas [15] y dispersión en las costas [16] y dinámica de las playas [17].

Tradicionalmente, los medios para adquirir conjuntos de datos de sedimentos de gran tamaño (e.g. forma o cualquier otra métrica) son laboriosos y requieren mucho tiempo, a través de análisis de laboratorio de muestras tomadas en el campo. Una solución en éstos casos es el uso de la granulometría óptica, la cual es la medición de sedimentos a partir del análisis estadístico de la intensidad y textura de la imagen, y ha sido impulsada por instrumentos [18–21] y analítica [22–27, 27–34] desarrollados durante los últimos 15 años. Asimismo, la recopilación de los datos de calibración necesarios para describir la composición del lecho de un río requiere mucho tiempo y es costosa, ya que varía mucho a lo largo de un río [7, 35] e incluso localmente dentro de las barras de grava individuales [36, 37]. El tamizado mecánico tradicional para clasificar los sedimentos [7, 38] requiere una cantidad considerable de mano de obra calificada; así también el proceso de excavación, transporte y tamizado de sedimentos gruesos requiere mucho tiempo, es costoso y destructivo. En consecuencia, rara vez se implementa en la práctica. Una forma alternativa de muestreo de sedimentos es el muestreo de superficie a lo largo de zonas específicas. Nos remitimos a [7] para obtener una descripción detallada de las estrategias de muestreo tradicionales. Un enfoque simplificado y eficiente que recopila muestras de datos escasos en el campo es el análisis de muestreo de línea [39], el cual es un estándar en la práctica actual. Este procedimiento de muestreo de superficie se conoce comúnmente como conteo de granos a lo largo de lineas [7]. Sin embargo, este enfoque aún requiere mucho tiempo y es potencialmente inexacto y subjetivo [7, 40]. Además, la recopilación de datos insitu requiere acceso físico y no puede muestrearse adecuadamente partes inaccesibles del lecho, como por ejemplo islas y margenes de barras de grava donde no se tiene acceso [7].

No solo la caracterización de sedimentos es importante, la caracterización precisa del caudal en un río es importante para la hidráulica fluvial, ecología y geomorfología.

Las propiedades específicas de las grandes estructuras de flujo a escala de canal, así como de las estructuras turbulentas a pequeña escala, influyen en las velocidades medias e instantáneas de los ríos [41, 42]. En los sistemas fluviales, los patrones espaciales y las gradientes de velocidades gobiernan la erosión y la deposición. Un método de laboratorio común para examinar los detalles del movimiento de los fluidos es la velocimetría de imágenes de partículas (PIV) y las técnicas asociadas al cálculo de velocidad basadas en imágenes [43].

Durante las últimas dos décadas, los métodos PIV utilizados en el laboratorio se han adaptado para medir velocidades en la superficie de vías fluviales naturales [44– 46, 46, 47]. Esta técnica, denominada PIV a gran escala o velocimetría de imágenes de partículas a gran escala (LSPIV), se ha empleado para obtener mediciones de las velocidades superficiales medias en una variedad de entornos [46] y proporciona estimaciones de la descarga del río cuando las mediciones. El uso de instrumentación más tradicional es difícil de obtener debido a condiciones peligrosas o de bajo flujo [48–50]. Actualmente cámaras pequeñas y económicas pueden capturar imágenes de alta resolución espacial a grandes velocidades de cuadro, proporcionando así información detallada sobre las características de velocidad de las estructuras de flujo natural [51, 52].

Además de la caracterización de sedimentos, la medición precisa del caudal en los ríos es fundamental para una variedad de disciplinas, incluyendo la hidráulica fluvial, ecología y geomorfología. Sin embargo, el uso de instrumentación tradicional (e.g. correntómetros) para la medición de caudales enfrenta varias limitaciones, especialmente en entornos de ríos de montaña. Estas limitaciones incluyen dificultades de acceso a áreas con condiciones peligrosas (e.g. zonas de flujo supercrítico y zonas de vórtices) [48, 49], lo cual genera incapacidad para obtener mediciones precisas en tales condiciones [50, 51]. Además, los métodos convencionales pueden ser laboriosos y consumen mucho tiempo [52], requiriendo un esfuerzo significativo en la recopilación y análisis de datos [7]. Esto hace que la medición de caudales en ríos de montaña sea un desafío, y resalta la importancia de explorar y aplicar técnicas alternativas, como el LSPIV, para obtener estimaciones más precisas y eficientes de la descarga fluvial en una amplia gama de condiciones hidrológicas [44, 46].

PROBLEMA

El problema específico de la investigación es cubrir el vacío de una guía para estudio y cuantificación de los 2 parámetros fundamentales de un río de montaña los cuales son el agua y el sedimento para las características propias

Tradicionalmente la variable o parámetro mas estudiado es el agua, pero conocer la dinámica sedimentos en ríos es importante tanto para los estudios sedimentológicos como para ingeniería. La suma de las cargas de fondo y las cargas suspendidas en los ríos se define como una carga total de sedimentos [53]. La cantidad de cargas de sedimentos totales en los ríos aluviales juega un papel crucial en los cambios morfodinámicos debido a la erosión y deposición del lecho de los ríos [54, 55]. Estos cambios amenazan las estructuras hidráulicas.

La cuantificación precisa de las cargas totales de sedimentos en los ríos es uno de los parámetros clave en la gestión y vida útil de presas.

OBJETIVOS

3.1 Objetivo General

Elaboración de metodología para monitoreo y estudio de agua y sedimentos para ríos de montaña acorde a los parámetros típicos hidro geomorfológicos y sedimentológicos de un río de montaña de Perú, teniendo como caso de estudio el río Huallaga en sus primeros 250 km de recorrido

3.2 Objetivos Específicos

- Obtener la distribución espacial de los tamaños (Diámetros característicos) del material grueso predominante a lo largo de los primeros 250 km del río Huallaga.
- Obtener espacial y temporalmente la concentración y distribución de tamaños característicos de los sedimentos suspendidos en las estaciones de monitoreo continuo.
- Determinar la relación en tiempo de sedimentos suspendidos respecto al caudal obtenido por velocimetría óptica (LSPIV), para así conocer la dinámica de aporte de sedimentos suspendidos.
- Cuantificación del transporte de sedimentos suspendidos y de lecho.

MARCO TEORICO

4.1 Clasificación de ríos por su morfología en planta

Schumm [56–59] en la figura 4.1 clasifica los ríos fluviales de 5 maneras los cuales son detallados a continuación.

- El canal mostrado es recto debido a su valor de sinuosidad igual a 1, muestra un canal de ancho relativamente estable, sedimento predominantemente suspendido.
 Presenta pendiente baja, relación entre ancho y profundidad baja. Éste tipo de canal es inexistente en la naturaleza, siendo creados solo en laboratorios.
- Canal recto con carga de sedimentos mixta (suspendido y fondo), presencia de thalweg, canal relativamente estable.
- 3. Presentado por 2 sub patrones del tipo meandrico de un solo canal, pendiente baja y con factor de confinamiento alto $C \gg 1$ $\left(C = \frac{\text{Ancho del valle}}{\text{Ancho del rio}} \gg 1\right)$. Los meandros poseen alta tasa de migración debido a la gran amplitud del valle por donde pueden desplazarse. Como proceso natural de evolución de los canales meándricos se dan los cortes de meandros o cutoffs.

- Se muestra un canal con alto grado de sinuosidad, el cual presenta transporte predominante de sedimento suspendido,

- Se muestra un tipo de meandro con tipo de carga sedimentaria mixta (fondo y suspendido) con presencia de zonas de erosión y deposición (zona interna de las curvas).

- 4. Es un tipo de canal transición entre el canal meándrico y trenzado, La carga sedimentaria es alta siendo predominante el transporte de sedimentos de fondo. El ancho del canal principal es cambiante y muy superior en comparación con su profundidad.
- 5. Canal multicanal de tipo trenzado con islas (barras) no se encuentran consolidadas, presenta canal principal cambiante, pendiente baja. Éste tipo de canal generalmente es predominante en zonas localizadas en planicies aluviales y deltas con morfología no estable.

TIPO DE CANAL

FIGURA 4.1: Clasificación de ríos aluviales. Adaptado de [60], cap. 9.36, p. 732.

Adicionalmente para ríos multicanal existe el tipo Anabranching según lo presentado en la figura (4.2). Este tipo de canal se caracteriza por presentar islas consolidadas.

FIGURA 4.2: Principales categorías de patrones de canales. Adaptado de [61], p. 187.

En las figura 4.3a y 4.3b se presentan el esquema de Rosgen [7, 62, 63] el cual muestra la relación entre la clasificación morfológica en planta, pendiente, sección transversal y relación entre ancho/profundidad.

FIGURA 4.3: [a] Vistas longitudinales, transversales y en planta de los principales tipos de corrientes. Adaptado de [64], p. 697. [b] Forma de la sección transversal, tamaño del material del lecho y criterios morfométricos delineadores de los 41 tipos principales de corrientes. Adaptado de [7], p. 10.

En la tabla 4.1 se describe detalladamente las características de los tipos de corriente según la clasificación presentada en la figura 4.3. Los ríos de montaña presentan generalmente los tipos de corriente A, B, C, E y G ([1, 7])

Tipo de co-	Características morfológi-	Descripción
rriente	cas	
А	Pasos de rio o cascadas	Zonas tranquilas y erosión, alta energía,
		bajo almacenamiento de sedimentos, es-
		table
В	Zonas turbulentas y rápidas	Presencia de algunas zonas de erosión, ra-
		ra presencia de barras, estables
С	Secuencias de zonas tranqui-	Serpenteantes, zonas puntuales de barras,
	las y turbulentas	llanuras de inundación bien desarrolladas,
		bancos estables o inestables
D	Trenzado	Multiples canales, barras cambianes, de-
		posición, alto suministro de sedimentos,
		bancos erosionables
DA	Anastomozado (Trenzado o	Multiples canales, zonas tranquilas, llanu-
	entrelazado)	ra de inundación, llanura de inundación
		con vegetación, humedales, bancos esta-
		bles
Е	Meandros de montaña	Llanura de inundación definida, zonas
		tranquilas y turbulentas, alto transporte
		relativo de sedimentos
F	Meandros de valles	Incrustado en valles, pobre llanura de
		inundación, zonas tranquilas y turbulen-
		tas, bancos estables o inestables
G	Quebradas	Alto suministro de sedimentos, bancos
		inestable, pasos de piscina

TABLA 4.1: Características morfológicas de los principales tipos de ríos. Adaptado de [7], p. 9.

4.2 Sedimento

4.2.1 Ciclo sedimentológico en el medio ambiente

El ciclo de sedimentos inicia con el proceso de erosión, el cual consiste en la degradación del material rocoso proveniente de la cabecera de cuenca. Las acciones que contribuyen a la degradación del sedimento son el agua, viento, glaciares y actividades antrópicas.

El sedimento fluvial es el término utilizado para describir el caso donde el agua es el agente clave para la erosión.

La erosión natural o geológica se produce lentamente, durante siglos o milenios. La erosión que se produce como resultado de la actividad humana puede producirse mucho más rápido. Es importante comprender el papel de cada uno al estudiar el transporte de sedimentos [65].

La dinámica de los sedimentos en el medio ambiente y sus consecuencias morfológicas se esquematizan en la figura 4.4. Cualquier material que pueda desprenderse está listo para ser transportado [65].

El proceso de transporte se inicia en la superficie de la tierra cuando las gotas de lluvia provocan la erosión de la capa. Los riachuelos, quebradas, arroyos y ríos actúan como conductos para favorecer el movimiento de sedimentos.

Cuanto mayor sea el caudal o la tasa de flujo, mayor será la capacidad de transporte de sedimentos. El transporte de sedimentos también puede ocurrir debido a los deslizamientos de tierras, erosión de márgenes y activación de quebradas producto del aumento de la precipitación y escorrentía. Los flujos hiperconcentrados provenientes de la activación de quebradas presentan enorme capacidad de transportar grandes cantidades de sedimentos en periodos reducidos de tiempo. El proceso final del ciclo de transporte de sedimentos es la deposición. Esto se presenta cuando no hay suficiente energía para transportar el sedimento. Como zonas de deposición de sedimentos tenemos las llanuras de inundación, barras, islas y deltas.

FIGURA 4.4: Ciclo sedimentológico y cambios morfológicos en una cuenca. Adaptado de [65], cap. 2. p. 23.

4.2.2 Tipos de transporte de sedimentos

En el capitulo 2 del libro de Ingenieria de Sedimentos del ASCE [65], se menciona que existen dos formas comunes de clasificar la carga de sedimentos según se muestra en la tabla 4.2 y cual se menciona a continuación:

1. Dividir la carga de sedimentos acorde al mecanismo de transporte de carga (e.g. carga de lecho y suspensión).

 Clasificar la carga según el tamaño de partícula para así tener carga de lavado y carga de sedimento de lecho.

4.2.2.1. La carga suspendida:

Se mueve en suspensión y es aquella parte de la carga que no es carga de lecho.

4.2.2.2. La carga de lavado:

Es un sedimento fino que se mueve en suspensión y constituye una parte muy pequeña, generalmente un pequeño porcentaje del sedimento del lecho. La carga de lavado se toma comúnmente como la fracción de limo y arcilla del sedimento del lecho, es decir, esa fracción con tamaños de grano más finos que 63 μm [66], p. 185.

4.2.2.3. La carga de sedimento del lecho:

Consiste en partículas que son más gruesas que la carga de lavado. La velocidad de transporte o descarga de la carga de lavado tiende a no estar correlacionada con la descarga de agua, mientras que la descarga de sedimentos del lecho, tanto en suspensión como como carga del lecho, suele estar correlacionada con la descarga de agua.

4.2.2.4. La carga total de sedimentos:

Se compone de la suma de la carga de lavado, la carga suspendida (e.g. material del lecho) y la carga del lecho.

2*Carga total de sedimentos	Sistema de clasificación		
	Basado en mecanismo	Basado en el tamaño	
	de transporte	de partícula	
Carga de lavado	Carga suspendida	Carga de lavado	
Carga de material de	Carga suspendida	Carga de material de	
lecho suspendido	Carga suspendida	lecho	
Carga de lecho	Carga de lecho	Material de lecho	

TABLA 4.2: Clasificación de carga de sedimentos. Adaptado de [65], cap. 2, p. 60.

La figura 4.5 nos muestra los 3 tipos de transporte de sedimentos según la clasificación de partícula mencionado en la tabla 4.4. Cabe mencionar que dicha figura es para el caso de transporte de sedimentos en Amazonia, donde el lecho de fondo está compuesto principalmente por arena y el transporte de fondo se presenta en forma de desplazamiento de dunas. Para el caso de ríos de montaña el lecho está constituido principalmente por formaciones rocosas y cantos rodados.

FIGURA 4.5: Tipos de transporte de sedimentos. Extraído de [66], p. 185.

4.2.3 Caracterización de las propiedades de los sedimentos del lecho del río

Las características fundamentales de las partículas de sedimento del lecho de los ríos son: forma, tamaño y distribución de tamaño. Cualquier muestra de sedimento natural normalmente muestra una variedad de tamaños y formas. Especialmente los ríos de montaña de lecho de grava y lecho de cantos rodados el cual normalmente contienen una pequeña fracción de arena, pero también pueden contener grandes rocas. Esta amplia gama provoca una interacción compleja entre partículas de diferentes tamaños durante el transporte, erosión y deposición. La cuantificación de tales propiedades de los sedimentos nos informa por ejemplo lo siguiente:

- la rugosidad hidráulica del lecho del canal
- la fase dominante del transporte de sedimentos
- la capacidad de transporte de sedimentos
- y principalmente la fuente de sedimentos al área de estudio

4.2.3.1. Forma de partícula de sedimento

Una forma sencilla de caracterizar la forma del sedimento es utilizar las longitudes de los ejes mayor, intermedio y menor (a, b y c) respectivamente. La figura 4.6 muestra el esquema de clasificación Zingg [67], el cual es uno de los esquemas de clasificación de forma de grano más comunes y nos muestra lo siguiente:

- Si a, b y c son iguales, la partícula es esférica.
- Si a y b son iguales pero c es mucho más pequeño, el grano tiene forma de disco

 Si a es mayor que b y b es mucho mayor que c, entonces la partícula tiene forma alargada

La forma de las partículas de sedimento puede influir en la velocidad de sedimentación de las partículas, lo que a su vez puede afectar al arrastre, depósito y transporte de sedimentos. Además, las partículas propias del cauce aluvial y que han viajado por procesos fluviales tienden a tener una forma redondeada debido a la degradación, mientras que los sedimentos provenientes del flujo coluvial presentan forma angular.

FIGURA 4.6: Clasificación de forma de sedimento. Adaptado de [65], cap. 2, p. 40.

4.2.3.2. Distribución del tamaño de las partículas de sedimento

Una variedad de tamaños de partículas de sedimento se caracterizan típicamente en términos de una distribución de tamaño de grano. Una distribución de tamaño se representa típicamente en formas de función de distribución P(D) así como función de distribución acumulativa $P_f(D)$ como se muestra en la Figura 4.7a. Cabe señalar que la gráfica es semilogarítmica y el eje x es una escala logarítmica para capturar la cola más fina de la curva. Otra representación convencional es mediante la escala Φ , que se da como:

$$\Phi = -\frac{1}{\log_{10}(2)}\log_{10}(D) \tag{4.1}$$

Donde D es el tamaño de las partículas del sedimento. Tenga en cuenta que una gráfica en escala lineal Φ es equivalente a la gráfica semilogarítmica.

Usando la expresión Φ , el tamaño de grano D_x , en el que x es tal que x % del material en el material de muestra es más fino que ese tamaño, se define como

$$D_x = 2^{\Phi_{-x}} \tag{4.2}$$

Los tamaños de grano característicos comúnmente utilizados son el tamaño medio D_{50} y el tamaño D_{90} . Estos tamaños se utilizan a menudo para caracterizar sedimentos en el transporte, así como la rugosidad del lecho.

La distribución de tamaño con la expresión $\Phi_p(\Phi)$ se puede utilizar para cuantificar momentos estadísticos. Usando la expresión de la escala Φ , el tamaño medio Φ_m y la desviación estándar σ se calculan de la siguiente manera:

$$\Phi_m = \int \Phi_p(\Phi) d\Phi \tag{4.3}$$

У

$$\sigma^2 = \int (\Phi - \Phi_m)^2 p(\Phi) d\Phi$$
(4.4)

El tamaño medio geométrico correspondiente D_g y la desviación estándar geométrica σ_g se dan como

$$D_g = 2^{\Phi_m} \tag{4.5}$$

26

$$\sigma_g = 2^{\sigma} \tag{4.6}$$

Tenga en cuenta que para una distribución perfectamente uniforme, $\sigma = 0$ y $\sigma_g = 1$, respectivamente. Si el valor de σ_g es menor a 1.3, se considera que la muestra de sedimento está bien clasificada y tratada como una muestra uniforme. Mientras tanto, si σ_g es mayor que 1.6, se considera que está mal ordenado. En el caso de los ríos de montaña, el material del lecho normalmente está mal clasificado debido a la presencia de fuentes externas de sedimentos como huaycos.

En la práctica, la función de distribución se construye con un número específico de granos. Es decir, el rango de tamaño se discretiza en n intervalos delimitados por n + 1tamaños de grano $\Phi_1, \Phi_2, \ldots, \Phi_n + 1$. En consecuencia, el tamaño medio y la desviación estándar se calcula de la siguiente manera:

$$\Phi_m = \sum_{i=1}^n \bar{\Phi}_i p_i \tag{4.7}$$

$$\sigma^{2} = \sum_{i=1}^{n} (\bar{\Phi}_{i} - \Phi_{m})^{2} p_{i}$$
(4.8)

donde

$$\bar{\Phi}_i = \frac{1}{2} (\Phi_i - \Phi_{i+1})$$
(4.9)

У

$$p_i = p_f(\Phi_i) - p_f(\Phi_{i+1})$$
(4.10)

Los sedimentos se pueden clasificar según el tamaño. Las partículas de sedimento que son mayores de 256 mm se definen como canto rodado. Las partículas entre 0.0625 mm y 2 mm son arena. Las partículas de menos de 0.0039 mm son arcilla. La clasificación detallada basada en el tamaño y la escala Φ correspondiente se resume en la tabla 4.3.

FIGURA 4.7: Distribución del tamaño de grano de sedimento. [a] Escala semi logarítmica, [b] Φ escala . P_f denota la fracción en peso del material en la muestra de material más fino que el tamaño D. Adaptado de [65], cap. 2, p. 37.

Denominación	$d \ (mm)$	Φ	$d \ (\mu m)$
Cantos rodados muy grandes	4096 - 2048	-12 a -11	
Cantos rodados grandes	2048 - 1024	-11 a - 10	
Cantos rodados medianos	1024 - 512	-10 a -9	
Cantos rodados pequeños	512 - 256	-9 a -8	
Guijarros grandes	256 - 128	-8 a -7	
Guijarros pequeños	128 - 64	-7 a -6	
Grava muy gruesa	64 - 32	-6 a -5	
Grava gruesa	32 - 16	-5 a -4	
Grava mediana	16 - 8	-4 a -3	
Grava fina	8 - 4	-3 a -2	
Grava muy fina	4 - 2	-2 a -1	
Arena muy gruesa	2 - 1	-1 a 0	
Arena gruesa	1 - 1/2	0 a 1	
Arena mediana	1/2 - 1/4	1 a 2	
Arena fina	1/4 - 1/8	2 a 3	
Arena muy fina	1/8 - 1/16	3 a 4	125 - 62.50
Limo grueso	1/16 - 1/32	4 a 5	62.50 - 31.30
Limo mediano	1/32 - 1/64	5 a 6	31.30 - 15.60
Limo fino	1/64 - 1/128	6 a 7	15.60 - 7.80
Limo muy fino	1/128 - 1/256	7 a 8	7.80 - 3.90
Arcilla gruesa	1/256 - 1/512	8 a 9	3.90 - 1.95
Arcilla mediana	1/512 - 1/1024	9 a 10	1.95 - 0.98
Arcilla fina	1/1024 - 1/2048	10 a 11	0.98 - 0.49
Arcilla muy fina	1/2048 - 1/4096	11 a 12	0.49 - 0.24

TABLA 4.3: Escala sedimentológica de Udden-Wentworth. Extraido de [68], cap. 3, p. 109.

4.2.4 Técnicas para caracterización de sedimentos

La cuantificación espacial del tamaño de grava y cantos rodados en ríos de lecho con predominancia de grano grueso son clave para avanzar en la comprensión y el modelado de dichos procesos [7].

La tabla 4.4 nos muestra los principales análisis por cada tipo de muestra. Cabe recalcar que las dos características principales estudiadas son distribución granulométrica y concentración.

Tipo 2* de muestra	Tipos de análisis		
	Habituales	Otros	
Material de fondo	Distribución de frecuencias de tamaños de granos que componen la muestra (distribución granulométrica)	 Peso específico Composición mineralógica Morfometría de granos 3*(e.g. forma, redondez, etc) Cantidad de materia orgánica Concentración de solidos disueltos 	
Carga de fondo	Distribución granulométricaContenido de arena		
Sedimento en suspensión	 Contenido de sedimentos (concentración) Distribución granulométrica 		

TABLA 4.4: Análisis requerido por cada tipo de material sedimentológico. Extraido de [69]

A continuación en la tabla 4.5 se presenta un resumen de las principales técnicas para la obtención de la distribución granulométrica de sedimentos.

TABLA 4.5: Tipos de análisis para obtención de la distribución granulométrica	. Extraido
de [69]	

Tipo	Denominación	Fracción sedimentológica	
de método de las técnicas		a la que se aplican	
Directos	 Desplazamiento de volumen por inmersión Medición directa de "Φ" o de la circunferencia 	 Cantos rodados Guijarros Algunos tipos de gravas 	
Semidirectos	Tamizado	- Gravas mas finas - Arenas	
Sedimentacion	 Pipeta Tubo de acumulación visual Tubo de extracción de fondo Hidrómetro 	 Arenas medias, finas y muy finas Limos Arcillas 	
Ópticos	Espectrometría por difracción láser	Arenas (2 mm) a coloides (0.02 μm)	

La tabla 4.6 nos muestra la cantidad de muestra mínima a requerir de sedimentos suspendidos para cada método de análisis existente

Método de análisis	Rango de tamaños recomendados (mm)	Rango deseable de concentración (mg/l)	Rango óptimo de cantidad de sedimento (g)		
Tamizado	0.062 - 32	-	$0.05^{(a)}$		
$TAV^{(b)}$	0.062 - 2	-	0.05 - 15		
Pipeta	0.002 - 0.062	2000 - 5000	1.0 - 5.0		
$TEF^{(c)}$	0.002 - 0.062	1000 - 3500	0.5 - 1.8		
Hidrómetro	0.075 - 0.001	-	30 - 60		
Difracción láser	0.5 - 0.00002	-	Se utiliza alicuota de la muestra ^(d)		
(a) Basado en	n el uso de tamices	de 7.5 cm de diáme	tro y $d_{50} \leqslant 0.5~\mathrm{mm}$		
(b) TAV: Tubo de acumulación visual					
(c) TEF: Tuvo de extracción de fondo					
(d) El peso de la alicuota se recomienda de acuerdo al modelo del equipo					
que se utilize. Se genera una dispersión del sedimento en agua destilada,					
en cantidad acorde a las condiciones de diseño del equipo					

TABLA 4.6: Cantidad de muestra necesaria por cada método de análisis. Extraido de [69]

En la tabla 4.7 se presenta los 2 métodos principales [65] para determinación de la concentración de sedimentos en suspensión. El método que se usó para la determinación de la concentración de sedimentos suspendidos fue el **"filtrado"**, esto acorde a los procedimientos estándar del manual de la USGS (Teoría y métodos de laboratorio para el análisis de sedimentos [70]) y la norma ASTM D3977-97 "Métodos de prueba estándar para determinar la concentración de sedimentos en muestras de agua"[71].

TABLA 4.7: Ventajas y desventajas de los principales métodos para determinar la concentración de sedimentos suspendidos. Extraído de [69]

Método de	Ventajas	Desventajas
análisis		
Filtrado	- Es más rápido	- Se pueden tapar los filtros para concentraciones muy ele-
	que el método de	vadas de sedimentos. Se aconseja su utilización cuando:
	evaporación, es-	C < 2000 mg/l (sedimentos en suspensión compuestos
	pecialmente con	fundamentalmente por limos y arcillas). $C > 10000 mg/l$
	concentraciones	(sedimentos en suspensión compuestos fundamentalmente
	bajas.	por arenas).
	- No exige la	- Se pierde el material muy fino con el agua de filtrado. En
	corrección por	casos en que hay presentes bajas concentraciones de sedi-
	sales disueltos.	mento con altos porcentajes de arcillas, la incidencia de los
		errores puede ser importante.
Evaporación	- Los equipos y	- En caso que la concentración de sólidos disueltos sea ele-
	técnicas emplea-	vada, es necesario evaluar su peso en el agua remanente.
	dos son mucho	Se presenta entonces una necesidad de análisis adicional de
	más simples que	concentración de sólidos disueltos en el agua sobrenadante.
	en el método de	- La presencia de arcillas coloidales puede volver poco
	filtrado.	práctico el método a causa de los procesos especiales ne-
	- No se pierde	cesarios para lograr la floculación.
	nada del ma-	- Pueden producirse pérdidas inadvertidas de partículas al
	terial presente	extraer el líquido sobrenadante.
	en la muestra,	- Para concentraciones bajas, se presentan los mismos erro-
	si el tiempo de	res por adsorción de humedad ambiente que en el método de
	sedimentación es	filtrado. Valen los mismos conceptos mencionados en este
	suficiente.	sentido.
	- Se adapta	
	muy bien para	
	concentraciones	
	elevadas.	

4.2.4.1. Distribución granulométrica en ríos de montaña

Un indicador clave para modelar la dinámica de los sedimentos de un sistema fluvial es la curva granulométrica. El tamaño de grano del lecho del río es crucial porque define la rugosidad del canal así como el movimiento del sedimento [7]. Por lo tanto, el conocimiento de la distribución del tamaño de grano es esencial.

En el caso de ríos amazónicos los cuales presentan lecho de arena éstos no muestran una gran diferenciación a nivel de estrato, lo cual indica que el sedimento de superficie es igual en profundidad. En el caso de los ríos de montaña los cuales presentan lecho del tipo mixto (e.g. grava y arena), se evidencia que los materiales de superficie son considerablemente pequeños en comparación a los del subsuelo lo cual se debe al efecto de acorazamiento. Aquí la diferencia de tamaños entre el sedimento de superficie y subsuelo dependen de la condición de flujo (caudal) y el ratio de sedimentos que se genere aguas arriba. En ése sentido sabemos que el sedimento superficial no necesariamente corresponde al material de fondo transportado; sin embargo dada las limitaciones de recursos y tiempo, así como la ausencia de metodologías convencionales para extraer núcleos de materiales del subsuelo en entornos tan complejos, se considera la caracterización del sedimento superficial como la única alternativa.

A pesar de solo considerar la caracterización de sedimentos superficial para ríos de montaña, ésta caracterización requiere de mucho tiempo y es costosa [7, 35]. Y varía mucho a lo largo de un río e incluso localmente dentro de las barras de grava individuales [36, 37].

La única forma de obtener la distribución granulométrica de éstos sedimentos gruesos es haciendo uso del método directo presentados en la tabla 4.4.

4.2.4.1.1 Granulometría óptica:

Es una metodología que usa algoritmos de detección de objetos para obtener la curva de distribución granulométrica a partir imágenes y/o fotografías. Ésta técnica reduce sustancialmente los métodos de medición directa comúnmente utilizados para el muestreo de sedimentos gruesos los cuales son: métodos volumétricos [72, 73], de cuadrícula [74], de área [75], de transecto y fotográficos.

Existen varias investigaciones donde se desarrollaron software y códigos para obtención de la curva de distribución granulométrica de sedimentos a partir de imágenes, las mas resaltantes a la fecha son las siguientes:

- Detert y Weitbrecht [40], presentaron BASEGRAIN, una herramienta de software de detección de objetos basada en MATLAB para el análisis granulométrico de imágenes de vista superior a nivel del suelo de lechos de grava fluviales no cohesivos.
- Purinton y Bookhagen [76], introdujeron una herramienta en Python llamada PebbleCounts como sucesora de BASEGRAIN
- Buscombe [77], propuso un marco llamado SediNet, basado en redes neuronales para estimar tamaños de grano y formas a partir de imágenes.
- 4. Sharma [78], propuso HistoNet para contar objetos en imágenes (e.g. larvas de mosca soldado y células cancerosas) y predecir distribuciones de tamaño absoluto de objetos directamente, sin ninguna detección explícita de objetos.
- Lang [79], desarrolló GRAINET un enfoque basado en datos para analizar distribuciones de tamaño de grano de barras de grava enteras basado en imágenes de UAV georreferenciadas.

Teniendo en consideración esto y dado que la granulometría óptica principalmente está basado en algoritmos de detección de objetos, se optó por usar el software BASE-GRAIN debido a su simplicidad. La obtención del tamaño de cada grano se obtiene en función de las longitudes de los ejes mayor y menor (a y b en la figura 4.6) y considerando que el eje más corto (c en la figura 4.6) está orientado verticalmente y no es visible en la imagen.

Uno de los factores claves para la granulometría óptica es la adquisición de imágenes óptimas. Ya que los algoritmos de detección de objetos se basan en gran parte en la diferenciación de textura y tonalidad.

Por esa misma razón las partículas de sedimento a analizar deben estar expuestas y no sumergidas, así también deben estar libres de obstáculos como vegetación, maleza, basura, etc. Las imágenes deben en lo posible ser perpendiculares al área de estudio.

A continuación se mencionan algunas consideraciones para la obtención de imágenes para el análisis por granulometría óptica.

- Evitar obstáculos como la vegetación y los árboles.
- Las condiciones de luz deben ser uniformes en toda la imagen y se debe minimizar la presencia de sombras.
- Las imágenes deben ser tomadas lo más cerca posible del área de interés para maximizar la resolución y la calidad de la imagen.
- Las imágenes deben tomarse con un marco de referencia conocido y/o puntos de coordenadas geográficas conocidas para la rectificación de la imagen.

El uso de vehículos no tripulados (UAV) - dron facilitan la obtención de imágenes perpendiculares del área de interés. Mediante el uso de drones se pueden realizar fotogrametría a baja altura y a gran resolución para así generar ortofotos ortorectificadas, las cuales pueden ser usados en la granulometría óptica. En la figura 4.8 se muestra el flujo de trabajo del análisis de granulometría óptica utilizando el software BASEGRAIN [80].

FIGURA 4.8: Flujo de trabajo de granulometría óptica mediante el uso del software BA-SEGRAIN: [a] imagen sin procesar original, [b] imagen rectificada, [c] escalado y configuración de las propiedades de la imagen, [d] identificación de objetos de destino, [e] imagen procesada, [f] configuración de clasificación y análisis de imágenes y [g] curvas resultantes de distribución del tamaño de los sedimentos. Extraido de [80], p. 5.

4.2.5 Técnicas de medición usadas para caracterización del transporte de sedimentos

La cuantificación de la tasa de transporte de sedimentos es la tarea más difícil en la caracterización de ríos de montaña.

La incertidumbre en la determinación del transporte total de sedimentos es inherente al proceso del mismo. El acceso limitado y la ausencia de una metodología convencional hacen que esta tarea sea un desafío.

La configuración sedimentológica del lecho en ríos de montaña principalmente está conformada por rocas y cantos rodados, los mismos que sólo son transportados en época de máximas avenidas o flujos extremos [1].

En éste contexto, realizar mediciones en condiciones donde el flujo es supercrítico y con flujo solido conformado principalmente por rocas es sumamente difícil y riesgoso tanto para los equipos como para la vida humana.

A continuación se presentan las técnicas usadas para medir el transporte de sedimentos in-situ para ríos de montaña.

4.2.5.1. Transporte de fondo

La carga del lecho es importante en ríos de montaña [1], es por eso que su cuantificación es crucial para determinar cuanto sedimento transporta el río (carga de sedimento total). El uso de muestreadores tradicionales para transporte de sedimentos de lecho como el tipo Helly-Smith [65, 81] está limitado al tamaño de sedimento y al acceso al río durante el transcurso del hidrograma del río. Dado la escala de los ríos de montaña, el uso de técnicas no convencionales como trazadores, métodos acústicos pasivos que usan geófonos, hidrófonos y micrófonos [82] o sistemas construidos dentro del cauce no son aplicables.

En un estudio reciente, H.Toniolo [83] ha implementado una técnica de laboratorio para su uso en campo y así lograr una cuantificación real de la tasa de transporte de carga de lecho en ríos de montaña. La metodología consiste en realizar una zanja (pozo) de dimensión y volumen conocidos dentro del lecho del río.

La determinación del transporte de sedimentos será obtenido a partir del cambio de volumen de la zanja en un determinado tiempo. La variación de volumen es obtenido mediante la comparación de levantamientos batimétricos. A continuación, se presentan los procedimientos detallados mencionados en [83].

- Se cava una zanja con el uso de excavadora según lo presentado en la figura 4.9. La
 zanja no debe excavarse demasiado profundo para evitar el colapso de las paredes
 laterales. Debe excavarse lo mas ancho y largo posible, preferiblemente la excavación debe de realizarse en un tramo recto y alejado de obstáculos para evitar efectos
 externos como el flujo secundario. El material extraído debe esparcirse cerca de la
 zona excavada para minimizar el cambio de topografía local.
- El sitio se levanta con una estación total o un GPS cinético en tiempo real (RTK) y la batimetría de la zanja se registra con un ADCP y/o una ecosonda. En ambos casos debe siempre usarse un punto fijo de referencia (Bench Mark) para la comparación de datos de tiempo.
- El levantamiento batimétrico se repite con la mayor frecuencia posible (menor intervalo de tiempo). La comparación de batimetrías de menor separación en tiempo nos da una menor dispersión de datos y por lo tanto una mayor precisión.

4. Cada vez que se realicen las mediciones de monitoreo de la zanja se debe también medir caudal, ancho de sección y tirante; esto debido a que el transporte de fondo está relacionado al flujo.

El objetivo principal de esta técnica de zanja es establecer la correlación entre el caudal del río y el transporte medido de sedimentos de fondo. Esto nos permite calcular el transporte total de carga anual. Por lo tanto, resulta crucial realizar un monitoreo continuo y sistemático a lo largo del año. Esta constante observación asegura una cobertura completa del hidrograma del río, proporcionando datos esenciales para un análisis detallado y fiable del transporte de sedimentos.

Es importante reconocer que el transporte de carga de lecho representa un proceso complejo y dinámico, susceptible a variaciones significativas. Esto puede deberse a aportes extraordinarios de sedimentos, como la activación de quebradas, lo que introduce un alto grado de incertidumbre en su medición. Por consiguiente, es esencial lograr una alta resolución temporal para desarrollar una fórmula confiable. Para esto, se deben recoger datos del transporte de sedimentos de forma regular y frecuente, en intervalos que estén en consonancia con el hidrograma de caudal del río.

A continuación se presentan algunas consideraciones adicionales mencionados en [83]:

- El nivel de agua debe monitorearse continuamente, esto puede realizarse mediante el uso de transductores de presión o radar.
- Se debe obtener la distribución granulométrica del material extraido aprovechando la realización de la zanja y así completar la caracterización total en sección de la zona de estudio. Los diámetros característicos del lecho D_{50} y D_{90} son muy importantes para caracterizar la condición de flujo umbral y la velocidad de transporte, así que deben medirse.

- Se debe calcular la pendiente local del río para la zona de estudio. Ya que es usado para calcular el esfuerzo cortante del lecho, el cual es uno de los componentes de las fórmulas de transporte de sedimentos.
- El desarrollo de la fórmula empírica para cuantificar el transporte de carga de lecho se realiza calibrando α y τ_c^* en la siguiente forma de ecuación:

$$q_b^* = \alpha \left(\tau^* - \tau_c^*\right)^{1.5}$$
(4.11)

Donde:

- q_b^* = Tasa de transporte de carga de lecho adimensional por unidad de ancho
- α = Coeficiente
- τ^* = Número de Shields o esfuerzo cortante adimensional del lecho
- τ_c^* = Número de Shields crítico para el inicio del movimiento

FIGURA 4.9: Proceso de excavación de zanja como técnica para cuantificar el transporte de sedimentos de lecho. [a] Excavación en lecho del río. [b] Batimetría resultante. Fuente: Mediciones de campo realizadas por el CITA-UTEC el 10/2019

4.2.5.2. Carga suspendida

Medir la carga suspendida directamente con un muestreador de sedimentos puede ser una tarea difícil, especialmente en ríos de montaña debido al flujo supercrítico y al bajo tirante. El sedimento en suspensión normalmente se distribuye uniformemente en profundidad [65]. Por lo que el muestreo de agua superficial puede considerarse representativo de toda la profundidad de la columna de agua.

Una técnica convencional para muestreo de sedimentos en ríos de montaña es mendiante el uso de medidores puntuales o integrados montados sobre un soporte tipo grúa según se menciona en el manual por la USGS "Métodos de campo para la medición de sedimentos fluviales"[81]. En figura 4.10 se presenta el muestreador de sedimentos mencionado.

Existen 2 métodos de muestreo de sedimentos en profundidad los cuales se detallan a continuación [65].

- Método de profundidad integrada: Consiste bajar y levantar el muestreador continuamente a una velocidad constante mientras se recolecta agua. Este método se implementa normalmente cuando los objetivos del muestreo son obtener una concentración representativa.
- Método de puntos integrados: Consiste en medir múltiples puntos a diferentes profundidades de la columna de agua. Este método se utiliza para conocer el perfil de concentración de sedimentos vertical.

La caracterización de sedimentos suspendidos debe realizarse a lo largo de todo el ancho del río para así calcular la concentración de sedimentos representativa y tener una distribución espacial en sección.

FIGURA 4.10: Sistema de muestreo de sedimentos tipo grúa, propiedad de CITA-UTEC, para uso desde puentes. Fotografía tomada en 2020

4.2.6 Principales fórmulas para transporte de sedimentos

Aunque existen diversas fórmulas desarrolladas para calcular el transporte de sedimentos, tanto de carga de lecho y/o fondo, suspendidos como total, estas han sido en su mayoría diseñadas y validadas para ríos con lecho de arena, como los de la Amazonía, o en condiciones controladas de laboratorio. Incluso existiendo ecuaciones específicas para transporte de carga de lecho y/o fondo para sedimentos gruesos (e.g. grava), su aplicación en ríos de montaña puede no ser siempre precisa o adecuada.

En el caso de los ríos de montaña, dadas sus características únicas y complejas, se hace imperativo adoptar un enfoque de medición directa. Esta necesidad surge de la variabilidad y dinamismo inherente a estos ecosistemas fluviales, que a menudo no se reflejan completamente en las fórmulas establecidas. Por lo tanto, la cuantificación del transporte de sedimentos de fondo y suspendidos en estos entornos debe realizarse mediante métodos de medición in situ, para capturar con mayor fidelidad la capacidad de transporte real del río.

Este enfoque directo es crucial no solo para una comprensión exacta de la dinámica sedimentaria, sino también por su relevancia en la planificación y el diseño de proyectos como las centrales hidroeléctricas. Dichos proyectos requieren una evaluación precisa de las condiciones sedimentarias, las cuales están estrechamente vinculadas a las características geológicas específicas de los ríos de montaña, como la presencia de grandes cañones y la naturaleza dinámica de sus sedimentos.

A continuación en la tabla 4.8 se presentan algunas de las más conocidas ecuaciones para el cálculo de transporte de carga de lecho y/o fondo que existen:

4.2.6.1. Transporte de carga de lecho

Métodos	Fórmula General	Parámetros utilizados	Consideraciones
Meyer-	$\Phi = 8 \left[\left(\frac{n'}{n} \right)^{3/2} \tau^* - 0.047 \right]^{3/2}$	Φ , n' , n, τ^*	Materiales uniformes y no uni-
Peter y			formes, ancho del canal; 0.35-
Muller			2m;pendiente: 0.0004-0.02 m/m;
(1948)			D_{50} : 0.4-29 mm; D_{84} : 1.68-34.5
			mm;Profundidad de agua: 0.1-
			1.2m; Densidad del sedimento:
			$2.5-3.2$ kg/ m^3
Einstein	$\Phi = \left[\sqrt{\frac{2}{3} + \frac{36\nu^2}{g(s-1)D^3}} - \sqrt{\frac{36\nu^2}{g(s-1)D^3}}\right] f(\tau^*)$	$\Phi, \nu, g, s, D, \tau^*$	Ninguna
Brown			
(1950)			
Schoklitsch	$q_v[m^3/s/m] = \frac{2.5}{\frac{\rho_s}{\rho_s}}S^{3/2}(q-q_c)$; $q_c =$	$q_v, \rho, \rho_s, D_{40}, S$	Se puede utilizar el D_{50} ya que el
(1962)	$0.26(s-1)^{5/3} \frac{D_{40}^{3/2}}{S^{7/6}}$		D_{40} no siempre está disponible

TABLA 4.8: Ecuaciones más conocidas de transporte de fondo o de lecho. Adaptado de [84], pp. 51-61.

Métodos	Fórmula General	Parámetros utilizados	Consideraciones
Engelund	$\Phi = \frac{0.1}{f} \tau^{*5/2}$; $f = 2 \frac{gRS}{U^2}$	Φ , R, S, U^2	Para el transporte sobre dunas de
y hansen			arena, validada para $ au_c^*$ ¿15, diáme-
(1967)			tro de 0,19 - 0,93 mm, canal
			de 2,4 m de ancho, pendiente
			0,0004;S;0,02
Parker	$\phi = 11.2 \frac{(\tau^* - 0.03)^{4.5}}{\tau^{*3}}$	Φ, τ^*	Laboratorio y campo para materia-
(1979)			les muy finos (¡1mm)
Bagnold	$q_b \left[m^3/m/s \right] =$	$q_v^*, \omega, \omega_c, D_m, D^*$	Diámetro de arena de 1.1 mm,
(1980)	$\left \frac{q_v^*}{\rho_s - \rho} \left[\frac{\omega - \omega_c}{\left(\omega - \omega_c\right)^*} \right]^{-2/3} \left(\frac{d}{d_*} \right)^{\frac{2}{3}} \left(\frac{D_m}{D^*} \right)^{-0.5} \right $		D_{50} > 300mm, número de
			Shieldscrítico de 0.04.

Tabla 4.8 – continuación de la página anterior

Métodos	Fórmula General	Parámetros utilizados	Consideraciones
Smart y	$\Phi = 4 \left(\frac{D_{90}}{D_{30}}\right)^{0.2} S^{0.6} \frac{U}{\mu^*} \tau^{*0.5} (\tau^* - \tau_c^*)$	$\Phi, D_{30}, D_{50}, D_{90}, \mathbf{S}, \tau^*,$	Materiales uniformes y no uni-
Jaeggi		$ au_c^*$	formes: Ancho del canal: 0,2
(1983)			m,Longitud del canal: 6 m, Pen-
			diente: 0,03-0,25 m/m, 2-10,5
			mm,D ₈₄ : 2,4 -12,6 mm, profundi-
			dad del agua: 0,01-0,09 m,lecho
			móvil (sin armadura). 0,01-0,09 m
Van Rijn	$\Phi = 0.053 \frac{T^{2.1}}{D_*^{0.3}}$	$ au, D_*, D_{50}, u_*, u_c^*, u$	Ecuación establecida para el trans-
(1984)			porte de arena. Calibracióncon da-
			tos de canal, validación con datos
			de campo y canal

Tabla 4.8 – continuación de la página anterior

Métodos	Fórmula General		Parámetros utilizados	Consideraciones
Parker	$W_i^* = \frac{(s-1)gq_{vi}}{F_i\mu_{*s}^3} = 0.00218G(\phi)$		$D_g, \Phi, D_{50}, D_{84}, \tau_c^*, \tau^*,$	Se construyó para reproducir única-
(1990)			ρ	mente el transporte de cargade le-
				cho grueso(sin arenas), Pendiente:
				$0.8-2\%$; D_{50} : 54 mm; D_{84} : 80 mm;
				$\tau^*/\tau_c^* = 0.11$ -1.04 (Calculado con
				D ₈₄)
Rickenmann	$-sq_v \left[m^3/s/m\right]$	=	$q_v, D_{30}, D_{90}, \mathbf{S}$	Cuando D_{30} y D_{90} son desconoci-
(1991)	$1.5 (q - q_c) S^{1.5}$ para $0.0004 < S < 0.2$			dos, se usa $\left(\frac{D_{90}}{D_{30}}\right)^{0.2} = 1.05$
	$-q_v \left[m^3/s/m ight]$	=		
	$\frac{12.6}{(s-1)^{1.6}} \left(\frac{D_{90}}{D_{30}}\right)^{0.2} (q-q_c) S^2$ para 0.03	<		
	S < 0.2			

Tabla 4.8 – continuación de la página anterior

Métodos	Fórmula General	Parámetros utilizados	Consideraciones	
Wilcock y Crowe (2003)	$W_i^* = \begin{pmatrix} 0.002\phi^{7.5} & \text{si } \phi < 1.35 \\ \\ 14\left(1 - \frac{0.894}{\phi^{0.5}}\right)^{4.5} & \text{si } \phi \ge 1.35 \end{pmatrix}$	$\phi, W_i^*, \tau, \tau_{ri}$	Esta fórmula se construyó a partir de datos de canal con unadistribu- ción de tamaño de grano no uni- forme (mezclas de arenay grava) en pendientes que varían de 0.1 a 1.8 %	
Camenen y Larson (2005)	$\phi = 12\tau^{*3/2} exp\left(-4.5\tau_{c}^{*}/\tau^{*}\right)$	$\Phi; D_*; \tau_c^*; \tau^*; D_{50}$	Diámetros entre 0.1 ¡D ¡200 mm y una densidad relativa de:1.14 ;s ;2.7	
Wong y Parker (2006)	$\Phi = 3.97[\tau^* - 0.0495]^{3/2}$	Φ, τ^*	Re análisis de Meyer-peter y los da- tos de Muller	
Recking (2013a) - Campo	$\Phi = 14 \frac{(\tau^*)^{2.5}}{1 + \left(\frac{\tau_m^*}{\tau^*}\right)^4}$	$\Phi, \tau^*, \tau_m^*, D_{50}, D_{84}, \mathbf{S}$	Para los ríos con lecho de arena, τ_m^* no importa porque los flujosgene- ralmente marcan $\tau^* \gg \tau_m^*$	

Tabla 4.8 – continuación de la página anterior

Métodos	Fórmula General	Parámetros utilizados	Consideraciones
Recking	$\Phi = 14 \frac{(\tau^*)^{2.5}}{1 + (\tau^*_m)^{10}}$	$\Phi, au^*, au^*_m, \mathbf{S}$	Aún no está claro qué diámetro ca-
(2013a) -	$\operatorname{IT}\left(\frac{\tau^{*}}{\tau^{*}}\right)$		racterístico que se debe usaren el
Laboratorio			campo para Φ y $ au^*$

Tabla 4.8 – continuación de la página anterior

En la tabla 4.8 se presentan las principales ecuaciones para el transporte de carga de lecho y/o fondo. Estas ecuaciones requieren calibración con datos medidos de transporte de fondo para su aplicación efectiva.

En el diseño de presas o centrales hidroeléctricas, es común considerar el transporte de carga de lecho y/o fondo como un porcentaje del total de sedimentos suspendidos. Esta práctica se debe a que la cantidad de sedimentos suspendidos suele ser significativamente mayor que la carga de lecho y/o fondo.

El transporte de sedimentos suspendidos se determina a partir de la relación entre la concentración de sedimentos y el caudal del río.

En los ríos de montaña, el transporte de carga de lecho y/o fondo se observa principalmente durante épocas de máximas avenidas o eventos extremos, como lluvias intensas. El movimiento de materiales más grandes, como rocas o cantos rodados, ocurre por rodamiento y saltación, y solo se activa cuando el caudal excede el esfuerzo de corte del lecho del río. En situaciones donde el caudal no supera este esfuerzo de corte, los sedimentos gruesos tienden a acumularse en ciertas áreas, dando lugar al fenómeno de acorazamiento.

Por contraste, en la región de la Amazonía, el transporte de la carga de lecho y/o fondo se realiza principalmente a través del movimiento de dunas. Este proceso puede cuantificarse mediante la determinación del desplazamiento de estas dunas, utilizando ecosondas monohaz o multihaz.

4.2.6.2. Transporte en suspensión

Para ríos de montaña el transporte de sedimentos suspendidos es determinado de manera directa a partir de la relación obtenida por la concentración diaria medida de sedimentos suspendidos y el caudal diario medido. Esto se evidencia en la ecuación 4.12, extraída de [85], p. 2, y [86], p. 1066.

Una vez obtenido la relación entre los valores diarios de concentración y caudal, se procede a completar los valores faltantes para así obtener el caudal de sedimentos suspendidos diario.

A continuación se presenta la ecuación usada para la conversión de concentración diaria de sedimentos suspendidos a caudal instantáneo diario. La tabla 4.9 presenta los valores de factor de conversión para la obtención de caudal instantáneo de sedimentos suspendidos en la unidad deseada.

$$Q_S = k * Q * CC \tag{4.12}$$

Donde:

- Q_S = Caudal instantáneo de sedimentos suspendidos (ton/dia)
- k = Factor de conversión apropiado para las unidades utilizadas para Q, CC y Q_S
- Q = Caudal instantáneo (m^3/s)
- CC = Concentración de sedimentos suspendidos (mg/l)

TABLA 4.9: Valores de k para Q_S , Q y CC en las unidades indicadas. Adaptado de [85], p. 2.

Qs	Q	CC	k			
UK ton/dia	ft^3/s	mg/l	0.0027			
US ton/dia	ft^3/s	mg/l	0.0024			
US ton/dia	m^3/s	mg/l	0.0864			
* 1 UK ton = 2000 lb						
* 1 US ton = 1000 kg = 9810 N						

4.3 Agua

4.3.1 Técnicas intrusivas para medición de caudal

4.3.1.1. Medición con ADCP

El perfilador de corriente Doppler acústico (ADCP) es un instrumento que se usa para medir corrientes en ríos, estuarios y mar. Éste instrumento proporciona las velocidades primarias y adicionalmente los patrones de flujo secundario a lo largo de la sección medida, es a partir de esto y mediante el uso del área de la sección medida que obtenemos el valor del caudal instantáneo. El ADCP captura el flujo bidimensional, ésto permite la caracterización de patrones de flujo en zonas complejas como meandros y confluencias.

Un beneficio del uso del ADCP es que favorece la precisión en la encuesta de medición y reduce considerablemente el tiempo en comparación con las técnicas de vadeo mediante el uso de correntómetro.

Una de las limitaciones del uso del ADCP en ríos de montaña es el tirante, dado que se requiere un tirante mínimo mayor a 2 veces la resolución del sensor. En la tabla 4.10 se presentan los rangos de trabajo de los ADCP's mas usados generalmente.

Una buena regla general de medición con ADCP es que mínimamente se deben tener 2 transectos buenos en cada dirección medida [87].

En el uso de ADCP, se deben cumplir las siguientes condiciones adicionales para la obtención de mediciones confiables [88].

- La sección debe tener suficiente profundidad de flujo para el uso de un instrumento ADCP dado (Tabla 4.10)
- 2. Deben evitarse zonas donde se presenten turbulencia como remolinos, etc
3. Se deben evitar medir cerca a elementos ferromagnéticos con fuertes campos electromagnéticos que puedan afectar la brújula interna del sensor.

A continuación se presenta las consideraciones de uso de ADCP para diferentes métodos de trabajo: barco tripulado, puente y waro. El método de despliegue debe determinarse en función de las consideraciones y condiciones del sitio, las cuales por lo general son: ancho del canal, profundidad y velocidad del flujo.

FIGURA 4.11: Ilustración de medición con ADCP mediante un soporte fijo a una embarcación. Extraído de [87], p. 2.

En la figura 4.12 podemos apreciar la medición para un transecto, aquí se evidencia los patrones de flujo primario, distribución de velocidades superficiales y forma de la sección medida.

FIGURA 4.12: Captura de pantalla del software WinRIVeR [89] II donde se muestra la intensidad del haz, la trayectoria del instrumento, el campo de velocidad y otros. Elaboración propia con datos del CITA-UTEC.

	StreamPRo	Rio Grande	River Ray	RiverSurveyor M9
ADCI	(Teledyne)	(Teledyne)	(Teledyne)	(SonTek)
Fracuancia	1200 Hz or 600 Hz		4 beams at 1 MHz	
Frecuencia		600 Hz	000 112	1 bean at 500 Hz
Profundidad	0.15 m	0.67 m (1200 Hz)	0.54 m	0.20 m
mínima	0.15 III	0.91 m (600 Hz)	0.34 III	0.30 III
Profundidad	1.08 m	19.8 m (1200 Hz)		20.6 m
máxima	1.96 III	60.9 m (600 Hz)	39.0 III	59.0 III
Programa	WinRIVeR II	WinRIVeR II	WinRIVeR II	RiverSurveyor Live

TABLA 4.10: Características de los ADCP más utilizados. Información extraída y adaptada de [90] y [91]

4.3.1.1.1 Aforos con ADCP haciendo uso de embarcaciones

Si la profundidad del cauce es óptimo, el uso de ambarcaciones incluidos los kayaks proporcionan un método de soporte más sencillo para el aforo con ADCP. Existen varias consideraciones generales para la realización de aforo con ADCP mediante el uso de embarcaciones tripuladas, a continuación se presentan algunas de las principales:

- 1. El ADCP no debe ser colocado cerca del motor de la embarcación para evitar interferencias electromagnéticas y perturbaciones de velocidad generadas por el motor
- La posición más óptima para el sensor es en el medio de la embarcación, caso contrario éste debe ser montado de manera lateral mediante el uso de un soporte adecuado.

En la figura 4.13 se evidencia los distintos tipos de soporte usados para aforos con ADCP con ingreso al cauce del río.

FIGURA 4.13: [a] Medición ADCP con embarcación tripulado en el río Huallaga cerca de Tingo María, Huánuco y [b] Medición ADCP con kayak en el río Marañón cerca de Jaén, Cajamarca. Fotos de CITA-UTEC, campañas de campo 06/2019 y 08/2019.

4.3.1.1.2 Waro

Un Waro operado desde el margen de un río proporciona mediciones de ADCP estables y confiables. Éste sistema permite mantener trayectorias rectas para una medición adecuada. Ésta metodología se aplica a ríos donde se presenten velocidades altas y donde no se puede usar embarcaciones, para éste sistema sólo se necesita tener acceso a ambos márgenes del río.

La realización de la medición en algunos casos es un trabajo pesado debido a la fuerza de arrastre de la corriente la cual es aplicada no solo al instrumento de medición sino también a lo largo del cable con el que se manipula el instrumento desde ambos extremos. En la figura 4.14a, 4.14b se presentan 2 mediciones realizadas sobre el río Huallaga haciendo uso del sistema mencionado.

FIGURA 4.14: [a] Anclaje fijo para medición ADCP en río Huallaga, Huánuco. [b] Sistema de cuerdas con anclajes para medición ADCP. CITA-UTEC, 10/2019.

4.3.1.1.3 Puentes

El aforo con ADCP desde puentes es una alternativa según se menciona en [87], pero no se recomienda para puentes metálicos donde el gálibo es muy pequeño y presenta cercanía con el instrumento. Esto debido a la presencia de metales ferromagnéticos lo cual afecta la brújula interna del sensor y esto reduce la precisión de la medición.

Sin embargo en entornos de alta montaña los puentes muchas veces son la única opción para la realización de aforos con ADCP dada la accesibilidad al río.

FIGURA 4.15: Medición con ADCP desde un puente en el río Alto Marañón cerca del la ciudad de Balsas en la Región Amazonas. CITA-UTEC, 08/2019.

4.3.1.2. Medición con vadeo haciendo uso de un medidor de corriente portátil

Las mediciones de caudal mediante vadeo son posibles cuando el tirante del río es lo suficientemente pequeño como para permitir el ingreso al cauce del río, pero donde dicho tirante es insuficiente para realizar una medición con ADCP. Las mediciones de vadeo ofrecen la ventaja sobre las mediciones desde puentes y teleféricos porque el hidrógrafo generalmente puede elegir la mejor de varias secciones transversales disponibles para la medición.[88] Las mediciones con vadeo se realizan generalmente mediante el uso de los medidores tipo AA, pigmeo y ADV. La tabla 4.11 enumera el tipo de medidor y el método de velocidad a utilizar para las mediciones de vadeo para diferentes profundidades.

Profundidad (m)	Tipo de correntómetro	Método de velocidad (Profundidad respecto al tirante)
1 y mayor	Tipo AA	0.2 y 0.8
0.5 - 1	Tipo AA	0.6
0.1 - 0.5	Tipo pigmeo	0.6
0.5 y mayor	Tipo pigmeo	0.2 y 0.8
0.1 - 0.5	ADV	0.6
0.5 y mayor	ADV	0.2 y 0.8

TABLA 4.11: Medidor de corriente y método de medición de velocidad para varias profundidades. Adaptado de [88]

Si se utiliza un medidor tipo AA en una sección transversal donde la mayoría de las profundidades superan los 0.5m, no es necesario el cambio de medidor por el medidor tipo pigmeo para profundidades inferiores a 0.5m o viceversa. El medidor tipo AA no es recomendado para profundidades menores a 30cm porque el registro del medidor se ve afectado por su proximidad a la superficie del agua y al cauce. Sin embargo, se puede usar a profundidades tan bajas como 15 cm para evitar cambiar el medidor si solo se requieren algunas verticales de esta profundidad. El medidor tipo AA o el medidor pigmeo no deben usarse en velocidades inferiores a 6.1 cm/s a menos que sea absolutamente necesario [88].

El método usado para la realización de la medición de caudal con correntómetro es el método de la sección media. Éste método asume que la velocidad media vertical representa la velocidad media del segmento vertical asociado al punto de medición. La velocidad media en la vertical se determina midiendo 1 o mas puntos acorde a lo presentado en la tabla 4.11. El área de la sección transversal de los segmentos se extienden lateralmente desde la mitad de la distancia desde la vertical precedente hasta la mitad de la distancia siguiente vertical, la altura de cada área parcial corresponde a la profundidad del punto medido lo cual se muestra en la figura 4.16

La sección transversal de la figura 4.16 está definida por las profundidades en las ubicaciones 1, 2, 3, 4, ..., n. En cada ubicación, las velocidades son medidas por un medidor de corriente para obtener la media de la distribución vertical de la velocidad. La descarga parcial se calcula para cualquier sección parcial (segmento) en la ubicación i como:

$$q_i = v_i \left[\frac{(b_i - b_{(i-1)})}{2} + \frac{(b_{(i+1)} - b_i)}{2} \right] d_i$$
(4.13)

0

$$q_{i} = v_{i} \left[\frac{b_{(i+1)} - b_{(i-1)}}{2} \right] d_{i}$$
(4.14)

Donde:

 q_i = Descarga parcial del tramo i

 v_i = Velocidad media para la ubicación i

 b_i = Distancia desde el punto inicial hasta la ubicación i

 $b_{(i-1)}$ = Distancia desde el punto inicial hasta la ubicación anterior

 $b_{(i+1)}$ = Distancia desde el punto inicial hasta la siguiente ubicación

 d_i = profundidad del agua en el lugar i

FIGURA 4.16: Definición del método de sección media del medidor de corriente para calcular el área de sección transversal para mediciones de descarga. Adaptado de [88], p. 3.

En la figura 4.17 se presenta una medición con correntómetro sobre el cauce típico de un río de montaña

FIGURA 4.17: Aforo con correntómetro en el río Huallaga, Ambo, Huánuco, aguas abajo de la confluencia de los ríos Huallaga e Higueras. Fecha: 08/11/2020. Ancho del río: 32.5 m, Tirante máximo: 1.2 m, Caudal: $12.86 m^3/s$. Realizado por CITA-UTEC.

4.3.2 Técnicas no intrusivas para medición de caudal

El monitoreo del caudal de un río es importante para evaluar el suministro de agua, calidad de agua, respuestas hidrológicas, estabilidad y transporte de sedimentos de un río.

En conjunto con el monitoreo de nivel del río lo cual permite conocer el área mojada de una sección de estudio. Conocer el patrón de velocidades nos sirve para los cálculos de obtención de caudal, lo cual es la principal métrica por la cual se cuantifica el flujo del río. Tradicionalmente la velocidad ha sido medido con medidores de corriente mecánicos mediante vadeo [88]

El desarrollo y perfeccionamiento de instrumentos acústicos como el ADCP y el ADV, los cuales pueden obtener datos de velocidad como de batimetría han mejorado significativamente las mediciones al reducir recursos de tiempo y costos [92].

Aunque el uso de instrumentos tradicionales e hidro acústicos para medición de velocidades funciona bien para la mayoría de los entorno; éstos instrumentos tienen limitaciones que son las siguientes: altos costos, requerimiento de operador calificado, dificultad en flujos turbulentos (supercríticos) y profundidad mínima de trabajo.

Una forma de solventar éstas limitaciones es con técnicas de mediciones basadas en imágenes sin contacto [93].

4.3.2.1. Obtención del caudal a partir del monitoreo continuo por velocimetría de imágenes de partículas a gran escala (LSPIV)

Un método común sin contacto es la velocimetría de imágenes de partículas a gran escala (LSPIV)

El LSPIV mide la velocidad superficial a partir del movimiento del fluido considerando el uso de imágenes secuenciales (fotograma extraido de un vídeo de la zona del río en estudio), la velocidad se obtiene del desplazamiento de las posiciones de las partículas entre las imágenes [43].

En el caso del LSPIV, las velocidades superficiales obtenidas se relacionan con la velocidad media, mediante un factor de corrección denominado índice de velocidad [94], dicho índice es obtenido a partir de la calibración con mediciones de caudal a lo largo del transcurso del hidrograma.

Cuando lo combinamos con la geometría de la sección de estudio, la relación índice-velocidad facilita la estimación del caudal basado en mediciones de velocidad superficial

De acuerdo con el desarrollo reciente de las técnicas LSPIV, se han desarrollado varios paquetes de software y códigos que facilitan el procesamiento de datos. Antoine Platalano ha desarrollado una caja de herramientas simple y fácil de usar llamada RI-VeR [89] (Rectificación de resultados de velocidad de imagen) para procesar imágenes PIV y LSPIV. Adicionalmente de las funciones básicas para procesamiento de imágenes secuenciales, RIVeR [89] permite la extracción de fotogramas de vídeo y también la orto-rectificación teniendo en cuenta los puntos de control fijos medidos en campo. Adicionalmente al proporcionar datos de batimetría de la sección de estudio y la información del nivel del río, RIVeR [89] calcula el caudal usando la velocidad de descarga media.

FIGURA 4.18: Diagrama de flujo del procedimiento LSPIV. Adaptado de [47], p. 292.

Capítulo 5

ESTADO DE ARTE

El estudio integral de un río de montaña abarca múltiples parámetros de los cuales son necesarios su comprensión. En la tabla 5.1 se enumera los principales parámetros que se deben estudiar en un río de montaña, así también se presenta los cambios acorde al descenso en cuenca y la cantidad documentación o investigación existente por cada parámetro.

TABLA 5.1: Tendencias descendiente de los parámetros seleccionados de ríos de montaña
en función al descenso de la cuenca y documentación relativa de estas tendencias basadas
en datos de campo de diversos entornos. Adaptado de [1], p. 8.

			Tendencia de		
hi	Parametro	Simbolo	parámetro conforme	Documentación	
iu.	T at anicer 0	Shinbolo	se desciende en	existente	
			la cuenca		
1	Caudal	Q	Aumento exponencial	Abundante	
2	Pendiente	S	Aumento exponencial	Abundante	
3	Geometria de valle		Altamente variable	Limitada	
4	Suministro de sedimentos		Altamente variable	Limitada	
5	Resistencia externa	f	Disminuye aguas abajo	Limitada	
6	Potencia de flujo total		Picos en la cuenca alta	Limitada	
7	Transporte de carga de	Gss	Altamente variable	Limitada	
,	sedimentos suspendidos	055		Liiiituuu	
8	Transporte de carga	Gsf	Altamente variable	Limitada	
	fondo				
9	Formas de fondo		Cambio progresivo con	Moderada	
			pendiente (reducción)		
10	Sinuosidad	_	Altamente variable	Abundante	
11	Movilidad lateral del canal	_	Altamente variable	Limitada	
12	Resistencia a los bancos de		Altamente variable	Limitada	
12	la vegetación ribereña			Liiiitaua	
13	Transporte de vegetación		Altamente variable	Limitada	
15	(e.g. árboles, madera, etc)			Linitada	

Debido a que no existe una metodología específica para el estudio o monitoreo de un río de montaña, en éste capítulo se detalla las investigaciones existentes referente a los parámetro más relevantes de la tabla 5.1 teniendo en consideración su aplicabilidad a las condiciones hidro-geomorfológicas del área de estudio.

5.1 Investigaciones más relevantes por cada parámetro de estudio

La investigación de la dinámica de los ríos de montaña, enfocada en el estudio integral del agua y los sedimentos, es fundamental para comprender y gestionar estos complejos sistemas fluviales. El análisis exhaustivo de las investigaciones más relevantes en esta área, abarcando desde el suministro y transporte de sedimentos hasta las metodologías avanzadas de monitoreo, esto proporciona una base sólida para abordar el estudio del río Huallaga.

En el contexto de los ríos de montaña, la cuantificación del suministro y transporte de sedimentos es crucial, particularmente en regiones donde se proyectan presas e infraestructuras hidroeléctricas. Las investigaciones revisadas, como las de Mueller [95, 96] y Recking [97], nos explican sobre la relación entre el suministro de sedimentos y la morfología de los canales fluviales, destacando la importancia de factores como la litología, topografía y clima. Estos estudios son relevantes para entender la morfodinámica y los patrones de canal en el río Huallaga, lo que es vital para el diseño de obras hidráulicas y la gestión de riesgos de erosión y sedimentación.

El avance en técnicas como la granulometría óptica y el aprendizaje automático, ilustrado por trabajos como los de Buscombe [77] y Langhammer [80], ha abierto nuevas posibilidades para la caracterización detallada y eficiente de los sedimentos. La capacidad de estas técnicas para ofrecer mediciones precisas y rápidas de los tamaños de grano y la distribución de los sedimentos en el lecho del río es esencial para comprender la dinámica sedimentaria y para la planificación de medidas de protección contra inundaciones y la estabilización del lecho.

La medición precisa del caudal es otro pilar fundamental en el estudio de los ríos de montaña. Métodos innovadores como la velocimetría de imágenes de partículas a gran escala (LSPIV) han demostrado ser herramientas valiosas para obtener mediciones de caudales superficiales en entornos difíciles, como lo demuestran las investigaciones [89, 98]. Estas técnicas, aplicadas en el río Huallaga, permiten una evaluación más precisa de la dinámica del agua, vital para la gestión del recurso hídrico y la prevención de riesgos asociados a eventos extremos de caudal.

En resumen, el conjunto de investigaciones analizadas ofrece un marco robusto para abordar el estudio del río Huallaga. El enfoque multidisciplinario, que combina conocimientos de hidrología, geomorfología y sedimentología, junto con técnicas avanzadas de medición y análisis, proporciona las herramientas necesarias para una comprensión profunda y una gestión efectiva de los ríos de montaña. Este enfoque integral es crucial para enfrentar los desafíos presentes y futuros en la gestión de los recursos hídricos y la conservación de los ecosistemas fluviales en el Perú y otras regiones con características similares. A continuación, se destacan las investigaciones más significativas para cada parámetro de estudio relacionado con los ríos de montaña. Cada estudio se examina meticulosamente bajo tres aspectos críticos: "Enfoque del Estudio", donde se describe la orientación y los métodos específicos del estudio; "Conclusiones Clave", donde se resumen los hallazgos esenciales y su relevancia; y "Brecha Identificada", donde se identifican las áreas que requieren una exploración adicional o representan oportunidades para la investigación futura. Esta estructura no solo facilita una comprensión rápida y detallada de cada estudio, sino que también subraya su contribución específica y su relación con el enfoque de ésta investigación, ayudando a tejer un panorama completo de la dinámica y gestión de los ríos de montaña.

5.1.1 Caudal

- 1. Aforo por vadeo,
 - a) Mediciones de caudal en estaciones de aforo USGS [88]
 - Enfoque: Descripción de técnicas y normas para mediciones de caudal en estaciones de aforo, destacando la transición de correntómetros a tecnologías basadas en Doppler acústico.
 - Conclusiones Clave: Superioridad de tecnologías basadas en Doppler acústico, como el ADCP, en la medición de caudales, proporcionando datos tridimensionales del flujo del agua.
 - Brecha Identificada: Modernización tecnológica necesaria en estaciones de aforo para mejorar la precisión y eficiencia de las mediciones de caudales
- 2. Aforo con ADCP
 - a) Medición de caudal de inundación de un río de montaña: río Nanshih en Taiwán [99]

- Enfoque del Estudio: Propuesta de un método eficiente y seguro para medir descargas de inundaciones en ríos de montaña, utilizando perfilador Doppler y sistema de grúa.
- Conclusiones Clave: Sistema propuesto permite mediciones rápidas y precisas en condiciones desafiantes, mejorando la estimación de velocidades medias y áreas transversales.
- Brecha Identificada: Mejora en la seguridad y precisión de las mediciones de caudales de inundación, especialmente en ríos de montaña

3. LSPIV

- a) LSPIV de imágenes estereoscópicas (SI-LSPIV) para la reconstrucción de la superficie del agua en 3D y la medición de caudales en caudales de ríos de montaña [98]
 - Enfoque del Estudio: Uso de LSPIV estereoscópico para la reconstrucción 3D de la superficie del agua y medición de caudales en ríos de montaña.
 - Conclusiones Clave: La técnica SI-LSPIV ofrece una alternativa sin contacto para la medición de velocidad y caudal en ríos de montaña con alta precisión.
 - Brecha Identificada: Falta de implementación de más técnicas de medición avanzadas para abordar la variabilidad de niveles de agua en ríos de montaña
- b) Ventajas de un método LSPIV móvil para medir caudales de inundación y mejorar las curvas de caudal de etapa [100]
 - Enfoque del Estudio: Estudio del potencial de mediciones rápidas de descarga de inundaciones con un dispositivo móvil LSPIV durante eventos hidrológicos en el río Arc.

- Conclusiones Clave: El sistema LSPIV móvil permite mediciones de caudales máximos en condiciones extremas, contribuyendo a mejorar el conocimiento de descargas de inundaciones.
- Brecha Identificada: Necesidad de técnicas de medición de flujo remotas y móviles para eventos hidrológicos extremos en ríos
- c) Aplicación de la técnica LSPIV en el diseño hidrológico de infraestructura hídrica [101]
 - Enfoque del Estudio: Implementación de la técnica LSPIV para medir velocidades de caudal en ríos de la provincia de Salta, Argentina, especialmente durante crecidas repentinas.
 - Conclusiones Clave: LSPIV como técnica efectiva para mediciones en ríos con características únicas de crecidas, proporcionando datos valiosos para el diseño hidrológico.
 - Brecha Identificada: Adaptación y aplicación de técnicas de medición no intrusivas en regiones con condiciones hidrológicas específicas.
- d) Hacia la armonización de las técnicas de velocimetría de imágenes para las observaciones de la velocidad en la superficie de los ríos [102]
 - Enfoque del Estudio: Evaluación comparativa de diferentes enfoques de velocimetría de imagen para observaciones de velocidad en superficies de ríos.
 - Conclusiones Clave: Identificación de técnicas más adecuadas para diferentes entornos fluviales y desarrollo futuro de software en este campo.
 - Brecha Identificada: Necesidad de estandarizar y armonizar técnicas de velocimetría de imagen para diferentes contextos fluviales

5.1.2 Pendiente

- 1. Medición de caudal de área de pendiente en ríos de montaña [103]
 - Enfoque del Estudio: Análisis de la medición de caudal en áreas de pendiente en ríos de montaña, con énfasis en estudios detallados de sección transversal y perfil longitudinal.
 - Conclusiones Clave: Importancia de una evaluación precisa del coeficiente de resistencia al flujo en la predicción de descargas.
 - Brecha Identificada: Mejora en la precisión de las mediciones de campo y análisis de pendientes en ríos de montaña

5.1.3 Geometría de valle

1. Geometría hidráulica aguas abajo a lo largo de un río de montaña tropical [104]

- Enfoque del Estudio: Descripción de los parámetros morfométricos necesarios para estudiar un río de montaña tropical.
- Conclusiones Clave: Importancia de una comprensión integral de la morfología y geometría fluvial en ríos de montaña.
- Brecha Identificada: Ampliación del conocimiento sobre la morfología y dinámica de ríos tropicales de montaña

5.1.4 Suministro de sedimentos

1. Abastecimiento de sedimentos y morfología de los canales en los sistemas fluviales de montaña: 1. Importancia relativa de la litología, la topografía y el clima [95]

- Enfoque del Estudio: Cuantificación de las variaciones en el suministro de sedimentos a los arroyos y ríos, analizando su impacto en la morfodinámica.
- Conclusiones Clave: Relación entre la concentración de sedimentos, blindaje del lecho fluvial y la morfología del canal.
- Brecha Identificada: Comprensión detallada de cómo las concentraciones de sedimentos afectan la morfología de los canales fluviales
- 2. Influencia del suministro de sedimentos en el transporte del lecho de los arroyos de montaña [97]
 - Enfoque del Estudio: Análisis del efecto del suministro de sedimentos en las tasas de transporte de carga de fondo en arroyos de montaña.
 - Conclusiones Clave: Relación estrecha entre el suministro de sedimentos y el almacenamiento y transporte de sedimentos en el cauce.
 - Brecha Identificada: Necesidad de una comprensión más profunda del impacto del suministro de sedimentos en el transporte de carga de fondo
- 3. Suministro de sedimentos y morfología del canal en sistemas fluviales de montaña: 2. Transiciones de hilo simple a trenzado [96]
 - Enfoque del Estudio: Análisis de cómo el suministro de sedimentos afecta la transición de patrones de canal en ríos de montaña.
 - Conclusiones Clave: Identificación de factores que influyen en las transiciones de canales de un solo hilo a trenzados.
 - Brecha Identificada: Mejora en la comprensión de la dinámica de transición de patrones de canal en sistemas fluviales de montaña

5.1.5 Sedimentos suspendidos

1. Dinámica de sedimentos suspendidos en el río Amazonas del Perú [105]

- Enfoque del Estudio: Cuantificar los sedimentos suspendidos en el río Amazonas del Perú y comparar métodos de muestreo.
- Conclusiones Clave: Eficacia del turbidímetro en la estimación de sedimentos suspendidos, destacando la variabilidad estacional e hidrológica en la distribución de sedimentos.
- Brecha Identificada: Falta de integración de factores ambientales y antropogénicos en el análisis de la dinámica de sedimentos.
- 2. Aumento en la descarga de sedimentos suspendidos del río Amazonas evaluado por red de monitoreo y datos satelitales [106]
 - Enfoque del Estudio: Evaluar el aumento en la descarga de sedimentos suspendidos del río Amazonas mediante datos de monitoreo y satélites.
 - Conclusiones Clave: Confirmación del incremento en la descarga de sedimentos suspendidos, utilizando una combinación de datos de monitoreo en red y sensores remotos.
 - Brecha Identificada: Necesidad de estudios más extensos que combinen datos de monitoreo y técnicas de sensoramiento remoto para una mejor comprensión de la dinámica de sedimentos en grandes ríos.

5.1.6 Transporte de carga de fondo o lecho

- 1. Condiciones de transporte de lechos de sedimentos a lo largo del río Sagavanirktok en el norte de Alaska, EE. UU. [83]
 - Enfoque del Estudio: Determinar las condiciones de transporte de sedimentos de fondo en el río Sagavanirktok, en Alaska.
 - Conclusiones Clave: El estudio resalta el uso de zanjas para medir el transporte de sedimentos de fondo, proporcionando un método efectivo para evaluar la dinámica de sedimentos en ríos de montaña.

 Brecha Identificada: Sugiere la importancia de aplicar y comparar diferentes métodos para la evaluación del transporte de sedimentos en diversos contextos fluviales.

5.1.7 Formas de fondo

- 1. SediNet: Un modelo de aprendizaje profundo configurable para granulometría óptica cualitativa y cuantitativa mixta [77]
 - Enfoque del Estudio: Desarrollo de un modelo de aprendizaje profundo configurable para la granulometría óptica cualitativa y cuantitativa.
 - Conclusiones Clave: Demostración de cómo el aprendizaje automático puede ser una herramienta poderosa y flexible para mediciones automatizadas a partir de imágenes de sensores remotos.
 - Brecha Identificada: Explorar más ampliamente la aplicación de técnicas de aprendizaje automático en diferentes contextos sedimentológicos y ambientales.

2. Granulometría óptica basada en UAV como herramienta para detectar cambios en la estructura de las deposiciones de inundación [80]

- Enfoque del Estudio: Utilizar la granulometría óptica basada en UAV para detectar cambios en las estructuras de las deposiciones de inundaciones.
- Conclusiones Clave: Proporciona una cobertura detallada y precisa de un sitio de estudio para analizar propiedades granulométricas y sus cambios espaciotemporales.
- Brecha Identificada: Necesidad de validar y comparar esta técnica con métodos tradicionales en diferentes escenarios de inundación.

- 3. Análisis de tamaño de grano digital basado en algoritmo de autocorrelación [26]
 - Enfoque del Estudio: Aplicar un algoritmo de autocorrelación para el análisis digital del tamaño de grano de sedimentos.
 - Conclusiones Clave: La técnica ofrece estimaciones precisas para sedimentos bien clasificados y de alta densidad, comparables a las mediciones de campo.
 - Brecha Identificada: Ampliar la aplicación de esta técnica a una variedad más amplia de tipos de sedimentos y contextos sedimentológicos.
- 4. Comparación de la precisión del software para estimar la distribución del tamaño de grano del lecho a partir de imágenes digitales: una prueba realizada a lo largo del río Rin [107]
 - Enfoque del Estudio: Comparar la precisión de varios software en la estimación de la distribución del tamaño de grano del lecho fluvial a partir de imágenes digitales.
 - Conclusiones Clave: Identificación de software como DGS y Basegrain como fiables para estimaciones de distribución de tamaño de grano
 - Brecha Identificada: Investigar más a fondo la aplicabilidad y precisión de estos métodos en diferentes tipos de ríos y condiciones sedimentológicas.
- 5. PebbleCounts: Herramienta de detección de tamaño de grano para estudios fotográficos de ríos dinámicos con lecho de grava [76]
 - Enfoque del Estudio: Desarrollar una herramienta para la detección del tamaño de grano en estudios fotográficos de lechos de ríos dinámicos con fondos de grava.
 - Conclusiones Clave: Presentación de un enfoque mejorado para la estimación del tamaño de grano utilizando técnicas de segmentación de imágenes y detección de bordes.

 Brecha Identificada: Explorar la eficacia de estas técnicas en diferentes entornos fluviales y en lechos de ríos con variadas composiciones de sedimentos.

5.2 Listado de estudios existentes sobre el área de estudio

Complementariamente se hizo una recopilación de todos los estudios existentes sobre al área de estudio, según la información encontrada dichos estudios se clasifican en 4 grupos:

- 1. Calidad de agua
- 2. Inventario de recursos hídricos
- 3. Gestión de recursos hídricos enfocados a riego
- 4. Estudios hidrológicos

Esto permite constatar que existe la carencia de la comprensión física del río (agua y sedimentos), lo cual es un elemento clave para el correcto conocimiento de un río y así obtener una adecuada línea base física para cualquier tipo de estudio de infraestructura a realizar sobre el río.

TABLA 5.2: Principales estudios existentes sobre el área de estudio. Elaboración propia.

п	Nombre de documento	Fecha de	Tipo de	Entidad	Referencias	
	Tombre de documento	publicación	documento	Linnaa	iterer energy	
1	Monitoreo de la calidad de	2000	Artículo	INRENA	[108]	
	aguas superficiales: Vertiente					
	del Atlántico, río Huallaga					
2	Informe del monitoreo parti-	2019	Informe	AAA	[109]	
	cipativo de la calidad del agua					
	superficial en la cuenca del					
	río Huallaga (noviembre - di-					
	ciembre de 2018)					

Ш	Nombro do documento	Fecha de	Tipo de	Entidod	Referencies
ID	Nombre de documento	publicación	documento	Liituau	Keititeiteias
3	Creación del servicio de pro-	2018	Artículo	AAA	[110]
	tección contra inundaciones				
	en las localidades de Huaytía,				
	Huaracalla y Chacapampa en				
	los márgenes del río Hualla-				
	ga, en el distrito de Ambo,				
	provincia de Ambo - Huánu-				
	со				
4	Informe del monitoreo parti-	2018	Informe	AAA	[111]
	cipativo de la calidad del agua				
	superficial en la cuenca del				
	río Huallaga (junio - julio de				
	2018)				
5	Priorización de cuencas: Ver-	2016	Mapa Prin-	ANA	[112]
	tiente del Atlántico		cipal		
6	Evaluación de recursos hídri-	2016	Artículo	DPDRH	[113]
	cos de doce cuencas hi-				
	drográficas del Perú: Resu-				
	men ejecutivo integrado				
7	Evaluación de recursos hídri-	2015	Resumen	ANA	[114]
	cos en la cuenca de Huallaga		Ejecutivo		

Tabla 5.2 continuación de pagina anterior

т	Nombre de documento	Fecha de	Tipo de	Fntidad	Referencias
ID	Nombre de documento	publicación	documento	Entiuau	Kelerencias
8	Acciones de protección y pre-	2015	Artículo	REVISTA	[115]
	vención de los recursos hídri-			AGUA Y	
	cos y sus bienes asociados			MÁS	
	en la cuenca hídrica del Alto				
	Huallaga				
9	Estudio de aprovechamiento	2015	Artículo	AAA	[116]
	hídrico de la Central Hidro-				
	eléctrica Huallaga I: Resu-				
	men ejecutivo				
10	Estudio hidrológico para la	2015	Artículo	AAA	[117]
	acreditación de la disponibili-				
	dad hídrica superficial del río				
	Huallaga				
11	Estudio hidrológico provincia	2012	Artículo	AAA	[118]
	de Leoncio Prado: Estudio hi-				
	drológico río Huallaga (metas				
	al 31 de julio del 2012)				
12	Plan de desarrollo integral de	1989	Artículo	INRENA	[119]
	la cuenca del Huallaga: Do-				
	cumento preliminar				
13	Inventario de proyectos de	1986	Artículo	INRENA	[120]
	irrigación del departamento				
	de Huánuco: diagnóstico de				
	la cuenca del Alto Huallaga y				
	Alto Marañón				

Tabla 5.2 continuación de pagina anterior

ID	Nombre de documento	Fecha de publicación	Tipo de documento	Entidad	Referencias
14	Proyectos identificados en las	1986	Artículo	INRENA	[121]
	cuencas hidrográficas del Al-				
	to Huallaga y Alto Marañón				
15	Construcción e imple-	1983	Informe	INRENA	[122]
	mentación de estaciones				
	hidrométricas en el distri-				
	to de riego Alto Huallaga				
	(Departamento de Huánuco)				
16	Plan básico de protección am-	1979	Artículo	ONERN	[123]
	biental para la zona de Hua-				
	llaga Central y Bajo Mayo				
17	Estudio de los suelos de la	1968	Artículo	ONERN	[124]
	zona del Huallaga Central y				
	Bajo Mayo (Reconocimiento				
	sistemático)				

Tabla 5.2 continuación de pagina anterior

Capítulo 6

DESCRIPCIÓN DE ÁREA DE ESTUDIO

6.1 Cuenca del río Huallaga

La cuenca del río Huallaga, con una extensión de 89416.2 km^2 [125], se encuentra en la zona nororiental de Perú, en la vertiente Atlántica. Sus coordenadas geográficas, presentadas en la Tabla 6.1, varían desde los - 78° 30' a - 76° 12' de longitud y de - 10° 53' a - 5° 2' de latitud, abarcando un rango altitudinal desde 130 m.s.n.m. hasta 4500 m.s.n.m. Esta diversidad de altitudes y coordenadas implica una variabilidad climática y hidrológica significativa, influenciando tanto los regímenes de precipitación como los patrones de escurrimiento y sedimentación en la cuenca.

Sistemas (CRS)	Datum	Componentes	Valor	
			Mínimo	Máximo
Coordenadas Geográfi-	WGS84	Longitud	- 78° 30'	- 76° 12'
cas (4326)				
		Latitud	- 10° 53'	- 5° 2'
UTM (32718)	WGS84	Este (m)	192126	444846
		Norte (m)	8809682	9445620
Altitud	Vertical Nivel medio	m.s.n.m.	130	4500
	medido del mar			

TABLA 6.1: Ubicación geográfica - Cuenca Huallaga. Extraído de [125], p. 9.

Políticamente, la cuenca se extiende a través de los departamentos de Huánuco, San Martín, Pasco y Ucayali, como se muestra en la Figura 6.1. Esta distribución política es relevante para la gestión de los recursos hídricos y la planificación del uso del suelo, ya que cada departamento contribuye de manera distinta a la hidrología y geomorfología de la cuenca.

FIGURA 6.1: Mapa político de la cuenca Huallaga. Extraído de [125], p. 10.

6.2 Area de estudio: Alto Huallaga

El área de estudio se extiende a lo largo de los primeros 250 km del río Huallaga, comenzando en la laguna Taulicocha en Pasco y terminando aguas abajo de la confluencia del río Monzón en Huánuco. Las coordenadas específicas de estos puntos están detalladas en la Tabla 6.2. La variación en la altitud y las coordenadas entre estos puntos sugiere cambios significativos en las características geomorfológicas y geológicas, los cuales son cruciales para comprender la dinámica fluvial de esta sección del río.

2* km	UTM			Coordenadas geográficas		Altitud 2* m.s.n.m.
	Zona	Este (m)	Norte (m)	Latitud	Longitud	
0	18L	382857.34	8814381.39	-10°43'24.86"	-76°4'16.54"	4264
500	18L	390028.86	8972417.35	-9°17'40.72"	-76°0'4.66"	644

TABLA 6.2: Coordenadas del punto inicial y final del área de estudio. Elaboración propia

La figura 6.2 ilustra detalladamente las pendientes a lo largo de los primeros 250 km del río Huallaga, enfocándose en su sección superior que atraviesa una zona montañosa. Esta sección se caracteriza por tener las pendientes más pronunciadas, lo que es un indicativo claro de un régimen fluvial que experimenta cambios rápidos y dinámicos. Estas elevadas pendientes son cruciales para entender el transporte de sedimentos y el desarrollo de diversas formas geomorfológicas a lo largo del río. La figura también demuestra cómo el río Huallaga puede dividirse en tres zonas distintas según su inclinación: la zona montañosa (con pendientes mayores al 5 %), la zona de transición (con pendientes entre 0.5 % y 5 %), y la región de la Amazonía (con pendientes menores al 0.5 %).

La creación de la figura 6.2 se basó en la interpolación de datos de altitud del año 2011, obtenidos del modelo DEM ALOS Palsar de 12.5m [126]. Se seleccionó específicamente el año 2011 para la obtención de estos datos, dada la disponibilidad y precisión

de los DEM de ALOS PALSAR de ese año. La línea azul en la figura representa los valores de altitud extraídos del DEM. Además, para obtener un análisis más preciso de las pendientes promedio en los tramos representados en la figura, se empleó código Python para el análisis de tendencias en grupos de puntos y la identificación de valores promedio homogéneos, lo que permite una comprensión más profunda de la variabilidad topográfica y sus implicaciones en la hidrología y geomorfología del río Huallaga.

FIGURA 6.2: Distribución de pendientes promedio a lo largo de todo el río Huallaga. Elaboración propia.

6.3 Hidrología

Las Figuras 6.3, 6.4 y 6.5 presentan distintas perspectivas de la precipitación en la zona de estudio. La Figura 6.3 muestra la precipitación acumulada anual, con énfasis en la variabilidad espacial que impacta directamente en la escorrentía y el transporte de sedimentos. Se observa un pico de precipitación en Tingo María, con valores que varían entre 2000-3100 mm/año. Asimismo, se debe tener presente que la variabilidad en la precipitación puede influir en los eventos de inundación y sequía.

PRECIPITACION ACUMULADA ANUAL (1981-2016)

FIGURA 6.3: Precipitación acumulada anual (mm). Elaboración propia con datos del producto PISCO de SENAMHI.

La figura 6.4 presenta datos de precipitación a lo largo del año, proporcionando una visión clara de la estacionalidad de las lluvias en la cuenca. Esta información es crucial para predecir los flujos de agua y la movilización de sedimentos. En ésta figura se puede apreciar que la época de mayor precipitación se da de Octubre-Marzo presentando precipitaciones máximas que oscilan entre 200-500 mm/mes.

FIGURA 6.4: Precipitación promedio mensual (mm).Elaboración propia con datos del producto PISCO de SENAMHI.

La figura 6.5 detalla la precipitación acumulada anual en un formato que resalta las variaciones espaciales a lo largo de la cuenca de estudio (montaña). Ayuda a comprender cómo las diferencias en la precipitación afectan las partes específicas de la cuenca. Como se puede apreciar la zona de mayor precipitación de toda la cuenca de estudio corresponde a la zona de Tingo Maria, esto a su vez nos indica una alta erosividad pluvial potencial.

FIGURA 6.5: Precipitación promedio del acumulado anual (mm). Elaboración propia con datos del producto PISCO de SENAMHI.

Finalmente, la Figura 6.6 proporciona una visión integrada de la precipitación en toda la cuenca, esencial para analizar su contribución al flujo general del río.

FIGURA 6.6: Precipitación promedio del acumulado anual (mm) de toda la cuenca del río Huallaga. Elaboración propia con datos del producto PISCO de SENAMHI.

6.4 Geología

La figura 6.7 y la Tabla 6.3 presentan la configuración geológica del área de estudio. Se observa una predominancia de formaciones geológicas del precámbrico y triásico superior, lo que sugiere un limitado desplazamiento lateral del río debido a esta configuración geológica. Este aspecto es esencial para entender los procesos de erosión, sedimentación y estabilidad de laderas en la cuenca.

La tabla 6.3 clasifica las formaciones geológicas según su extensión y porcentaje en el área de estudio. Ofrece una comprensión detallada de la distribución geológica y su relación con la erosión, sedimentación y riesgos geológicos.

Nombre	Descripcion	Area (km^2)	%
PeA-e/gn	Precambrico	5775.57	47.43
Kis-m	Cretaceo inf.sup.Marino.	750.37	6.16
Ki-c	Cretaceo inferior continental	118.72	0.97
P-c	Paleoceno continental	13.94	0.11
Js-c	Jurasico superior continental.	79.28	0.65
Pi-gd/gr	Paleozoico inf.granod-granito.	310.77	2.55
PT-to/gd	Permico, Plutones Tardihercinicos	169.33	1.39
P-to/gd	Tonalitas y granodioritas paleogenas	410.49	3.37
Ci-c	Carbonifero inferior continental	743.37	6.1
PT-mzg/gr	Plutones Tardihercinicos	974.62	8
O-ms	Ordovicico-metasedimento	53.37	0.44
Ki-mc	Crteaceo inf.Marino,Continental	273.91	2.25
CsP-m	Carbonifero superior-Permico	36.46	0.3
Ps-c	Permico superior continental.	731.44	6.01
TsJi-m	TriasicoSup,Jurasico inf.marino	1118.22	9.18
D-m	Devonico, marino.	58.45	0.48
PN-vs	Paleogeno Neogeno, Volc.Sed.	70.81	0.58
Qh-c	Cuaternario holoceno-continental.	134.49	1.1
P-an/ri	Cuerpos Subvolcanicos	21.07	0.17
N-an/ri	Neogeno, and esita-riolitia,.	15.41	0.13
KsP-c	Cretacio sup. Paleogeno, continental.	316.75	2.6
	Total	12176.84	100

TABLA 6.3: Geología del área de estudio cuantificado en función a su área. Elaboración propia

Finalmente como se muestra en la tabla 6.3 y la figura 6.8 la geología predominante no se encuentra totalmente consolidada lo cual favorece a la producción de sedimentos. Esto verifica que la mayor parte de sedimentos son producidos en la cabecera de cuenca.

FIGURA 6.8: Estratigrafía geológica predominante. Adaptado de [127], p. 100.

6.5 Geomorfología

El mapa geomorfológico del área de estudio se muestra en la figura 6.9, complementado por la descripción fisiográfica en la Tabla 6.4. Se evidencia que la parte alta de la cuenca presenta pendientes pronunciadas, lo cual es característico de los ríos de montaña y afecta significativamente el flujo del agua y la dinámica de sedimentos. Estas características geomorfológicas son cruciales para comprender la morfología del río y su respuesta a los eventos hidrológicos.

10°3

INGEMMET.

La tabla 6.4 detalla las distintas unidades geomorfológicas, sus áreas y porcentajes. Proporciona información esencial sobre cómo las diferentes características del terreno impactan en la dinámica de la cuenca.

10°3

Símbolo	Fisiografía	Área	%
		(km ²)	
Vs1-e	Elevación de 0 a 1000 m de altura y pendiente predominante	3511.87	28.83
Vs2-e	Elevación de 300 a más de 1000m de altura y pendiente moderada	2823.78	23.18
VsA2-e	Elevación de 300 a 1000 m de altura y pendiente mayor a 25 $\%$	2312.02	18.98
VsA1-e	Elevación de 300 a más de 1000 m de altura y pendiente superior a 25 $\%$	1947.13	15.99
Vs3-e	Elevación de 300 a 1000 m de altura y pendiente significativa	1134.34	9.31
Ad-c	Llanura disectada con pendiente predominante de 15 a 25 %	64.32	0.53
Vs2-d	Elevaciones de 300 a 1000 m de altura con pendiente ligera	63.69	0.52
VsA2-d	Elevación de 300 a 1000 m de altura con pendiente predominante	63.07	0.52
Fv3-a	Acumulación fluvial y torrencial reciente (Holoceno y Preholoceno)	61.88	0.51
Ao-b	Llanura de 4 a 15 % de pendiente, con frecuentes acumulaciones	55.99	0.46
FvS-a	Acumulación fluvial reciente, caracterizada por el Holoceno y Preholoceno	41.78	0.34
Vs3-d	Elevación de 300 a 1000 m de altura con pendiente predominante y moderada	29.67	0.24
Nev	Nevados, indicando la presencia de cumbres nevadas	26.86	0.22
Lag	Lagunas, áreas de acumulación de agua en depresiones naturales	25.48	0.21
Vg-a	Terreno plano, de 0 a 4 % de pendiente, con accidentes geográficos menores	13.28	0.11
Pob	Áreas de centros poblados	5.42	0.04
	12180.58	100	

TABLA 6.4: Descripción fisiográfica o geomorfológica de la zona de estudio. Elaboración propia con datos del INGEMMET

Capítulo 7

METODOLOGÍA

En éste capitulo se presentan los diversos métodos usados para cuantificar las principales variables asociadas a los ríos de montaña. Las figuras 7.1 y 7.2 muestran la metodología de la investigación y recopilación de datos de campo respectivamente.

Cabe recalcar que se propone como metodología lo presentado en la figura 7.1 dado que lo que se busca es responder las siguientes interrogantes: ¿Qué parámetros se estudian en un río de montaña? ¿Cómo se miden dichos parámetros?

FIGURA 7.1: Diagrama de flujo de la metodología de investigación. Elaboración propia

En la figura 7.2 se presenta los tipos de mediciones realizadas tanto para mediciones puntuales como para las mediciones de sedimentos suspendidos realizados mediante un monitoreo constante. En dicho esquema se muestra las principales variables medidas en campo que se ha tenido en cuenta para ésta investigación. Tener en cuenta que en la tabla 5.1 se presentan mas variables de estudio para un río de montaña pero debido a las condiciones encontradas al momento de las inspecciones en campo se consideraron estudiar solo lo presentado en la figura 7.2.

FIGURA 7.2: Diagrama de flujo de mediciones de campo. Elaboración propia

7.1 Aforos

Se llevaron a cabo mediciones en 10 puntos seleccionados a lo largo del cauce del río Huallaga. Estas mediciones incluyeron aforos realizados en 5 estaciones de monitoreo LSPIV (Large Scale Particle Image Velocimetry) y mediciones de transporte de carga de lecho y/o fondo en 4 puntos específicos mediante el uso de zanjas. En la figura 7.3 se detallan los sitios exactos de estos aforos. Los datos recolectados en estos puntos fueron esenciales para la calibración de los hidrogramas generados a partir de las estaciones LSPIV.

Es importante mencionar que se establecieron solo 5 estaciones permanentes de monitoreo LSPIV a lo largo del río Huallaga. La selección de estos puntos obedeció a criterios específicos requeridos por el sistema LSPIV, que incluyen: disponibilidad de electricidad e internet, presencia de un operador, un enfoque óptimo de ambos márgenes del río, áreas con baja turbulencia y la proximidad a un puente, lo cual es fundamental para el muestreo de sedimentos suspendidos.

FIGURA 7.3: Puntos de Aforos. Elaboración propia

Los aforos se realizaron haciendo uso del correntómetro y ADCP (Las condiciones de uso para la medición con cada instrumento fueron descritos en el capitulo 4 y en las tablas 4.11 y 4.10). En las figuras 7.4 y 7.5 se muestran o ejemplifican las mediciones con correntómetro y ADCP respectivamente.

FIGURA 7.4: Aforo con correntómetro para profundidades menores a 1 metro y acceso al cauce posible. Detalles adicionales en la tabla 4.11. Realizado por CITA-UTEC, 11/2020.

FIGURA 7.5: Técnicas de aforo con ADCP en ríos de alta montaña: [a] sistema de cuerdas, [b] desde embarcación, [c] desde puente, [d] anclaje para sistema de cuerdas. Detalles en tabla 4.10. Mediciones por CITA-UTEC, fechas: 10/2019, 06/2019, 08/2019 y 10/2019.

En la tabla 7.1 se presentan los resultados de los aforos realizados en los años 2019 y 2020

2*Ubicación	2*Estación	2019					2020				
		Fecha	Caudal	H (m)	Ancho	Instrumento de	Fecha	Caudal	H (m)	Ancho	Instrumento de
		(m^3/s)	(m^3/s)	(m)	medición	dición	(m^3/s)	II (III)	(m)	medición	
3*Huallaga	San Rafael	15-oct2019	9 1.136	0.67	15	Correntómetro	1-nov2020	3.85875	0.48	21	Correntómetro
	aguas arriba										
	San Rafael	5-sep2019	3.708	1.01	15.5	Correntómetro	5-nov2020	3.742	0.88	24	Correntómetro
	San Rafael	14-oct -2019	1 370	0.75	13	Correntómetro	6-nov -2020	3 1845	0.58	25.5	Correntómetro
	aguas abajo	14 000. 2019	1.570	0.75	15	contentonieuro	0 1101. 2020	5.1045	0.50	25.5	concinento
3*Huallaga	Ambo	13-oct2019	6.286	0.88	23	Correntómetro	6-nov2020	8.66225	0.8	24	Correntómetro
	aguas arriba										
	Huancapata	4-sep2019	5.687	0.82	20	Correntómetro	7-nov2020	6.44175	0.65	17.5	Correntómetro
	Ambo						8 nov 2020	12 86725	1.2	32.5	Correntómetro
	aguas arriba						8-11012020	12.00725	1.2	52.5	concinento
Huallaga	Puente Tingo	3-sep2019	1.449	0.48	9	Correntómetro					
Huallaga	Puente Tingo	22-sep2019	29.7 1.25	1.25	22.9	ADCP					
	confluencia			1.23							
2*Huallaga	2*Chinchavito	6-sep2019	33.4	2.12	49.6	ADCP	10-nov2020	94.8	1.98	50	ADCP
		25-oct2019	117	2.82	56.4	ADCP					
Huallaga	Tingo Maria	7-sep2019	136	4.53	59.6	ADCP					

TABLA 7.1: Resultados de aforos en el río Huallaga. Elaboración propia con datos del CITA-UTEC.

101

7.2 Obtención de distribución de velocidades superficiales por velocimetría de imágenes de partículas a gran escala (LSPIV)

Para el monitoreo continuo de caudal se midió las velocidades superficiales y niveles de altura de agua mediante estaciones permanentes. Lo cual consistió en cámaras de vídeo vigilancia conectadas a un módulo raspberry y con conexión a internet en tiempo real lo que permitió grabar videos de 1 minuto en intervalos de 3, 8 y 12 horas dependiendo de la configuración requerida por cada estación, para luego ser procesado mediante la técnica de LSPIV, ésta técnica requiere parámetros de calibración los cuales son puntos georeferenciados dentro del cuadro de vídeo captado para que así los fotogramas extraídos puedan ser ortorectificadas y así trabajar con dimensiones reales. El procesamiento y obtención de los valores de la distribución de velocidades superficiales se realiza a partir de los videos haciendo uso del software RiverR. [89]

El método de velocimetría fue descrito en el capitulo 4 (Marco teórico)

La figura 7.6 muestra la estación Huancapata ubicada a lo largo del río Huallaga en la provincia de Ambo, aquí se visualiza la ubicación de la cámara y puntos de control permanentes.

FIGURA 7.6: Puntos de control, hardware y patrón de velocidades superficiales obtenidos mediante software RIVeR. Elaboración propia.

En la figura 7.7 se muestra la ubicación espacial de las 5 estaciones permanentes

FIGURA 7.7: Distribución espacial de las 5 estaciones LSPIV en el río Huallaga. Elaboración propia.

La figura 7.8 muestra el rango de distribución de velocidades superficiales de la sección de estudio analizada; se presenta el caso específico de la estación de Chinchavito la cual presenta un ancho de 60 metros y tirante máximo de 4 metros en época de avenidas.

El caudal es calculado a partir de la velocidad media en profundidad, la cual es obtenida a partir de la velocidad superficial determinada por la técnica LSPIV. Teniendo en cuenta la velocidad media en profundidad, los pasos a seguir para la obtención de caudal son los mismos que el procesamiento para los aforos con correntómetro (e.g. Método de sección media - figura 4.16). Cabe recalcar que para la obtención del adecuado valor de

caudal se debe obtener el índice de velocidad [94] según se mencionó anteriormente en el marco teórico.

FIGURA 7.8: Velocidades superficiales obtenidas mediante técnica de LSPIV para la estación Chinchavito. Elaboración propia.

7.3 Topografía y Batimetría

La caracterización topográfica y batimétrica para obtención de pendientes de las principales quebradas identificadas y pendiente local del río (200 m respecto a cada punto de estudio), secciones transversales y dimensiones de zanjas son realizadas teniendo como referencia puntos de control locales fijos como puentes, postes y buzones.

Para la obtención o colección de éstos datos se utilzaron equipos topográficos típicos como estación total, GPS GNSS y GPS RTK.

FIGURA 7.9: [a] Batimetría de zanja en Ambo, [b] Topografía del perfil de la quebrada Santa Fe - Ambo, [c] Levantamiento de la sección transversal del río - Ambo. Campaña de mediciones CITA-UTEC, 10/2019.

7.4 Caracterización de sedimentos por granulometría óptica

Los ríos con lechos de arena típicos de la Amazonia generalmente no presentan una clasificación significativa en términos de profundidad. Esto significa que la composición de los materiales en la superficie del lecho del río es bastante similar a la de los materiales más profundos. Por el contrario, en los ríos de montaña, que suelen tener lechos de grava y arena, se observa con frecuencia que los materiales en la superficie son más pequeños que aquellos en el subsuelo. Este fenómeno se debe al efecto de acorazamiento. La magnitud de esta diferencia en el tamaño de los sedimentos está influenciada por la variabilidad del flujo del río y el aporte de sedimentos desde las partes altas de la cuenca.

Se debe tener en cuenta que los materiales de la superficie no son necesariamente representativos de los materiales transportados. Sin embargo, dada la limitación de recursos y tiempo, así como la ausencia de metodologías convencionales para extraer muestras de materiales del subsuelo en entornos tan complejos, se realiza la caracterización de los materiales superficiales como la única opción.

En los ríos de montaña, es común que los bancos de sedimentos expuestos estén compuestos por áreas con diferentes distribuciones de tamaño. Por ejemplo, mientras que una barra de sedimento expuesta puede estar compuesta principalmente de gravas y cantos rodados más grandes, otra barra cercana puede estar compuesta de materiales más finos.

Esta sección presenta metodologías para cuantificar la distribución del tamaño de los sedimentos de los materiales superficiales de los sedimentos a estudiar.

La caracterización de sedimentos gruesos predominante en las áreas de estudio (barras, márgenes y lecho) se realizó por granulometría óptica debido a que el tamizado mecánico tradicional para clasificar los sedimentos [7, 38] requiere una cantidad considerable de mano de obra calificada, y todo el proceso de excavación, transporte y tamizado requiere mucho tiempo, es costoso y destructivo.

Inicialmente la caracterización del sedimento grueso se realizó mediante el uso de un marco de referencia de $1 \times 1 m$ y fotografías capturadas del sedimento donde se evidenciaba el marco para luego ser orto rectificado y así obtener los diámetros característicos de cada imagen y obteniendo el promedio de cada zona dentro del área de estudio. Pero con el uso de drones se generó ortofotos de alta resolución las cuales fueron generadas a partir de múltiples imágenes tomadas a una altura de vuelo de 10 m y con un traslape de 80 % tanto en lateral como en frontal. Cabe recalcar que se usa éste traslape debido a que es el usado para zonas agrícolas planas y dado que las zonas de caracterización son planas debido a su escala.

La figura 7.10 ilustra las dos metodologías empleadas en esta investigación para la caracterización de sedimentos gruesos. La figura 7.10a detalla el proceso de caracterización mediante el uso de ortofotos aéreas. Por otro lado, la figura 7.10b muestra la técnica alternativa que involucra el uso de un marco de referencia. Este marco es ortorrectificado para permitir un reescalado preciso y proporcionar una representación dimensional adecuada de los sedimentos.

FIGURA 7.10: [a] Ortofoto del área de estudio de Chinchavito, 10 m de altura de vuelo;[b] Sedimento grueso predominante muestreado con marco de referencia. Técnicas de granulometría óptica, CITA-UTEC, 10/2019.

En la figura 7.11 se muestra la distribución del tipo de sedimento grueso predominante a lo largo del cauce principal del río Huallaga en sus primeros 250 km de recorrido.

FIGURA 7.11: Distribución longitudinal de los puntos de muestreo de sedimentos gruesos, lo cual nos presenta el material grueso predominante. Elaboración propia.

La caracterización de los sedimentos en los puntos 1, 2, 3 y 4, mostrados en la figura 7.11, se llevó a cabo siguiendo el método descrito en la figura 7.12. En estos puntos, se realizó una caracterización exhaustiva, abarcando tanto el margen en vista aérea (planta) como en corte transversal (profundidad). Para el material del lecho, se empleó una excavadora para facilitar la caracterización. Sin embargo, la caracterización de las barras sedimentarias en estos puntos se limitó a la vista en planta. En contraste, en las demás zonas de estudio señaladas en la figura 7.11, la caracterización se realizó únicamente a nivel superficial, enfocándose en las barras y márgenes del río.

FIGURA 7.12: Distribución en sección del sedimento caracterizado. Elaboración propia.

En la figura 7.13 se presenta la distribución granulométrica de la estación Chinchavito, teniendo en consideración varias áreas muestreadas dentro de la zona de estudio. La obtención de dicha distribución granulométrica se realizó mediante granulometría óptica.

FIGURA 7.13: Curva granulométrica del sedimento grueso predominante en la estación Chinchavito, el diámetro característico D50 presente encontrado es de 10 cm. Elaboración propia.

A continuación en las figuras 7.14, 7.15 y 7.16 se muestran los procedimientos de recopilación de datos y procesamiento para ortofotos y fotografías con marco de referencia respectivamente.

FIGURA 7.14: [a] Flujograma de recopilación de datos in-situ con drone; [b] Ortofoto con zonas de estudio (márgenes, barras, quebras y/o afluentes). Uso de granulometría

FIGURA 7.15: [a] Flujograma de procesamiento de datos para ortofotos; [b] Obtención de diámetros característicos con Basegrain. Elaboración propia.

FIGURA 7.16: Flujograma de procesamiento de datos para el caso de fotografías con marco de referencia. Elaboración propia.

7.5 Transporte de carga de lecho

La cuantificación de la tasa de transporte de sedimentos es la tarea más difícil en la caracterización de ríos de montaña. Una amplia gama de materiales, la incertidumbre inherente al proceso de transporte de sedimentos, la accesibilidad limitada a los sitios y la ausencia de una metodología convencional hacen que esta tarea sea un desafío. Especialmente, las cabeceras andinas contienen grandes rocas y cantos rodados que son transportados sólo durante eventos de alto flujo (época de lluvias), durante los cuales las mediciones en el sitio son extremadamente difíciles debido al flujo turbulento y al tipo de transporte predominante.

El mayor aporte de sedimentos gruesos en ríos de alta montaña es producido por los pulsos de sedimentos producto de la activación de las quebradas presentes a lo largo del cauce principal, esto sumado a la alta pendiente y al aumento de caudal facilitan el transporte de sedimento grueso de origen aluvial y coluvial, el cual se va degradando a lo largo de su recorrido. En la figura 7.17 se muestra la distribución del sedimento predominante para los diferentes pisos altitudinales de una cuenca.

FIGURA 7.17: Distribución típica del tipo de sedimento en una cuenca. Extraido de [66], p. 56.

La metodología empleada para calcular el transporte de carga de lecho se basó en la creación de zanjas en el cauce del río, como se ilustra en la figura 7.18. Esta técnica implica cuantificar la cantidad de material que se acumula o queda atrapado en la zanja durante un periodo de tiempo determinado, tal como se muestra en la figura 7.19. Esta metodología, originalmente desarrollada para uso en laboratorio, fue adaptada y aplicada en el campo, demostrando ser efectiva para la cuantificación del transporte de lecho, según lo documentado por Toniolo (2020) [83]. Los detalles adicionales sobre esta metodología se encuentran explicados con mayor profundidad en el marco teórico de este estudio.

FIGURA 7.18: Localización de las zanjas realizados. Elaboración propia.

FIGURA 7.19: [a] Batimetría de zanja N° 1 con ADCP, [b] Batimetría de zanja N° 2 con ADCP, [c] Batimetría de zanja N° 3 con GPS RTK, [d] Batimetría de zanja N° 4 con GPS RTK. Elaboración propia, con datos de la campaña de mediciones del CITA-UTEC, 10/2019.

7.6 Transporte de carga de suspendidos

El transporte de sedimentos suspendidos en ríos de montaña como el Huallaga es un componente crucial para la comprensión de la dinámica fluvial y su impacto en la morfología y la ecología del río. Este proceso implica la movilización y transporte de partículas finas a través de la corriente, jugando un papel esencial en la distribución de nutrientes y en la formación de la geomorfología fluvial. Desde una perspectiva hidrológica y sedimentológica, el transporte de sedimentos suspendidos está intrínsecamente ligado al caudal del río, reflejando cambios en las condiciones ambientales y antrópicas a lo largo de la cuenca. La cuantificación y el análisis de este transporte son fundamentales para la gestión eficaz de los recursos hídricos, planificación de infraestructuras hidráulicas, y conservación de los hábitats acuáticos.

El método para calcular el transporte de sedimentos suspendidos en el río Huallaga se basa en la correlación entre la concentración diaria de estos sedimentos y el caudal. La relación clave se expone en la ecuación 4.12, la cual se detalla en la subsección 4.2.6.2 del marco teórico. Al aplicar los factores de conversión apropiados a estas mediciones, se logra obtener el caudal instantáneo de sedimentos suspendidos. Este valor, que se calcula a escala diaria, permite la creación del sedimentograma.

Capítulo 8

RESULTADOS

8.1 Caudal

La figuras 8.1, 8.2, 8.3 y 8.4 muestran los hidrogramas obtenidos por las estaciones LSPIV durante los años 2019 - 2021, así como la cantidad de datos que se tiene procesado por cada estación de monitoreo y los respectivos aforos hechos. También se muestra el hidrograma extraido del modelo SONICS de SENAMHI, estos caudales son generados a través del uso del modelo hidrológico desarrollado por SENAMHI [128], que utiliza estaciones hidrométricas, características fisiográficas y climáticas para calcular índices de similitud y empareja subcuencas donantes y receptoras en todo el territorio peruano. Con ello, logra obtener simulaciones de caudales diarios a nivel nacional, que exhiben un buen desempeño en cuencas ubicadas en la costa del Pacífico y en la transición de los Andes hacia la Amazonía. Se presenta ésto a modo de visualización de la tendencia.

En todas las figuras se presenta el hidrograma en tiempo y en formato de mes por cada año que se obtuvo.

A continuación se presenta los resultados de las 4 estaciones de monitoreo LSPIV mencionados:

8.1.1 San Rafael

En la figura 8.1c tenemos que los datos de caudal mínimo y máximo referente a lo medido por LSPIV son $0.14 m^3/s$ y 46.14 m^3/s respectivamente. Como se evidencia en las figuras 8.1c y 8.1e solo se tiene resultados respecto a 2 años (2019 y 2020) y con

vacíos considerables a diferencia de las figuras 8.1b y 8.1d que son datos interpolados por SENAMHI a escala diaria con un periodo de 11 años (2010-2020). También la figura 8.1c se evidencia que en el mes de Febrero 2020 se obtuvo un valor máximo de caudal de 46.14 m^3/s , así también se visualiza en la figura 8.1a que solo se realizó 2 aforos a lo largo de los 2 años y que en ambos casos fueron en época seca.

FIGURA 8.1: Hidrograma - San Rafael. Elaboración propia.

8.1.2 Huancapata

En la figura 8.2c tenemos que los datos de caudal mínimo y máximo referente a lo medido por LSPIV son 0.46 m^3/s y 39.16 m^3/s respectivamente. Como se evidencia en las figuras 8.2c y 8.2e solo se tiene resultados respecto a 2 años (2019 y 2020) y con vacíos considerables a diferencia de las figuras 8.2b y 8.2d que son datos interpolados por SENAMHI a escala diaria con un periodo de 11 años (2010-2020). También la figura 8.2c se evidencia que en el mes de Diciembre 2019 se obtuvo un valor máximo de caudal de 39.16 m^3/s , así también se visualiza en la figura 8.2a que solo se realizó 2 aforos a lo largo de los 2 años y que en ambos casos fueron en época seca.

FIGURA 8.2: Hidrograma - Huancapata. Elaboración propia.

8.1.3 Puente Tingo Confluencia

En la figura 8.3c tenemos que los datos de caudal mínimo y máximo referente a lo medido por LSPIV son 2.86 m^3/s y 374.72 m^3/s respectivamente. Como se evidencia en las figuras 8.3c y 8.3e solo se tiene resultados respecto a 3 años (2019-2021) y con vacíos considerables a diferencia de las figuras 8.3b y 8.3d que son datos interpolados por SENAMHI a escala diaria con un periodo de 11 años (2010-2020). También la figura 8.3c se evidencia que en el mes de Febrero 2020 se obtuvo un valor máximo de caudal de 374.72 m^3/s , así también se visualiza en la figura 8.3a que solo se realizó 1 aforo a lo largo de los 3 años y fue en época seca.

FIGURA 8.3: Hidrograma - Tingo Confluencia. Elaboración propia.

8.1.4 Chinchavito

En la figura 8.4c tenemos que los datos de caudal mínimo y máximo referente a lo medido por LSPIV son 1.37 m^3/s y 520.65 m^3/s respectivamente. Como se evidencia en las figuras 8.4c y 8.4e solo se tiene resultados respecto a 3 años (2019-2021) y con vacíos considerables a diferencia de las figuras 8.4b y 8.4d que son datos interpolados por SENAMHI a escala diaria con un periodo de 11 años (2010-2020). También la figura 8.4c se evidencia que en el mes de Diciembre 2019 se obtuvo un valor máximo de caudal de 520.65 m^3/s , así también se visualiza en la figura 8.4a que solo se realizaron 3 aforos a lo largo de los 3 años y que fueron en época seca

FIGURA 8.4: Hidrograma - Chinchavito. Elaboración propia.

8.2 Sedimento suspendido

A continuación presentamos los resultados de sedimentos suspendidos de la siguiente forma: Las figuras 8.5, 8.7, 8.9 corresponden a la variación en tiempo de concentración y tamaños. Las figuras 8.6, 8.8, 8.10 corresponden a la comparación de caudal, concentración y diámetro; adicionalmente se presenta la distribución por mes de los diámetros característicos representativos del sedimento suspendido.

8.2.1 San Rafael

La figura 8.5a nos evidencia claramente la distribución uniforme de diámetros característicos del sedimentos suspendido. La 8.5b nos muestra un aumento de concentración de sedimentos para los meses de junio y julio, épocas correspondientes a estación seca según se menciona anteriormente.

La figura 8.6a nos muestra que para valores bajos de caudal se tienen altos valores de diámetro medio D50. A partir de las figuras 8.6b, 8.6b y 8.6b las cuales representan la variación de diámetros característicos D10, D50 y D90 mensual; se evidencia que los meses donde se presenta un mayor diámetro son junio y julio.

FIGURA 8.6: Relación Caudal Sedimento suspendido - San Rafael. Elaboración propia.

8.2.2 Huancapata

La figura 8.7a nos evidencia claramente la distribución uniforme de diámetros característicos del sedimentos suspendido. La 8.7b nos muestra un aumento de concentración de sedimentos para los meses de julio y agosto.

FIGURA 8.7: Sedimentograma - Huancapata. Elaboración propia.

La figura 8.8a nos muestra que para valores bajos de caudal se tienen altos valores de diámetro medio D50. A partir de las figuras 8.8b,8.8c y 8.8d las cuales representan la variación de diámetros característicos D10, D50 y D90 mensual; se evidencia que los meses donde se presenta un mayor diámetro son julio y agosto.

FIGURA 8.8: Relación Caudal Sedimento suspendido - Huancapata. Elaboración propia.

8.2.3 Chinchavito

La figura 8.9a nos evidencia claramente la distribución uniforme de diámetros característicos del sedimentos suspendido. La figura 8.9b nos muestra una relación constante entre caudal y concentración a lo largo del tiempo a excepción de los valores de concentración antes de abril del 2020.

FIGURA 8.9: Sedimentograma - Chinchavito. Elaboración propia.

La figura 8.10a evidencia que para valores bajos de caudal y concentración se tiene valore altos de D50. A partir de las figuras 8.10b,8.10c y 8.10d las cuales representan la variación de diámetros característicos D10, D50 y D90 mensual; se evidencia que el mes donde se presenta un mayor diámetro es julio

FIGURA 8.10: Relación Caudal Sedimento suspendido - Chinchavito. Elaboración propia.

La figura 8.11 nos muestra la variabilidad de los valores diarios de caudal y concentración expresados de forma mensual. Los valores de caudal fueron obtenidos a partir de la técnica de velocimetría por imágenes de partículas a gran escala (LSPIV) en las estaciones que fueron instaladas para dicho fin y los valores de concentración de sedimentos suspendidos fue obtenido a partir de las muestras diarias de sedimentos suspendido superficial muestreada en las estaciones de LSPIV,

FIGURA 8.11: LSPIV - Variabilidad de los valores diarios de caudal y concentración de las estaciones de monitoreo (San Rafael, Huancapata y Chinchavito). Elaboración propia.

8.3 Transporte de carga de suspendidos

Para determinar el transporte de sedimentos suspendidos en este estudio, se estableció la relación entre el caudal y la concentración de sedimentos, como se muestra en la figura 8.12a. Se tomó la concentración del sedimento superficial muestreado en puntos específicos como representativa de toda la sección del río bajo estudio.

Debido a la escasez de datos que coinciden en fechas para concentración y caudal obtenidos mediante LSPIV (Large Scale Particle Image Velocimetry), se optó por complementar con datos de caudal de SENAMHI. Este enfoque permitió generar líneas de tendencia más representativas y facilitó la formulación de una ecuación que describe esta relación. En las figuras 8.12b y 8.12c se presentan tanto la cantidad de datos obtenidos por estación mediante LSPIV, como los proporcionados por el SENAMHI, junto con las líneas de tendencia correspondientes. Estas líneas de tendencia resultaron ser representativas tanto con los datos de caudal de LSPIV, como con los de SENAMHI, o una combinación de ambos. Se adoptó este enfoque híbrido para desarrollar una línea de tendencia que permitiera interpolar valores de concentración a partir de los datos de caudal. Esto es crucial para los casos en los que se disponga únicamente de datos de LSPIV, así como para enriquecer y homogeneizar el conjunto de datos de concentración con valores adicionales de caudal de SENAMHI.

FIGURA 8.12: Relación concentración de suspendidos y caudal: [a] Datos SENAMHI + LSPIV, [b] Datos SENAMHI, [c] Datos LSPIV. Elaboración propia.

La Figura 8.13 muestra el sedimentograma de las estaciones San Rafael, Huancapata y Chinchavito. Q_s fué calculado mediante el uso de la ecuación 4.12, presentada en la subsección 4.2.6.2. La Figura 8.14 representa el mismo hidrograma en distribuciones diarias a lo largo de cada mes, y la figura 8.20 muestra el transporte mensual de sedimentos suspendidos para el año 2020 en las tres estaciones mencionadas. Se menciona que los valores de Q_s mostrados en las figuras 8.13, 8.14 y 8.20 fueron obtenidos considerando tanto los caudales de LSPIV como los de SENAMHI. Esto se debe a que los datos de LSPIV no fueron constantes a lo largo del tiempo debido a diversos factores (e.g. inestabilidad de internet, condiciones climaticas). Esta situación se evidencia en los hidrogramas presentados en las figuras 8.1, 8.2, 8.3 y 8.4, en contraste con los datos de concentración de sedimentos que presentan mayor representatividad a lo largo del tiempo, tal como se evidencia en las figuras 8.5, 8.7 y 8.9.

FIGURA 8.13: Carga diaria de sedimentos suspendidos obtenido a partir de la CC y Q diaria. Elaboración propia.

FIGURA 8.14: Rango de variación del transporte de sedimentos suspendidos diario, presentado de manera mensual. Elaboración propia.

FIGURA 8.15: Transporte de sedimentos mensual obtenido por el método directo para el año 2020. Elaboración propia.

Utilizando los sedimentogramas presentados en las figuras 8.13, 8.14 y 8.20, se procedió a calcular el transporte total anual de sedimentos, como se muestra en la figura 8.12a. Este cálculo se centró en tres estaciones clave del estudio: San Rafael, Huancapata y Chinchavito. La figura 8.12b detalla estos sedimentogramas de forma mensual para cada uno de los años analizados, 2019 y 2020. Además, para proporcionar un contexto geográfico más amplio, la figura 8.12c muestra la ubicación de estas estaciones en un perfil longitudinal del río, indicando los puntos específicos donde se calculó el transporte de carga de sedimentos suspendidos.

FIGURA 8.16: [a] Volumen de transporte anual, [b] Sedimentograma mensual, [c] Puntos de medición de sedimentos suspendidos. Elaboración propia.

8.4 Pendiente

En esta sección, se presenta el análisis de las pendientes locales a lo largo de distintas zonas del cauce del río Huallaga. Este análisis es fundamental para comprender la dinámica fluvial y el comportamiento del transporte de sedimentos en estas áreas.

8.4.1 Medición de Pendientes Locales

La figura 8.17 muestra los puntos específicos donde se midieron las pendientes locales. En cada zona de estudio, se consideró un tramo de 100 metros de longitud, y las mediciones se realizaron utilizando tecnología RTK (Real Time Kinematic) para garantizar una alta precisión. El gráfico superior de la figura 8.17 ubica estas zonas de estudio en relación con el perfil longitudinal del río Huallaga en sus primeros 250 km de recorrido. Las fotografías inferiores muestran la configuración morfológica predominante en cada una de estas zonas, así como los valores de pendiente obtenidos en cada una. Estos datos son cruciales para entender las variaciones en la morfología del río y cómo estas pueden influir en los procesos de transporte y deposición de sedimentos.

FIGURA 8.17: Ubicación y pendientes medidas en zonas de estudio del río Huallaga. Elaboración propia a partir de datos del CITA-UTEC.

8.4.2 Análisis de Pendientes

En la figura 8.18 se detalla el cálculo de las pendientes a partir de los datos medidos en campo para cada zona de estudio. Los diferentes colores en el gráfico representan conjuntos de datos obtenidos en distintas campañas de campo llevadas a cabo entre 2019 y 2021. Esta variabilidad temporal en los datos es importante para entender cómo las pendientes en estas zonas pueden haber experimentado cambios a lo largo del tiempo, lo

4 San Rafael - Aguas abajo 2 San Rafael - Aguas arriba 6_Huancapata Ambo - Aguas arriba Pendiente -0.019 -0.0111 Pendiente -0.0224 -0.0951 -0.0176 Elevación (m.s.n.m.) 2734.0 2734.5 2735.0 2735.5 Elevación (m.s.n.m.) 2703.52704.02704.52705.027 Elevación (m.s.n.m.) 2155 2160 2165 2170 2175 Elevación (m.s.n.m.) 2092.12092.2 2145 2150 2733.5 84150 84175 84200 84225 84250 Longitud 86693 86694 86695 Longitud 55950 5600 Longitud 5972059740597605978059800 Longitud 84075 84100 8412 Ambo - Aguas abajo 8_Huanuco - Aguas arriba 13_Rancho 16 Chinchavito Pendiente -0.0006 ndiente -0.0122 2132 052.2 **3809.22** 50% 2131 Elevación (m.s.n.m.) 27 2128 2129 2130 2131 Elevación (m.s.n.m.) 2051.6 2051.8 2052.0 (m.s.n.m.) (m.s.n.m.) Pendiente • -0.0114 • -0.00563 • Elevación (r 0 780 Elevación 2127 2051.4 15809. 2126 760 g 137380 137460 137480 218650218700218750218800218850218900218950 874008741087420874308744087450874608747087480 137400 137420 137440 Longitud 30 40 Longitud 60 70 Longitud Longitud

cual tiene implicaciones directas en la dinámica fluvial y sedimentaria del río. Pendientes locales por cada zona de estudio

FIGURA 8.18: Análisis de pendientes por zona de estudio (2019-2021). Elaboración propia a partir de datos del CITA-UTEC.

La combinación de mediciones precisas y análisis detallados de estos datos proporciona una visión integral de las características de pendiente del río Huallaga y su influencia en el comportamiento hidrológico y sedimentológico del río. Estos hallazgos son esenciales para la planificación y gestión de recursos hídricos y proyectos relacionados con la conservación y uso sostenible del río.

8.5 Transporte de carga de fondo

8.5.1 Chinchavito

La figura 8.19a ilustra el hidrograma utilizado como base para la elaboración del sedimentograma. En la figura 8.19b se presentan los sedimentogramas derivados, utilizando las fórmulas más frecuentes disponibles en BedloadWeb [84] para el cálculo del

transporte de sedimentos de fondo. Finalmente, la figura 8.19c expone el transporte acumulado de sedimentos en términos anuales, calculado mediante estas diferentes fórmulas. Es destacable que los volúmenes anuales de sedimentos transportados, según estos cálculos, varían ampliamente, con un rango que va desde 2,000 hasta 200,000 metros cúbicos por año.

FIGURA 8.19: Transporte de carga de lecho de la estación Chinchavito la cual está ubicada a 250 metros aguas abajo de la confluencia de los ríos Huallaga y Chinchao y a 27 km aguas abajo de la central hidroeléctrica de Chaglla. [a] Hidrograma, [b] Sedimentogramas por ecuación usada, [c] Transporte anual de sedimento de carga de fondo. Elaboración propia.

De manera complementaria, la figura 8.20 ofrece una comparativa de los valores anuales del transporte de sedimentos suspendidos y de carga de lecho, junto con las dimensiones de la zanja de mayor tamaño utilizada en el estudio. Esta comparación proporciona una perspectiva integral sobre las diferentes escalas y magnitudes de transporte sedimentario y la relación con las características físicas de las zanjas empleadas

FIGURA 8.20: Comparación gráfica de los valores calculados de sedimentos suspendidos y sedimentos de carga de lecho. Los valores de carga de lecho se obtuvieron utilizando la plataforma BedloadWeb [129] y se emplearon todas las ecuaciones presentadas en la tabla 4.8. Los valores de sedimentos suspendidos se calcularon mediante el uso de la ecuación 4.12. La línea verde corresponde a las dimensiones de la zanja de mayor tamaño. Fuente: Elaboración propia.

8.6 Caracterización granulométrica de sedimentos gruesos

En la figura 8.21 se presenta los puntos donde se realizó la caracterización de sedimentos superficial mediante granulometría óptica, aquí se puede apreciar su representatividad a lo largo del tramo de estudio

FIGURA 8.21: Localización en perfil longitudinal de las zonas donde se muestrearon sedimentos gruesos (e.g. grava), dichas zonas fueron muestreadas mediante fotografías tomadas con marco de referencia y mediante fotogrametría a baja altura mediante el uso de drones. Las fotografías de la parte inferior representan el tipo de sedimento presente en cada zona de estudio. Elaboración propia.

ID	Estación	Simbolo	D10 (cm)	D50 (cm)	D90 (cm)
1	San Rafael - Aguas arriba	SNR_US	0.65	4.82	13.80
2	San Rafael - Aguas abajo	SNR_DS	0.85	6.92	24.12
3	Ambo - Aguas arriba	AMB_US	1.07	22.09	69.31
4	Ambo - Aguas abajo	AMB_DS	0.81	5.88	19.73
5	Huanuco - Aguas arriba	HUAN_US	1.04	3.60	21.15
6	Huanuco - Aguas abajo	HUAN_DS	1.41	3.83	28.39
7	Rancho	RAN	2.55	8.53	67.50
8	Mallcotingo	MAL	1.66	5.06	31.50
9	Chinchavito	СНІ	0.91	8.51	28.71

FIGURA 8.22: Diámetros característicos (D10, D50 y D90) de sedimento grueso superficial el cual fue obtenido por granulometria óptica a partir de imágenes tomadas en campo. Elaboración propia.

Adicionalmente se presenta en la figura 8.23 el cálculo de los caudales mínimos

FIGURA 8.23: Caudales necesarios para transportar el sedimento grueso correspondiente a los diámetros característicos D10, D50 y D90 - Estación Chinchavito. Elaboración propia

8.7 Precipitaciones Areales

Las precipitaciones areales fue obtenido a partir del producto grillado PISCO el cual tiene resolución de 5km e intervalo de tiempo de 1/1/1981-31/12/2016, mismo que nos proporciona precipitaciones diarias y mensuales.

La figura 8.24 nos muestra las áreas de drenaje de las principales quebradas y afluentes que tienen influencia en el aporte de agua y sedimentos del río Huallaga. Se considera dichas áreas de drenaje para observar cómo es el comportamiento de precipitación por cada área, esto debido a que el aumento de precipitación está ligado a la escorrentía lo cual produce transporte de agua y sedimentos.

FIGURA 8.24: Principales afluentes y quebradas a lo largo del área de estudio. Elaboración propia

La tabla 8.1 nos de detalla las características geométricas de las áreas de drenaje mencionadas.

ID	Nombre	Área $[km^2]$	Perímetro [km]	x_{cg}	y_{cg}
1	Quebrada Santa Fe	27.7	39	-76.141114	-10.385378
2	Río Huertas	2190.88	295	-76.471021	-10.431028
3	Quebrada Huamanpari	33.29	30	-76.132907	-10.100404
4	Río Huancachupa	185.49	73	-76.351673	-10.050956
5	Río Higueras	705.4	152	-76.465235	-9.982496
6	Quebrada Moras y Puelles	13.09	23	-76.260635	-9.899345
7	Río Garbanza	433.87	111	-76.372282	-9.767465
8	Río Chinobamba	213.3	74	-76.227290	-9.744967
9	Río Acomayo	84.61	44	-76.098218	-9.768055
10	Río Panao	424.53	115	-76.043750	-9.956644
11	Río Chinchao	416.84	119	-76.124608	-9.622626

TABLA 8.1: Características de las áreas de drenaje de los principales afluentes y quebradas. Elaboración propia.

La figura 8.25 nos muestra las precipitaciones diarias obtenidas a partir del promedio de todas las grillas de 5km que se encuentran dentro del área de drenaje de estudio, esto a escala diaria y teniendo como consideración que ningún área de drenaje estudiado es menor a la grilla de 5km que tiene el producto PISCO de SENAMHI.

FIGURA 8.25: Precipitación areal diaria. Elaboración propia con datos del producto PIS-CO de SENAMHI.

Para mayor visualización y comparación la figura 8.26 nos presenta la comparación del promedio mensual de las precipitaciones diarias y el promedio de las precipitaciones máximas diarias de cada mes.

FIGURA 8.26: Precipitación areal de las áreas de drenaje de los principales afluentes y quebradas del tramo de estudio. Elaboración propia con datos del producto PISCO de SENAMHI.

Capítulo 9

DISCUSIONES

9.1 Caudal

El análisis de los hidrogramas generados mediante LSPIV y su comparación con los datos de SENAMHI, ilustrados en las figuras 8.1a, 8.2a, 8.3a y 8.4a, revela una marcada diferenciación estacional en el río Huallaga. Se identifica una estación seca de abril a octubre, con un período de transición decreciente entre abril y junio, y una estación lluviosa de octubre a marzo, donde octubre y noviembre representan una fase de transición creciente. Esta observación es crucial para comprender la dinámica fluvial y la planificación de recursos hídricos en la región. La novedad en este estudio es la aplicación exitosa de LSPIV para capturar la dinámica estacional de un río de montaña, ofreciendo una metodología más accesible y menos invasiva para estudios hidrológicos en condiciones difíciles.

Los caudales obtenidos a través de LSPIV muestran una notable concordancia con los valores de SENAMHI, a pesar de las correcciones estacionales necesarias en la metodología LSPIV. Esta similitud, especialmente notoria durante las épocas secas, valida la eficacia de LSPIV como herramienta de monitoreo hidrológico.

La comparación de los hidrogramas mensuales de dos estaciones estratégicamente ubicadas una en la Amazonía baja (figura 9.2a) y otra en la región montañosa (figura 9.2b) muestra patrones similares en cuanto a la forma de los hidrogramas, lo que indica una sincronización temporal en la variabilidad del caudal a lo largo del río. Sin embargo, existen diferencias notables en los valores absolutos de caudal, atribuibles a las características geográficas y de drenaje específicas de cada estación, siendo la estación más baja receptora de un mayor volumen de agua debido a su extensa área de drenaje.

Es importante resaltar que, si bien la región amazónica baja generalmente exhibe un patrón bimodal en sus hidrogramas, este estudio específico revela una excepción a esta norma. Aquí, tanto en la Amazonía baja como en la región montañosa, los hidrogramas demuestran un comportamiento unimodal con un pico principal de caudal, desviándose del típico comportamiento bimodal. La comparación con la estación Chazuta en la Amazonía baja sirve para enfatizar la singularidad de este fenómeno en este estudio. La elección de esta estación como punto de referencia proporciona un contraste significativo con las observaciones de la región montañosa.

Este estudio introduce un elemento innovador al emplear LSPIV para obtener el hidrograma de la zona montañosa. Esta técnica, no intrusiva y eficaz, se ha demostrado como una herramienta valiosa para el monitoreo continuo del caudal en ríos de montaña, caracterizados por flujos supercríticos y turbulencias extremas que dificultan las mediciones tradicionales. Este enfoque resalta la relevancia de métodos avanzados y no convencionales en la hidrología de ríos de montaña.

FIGURA 9.1: Ubicación de las estaciones comparadas. La primera estación corresponde a la estación de monitoreo LSPIV usada para el área de estudio y la segunda estación corresponde a la estación hidrométrica que tiene SENAMHI en Amazonia baja. Elaboración propia.

FIGURA 9.2: Comparación de hidrogramas mensuales de caudales: [a] Estación Chinchavito ubicado en el kilómetro 222 de recorrido del río Huallaga respecto a su naciente, correspondiente al tramo de montaña; [b] Estación Chazuta ubicado en el kilómetro 737 de recorrido del río Huallaga respecto a su naciente, correspondiente al tramo de Amazonia baja. Elaboración propia, [b] adaptado de [130], p. 54.

9.1.1 Aplicabilidad y limitaciones del LSPIV

El LSPIV es una técnica versátil, aplicable tanto en ríos de montaña como en ríos de mayor anchura (hasta 50 metros) [66], p. 275, donde se pueden visualizar ambos márgenes. Esta técnica destaca en el monitoreo de desplazamientos de pliegues superficiales, especialmente bajo condiciones de flujo supercrítico, como en avenidas máximas y flujos de quebradas. A pesar de ser robusta, la técnica LSPIV enfrenta limitaciones relacionadas con factores externos, tales como la reflectancia solar y la nubosidad, que pueden afectar la calidad del video y, por consiguiente, los resultados del análisis. Además, debido a la lejanía de las zonas de estudio, que suelen ser áreas alejadas de las ciudades para evitar influencias antropogénicas y así caracterizar el río en su estado natural, se presentan desafíos adicionales. El uso de datos de SENAMHI para complementar el hidrograma anual obtenido mediante LSPIV fue necesario para superar estos desafíos y garantizar la continuidad de los datos.

9.2 Sedimento suspendido

En el apartado de resultados, las figuras 8.5, 8.7, y 8.9 ilustran de manera efectiva la correlación temporal entre los sedimentos suspendidos y el caudal. Se observa una tendencia clara donde variaciones en el caudal del río se reflejan en la concentración y distribución de los sedimentos suspendidos. Las figuras 8.6, 8.8 y 8.10 destacan el aporte sedimentario proveniente de las quebradas (figura 9.3). Este fenómeno se caracteriza por el aumento de la concentración y el tamaño medio (D50) de los sedimentos suspendidos durante periodos de bajo caudal, un indicativo claro de aportes externos. De manera particular, se identifica que los meses de julio y agosto, correspondientes a la estación seca, según el hidrograma obtenido mediante el monitoreo LSPIV, muestran un incremento en el aporte de sedimentos de las quebradas y afluentes. La contribución fundamental de esta investigación es la identificación de patrones de sedimentos suspendidos en épocas secas, proporcionando una nueva comprensión de la dinámica sedimentaria en ríos de montaña.

El monitoreo de sedimentos suspendidos es crucial, pues proporciona información valiosa sobre los pulsos o aportes extraordinarios de sedimentos generados por la activación de quebradas y afluentes. Además, este monitoreo es imprescindible para cuantificar adecuadamente el transporte de sedimentos suspendidos en el río.

FIGURA 9.3: Fotografías de aporte de quebradas y afluentes, obtenidas en las campañas de medición del CITA-UTEC: [a] Estación San Rafael-Aguas arriba, Fecha: 08/11/2020;
[b] Estación Ambo-Aguas arriba, Fecha: 08/11/2020;
[c] Estación Ambo-Aguas abajo, Fecha: 21/06/2019.

Al comparar un tramo de Amazonia baja (figura 9.4a - km 737, estación Chazuta) con un tramo medido en la zona montaña (figura 9.4b - km 222, estación Chinchavito) podemos observar que en Amazonía baja la mayor concentración de sedimentos se produce en época de lluvia entre los meses de diciembre a marzo lo cual es coherente con la dinámica del transporte de sedimentos suspendidos, es decir a mayor caudal se tiene mayores valores de concentración de sedimentos lo cual es acorde a la teoría de sedimentos suspendidos [65]. Sin embargo en ríos de montaña esto no siempre se cumple, ya que según los resultados mostrados al comparar el hidrograma de caudal y sedimentos suspendidos para la estación Chinchavito (figura 9.4b) se tiene que los valores picos o máximos de concentración de sedimentos no siempre se presentan en los meses de la época lluviosa sino también se presentan en los meses de época seca. Este hecho sugiere que el cauce del río Huallaga recibe aportes extraordinarios de sedimentos de quebradas o afluentes, posiblemente debido a una dinámica hidrológica distinta de la del río principal.

FIGURA 9.4: Comparación de hidrograma de caudales y sedimentos suspendidos en dos estaciones a lo largo del río Huallaga. [a] Localización de los puntos comparados, [b] Hidrograma - Estación Chinchavito, Montaña, [c] Hidrograma - Estación Chazuta, Amazonia baja. Elaboración propia, figura [c] adaptada de [130].

Este patrón de aportes extraordinarios de sedimentos en épocas secas se observa no solo en la estación Chinchavito, sino también en estaciones más cercanas a la cabecera de cuenca. La figura 9.6 muestra una comparativa de la variabilidad de los parámetros de concentración y caudal para las estaciones de monitoreo ubicadas en los km 60, 86 y 222 del río Huallaga (figura 9.5). Aquí, se aprecia claramente la presencia de pulsos o aportes extraordinarios de sedimentos suspendidos durante los meses de julio y agosto, correspondientes a la estación seca.

FIGURA 9.5: Delimitación de la cuenca del río San Juan. Fuente: Elaboración propia

FIGURA 9.6: Variabilidad de caudal y concentración de sedimentos suspendidos en las estaciones de estudio. Elaboración propia.

Para corroborar estos aportes extraordinarios de sedimentos, se analizaron las precipitaciones areales de las principales quebradas y afluentes (figura 9.7).

FIGURA 9.7: Principales aportantes de sedimentos suspendidos presentes en el río Huallaga sobre el área de estudio. Elaboración propia.

Los gráficos de comparación del promedio mensual de las precipitaciones diarias y el promedio de las precipitaciones máximas diarias de cada mes (figura 9.8) muestran claramente la existencia de lluvias localizadas durante los meses de julio y agosto. Estas lluvias localizadas confirman el aporte de sedimentos extraordinarios, ya que la precipitación induce escorrentía que a su vez conlleva un aporte significativo de agua y sedimentos.

FIGURA 9.8: Variabilidad de precipitaciones mensual promedio diario y promedio mensual máximo. Elaboración propia.

Este análisis detallado refuerza la necesidad de monitorear continuamente los sedimentos suspendidos para comprender mejor la dinámica fluvial del río Huallaga y adaptar las estrategias de gestión y conservación del ecosistema fluvial.

9.3 Transporte de carga de suspendidos y carga de lecho

Los resultados indican que la estación Chinchavito presenta el mayor aporte de sedimentos. Esto se debe a su ubicación aguas abajo de todas las estaciones y a su mayor área de drenaje, lo cual facilita la acumulación de aportes de afluentes y quebradas situadas en la parte alta de la cuenca. La figura 9.8 evidencia que en los primeros 250 km del río Huallaga hay un considerable aporte de sedimentos suspendidos por los afluentes y quebradas, como se observa en las figuras 9.9, 9.10a y 9.10b.

FIGURA 9.9: Aporte de sedimentos suspendidos del río Chinchao al río Huallaga. Fotografía de la Estación Chinchavito, tomada por el CITA-UTEC, 06/2019.

FIGURA 9.10: Fotografías que muestran el aporte de sedimentos suspendidos en el tramo km 50 - 80 del río Huallaga: [a] Aporte extremo máximo en la estación Huancapata, fotografía obtenida por el CITA-UTEC mediante el sistema LSPIV de la estación Huancapata 03/2019; [b] Quebrada Huamanpari, Ambo, aporte extraordinario, fuente: diario Ahora, Huánuco, 03/2019.

De acuerdo con los cálculos de transporte de suspendidos y de lecho (figura 9.11), se confirma que el transporte de sedimentos suspendidos predomina, lo cual concuerda con la teoría general de sedimentos [1, 65]. Las figuras 9.11a y 9.11b muestran que las ecuaciones existentes desarrolladas para sedimento fino tienden a sobrestimar conside-rablemente el cálculo del transporte de carga de lecho. Sin embargo, hay excepciones como las ecuaciones de Parker (1990) y Smart y Jaeggi (1983), que proporcionan valores más cercanos a lo observado. Es importante destacar que la ecuación de Parker (1990) es funcional para diámetros muy finos (¡ 1mm), mientras que Smart y Jaeggi (1983) son aplicables al D84 en el rango de 2.4-12.6mm [84], pp. 54 - 58., lo cual corresponde a arena muy gruesa y grava mediana, respectivamente, según la escala sedimentológica de Udden-Wentworth presentada en la tabla 4.3. Otras ecuaciones como Ackers-White (1976) [131], Bagnold (1980) [3] y Camenen Larson (2005) [4], que fueron desarrolladas y mejoradas para sedimentos de grava, no siempre proporcionan resultados precisos. La única que se ajusta a la línea verde es la de Wong-Parker (2006) [2]. La línea verde representa la dimensión o volumen de la zanja máxima realizada a lo largo del área de estudio. Este volumen

se utiliza como referencia, ya que corresponde a la zanja máxima que fue cubierta por el transporte de carga de lecho a lo largo de un año. Sin embargo, es importante considerar que comparar el transporte anual con el volumen de llenado de dicha zanja no siempre es preciso, ya que la zanja pudo haberse llenado únicamente durante épocas de máximas avenidas, cuando el transporte de carga de lecho es más notable.

Para calcular el transporte de carga de lecho, se realizaron zanjas acorde a lo mencionado en la subsección 4.2.5.1 del marco teórico. Inicialmente, se planeó una primera verificación después de tres meses, pero debido a la pandemia de COVID-19, la verificación se pospuso a un año. Este lapso solo confirmó que el río tiene capacidad de transporte de lecho superior a las zanjas realizadas. Este hallazgo subraya la importancia de monitorear continuamente a lo largo del transcurso del hidrograma del río para obtener datos precisos del transporte en cada parte del hidrograma.

Se propone que el monitoreo de transporte de carga de lecho mediante zanjas se realice mensualmente para capturar el transporte a lo largo del transcurso del hidrograma, incluyendo la época seca. Esta frecuencia de muestreo permitirá obtener un panorama completo y posibilitará reformular la metodología en futuras investigaciones.

Para el análisis del transporte de carga de lecho, se utilizaron 15 ecuaciones de transporte de sedimentos de fondo a través de la plataforma web BedloadWeb [129]. A pesar de usar parámetros medidos como pendientes, hidrogramas, sección transversal y diámetro de lecho, ninguna de las ecuaciones proporcionó valores precisos de transporte de carga de fondo a excepción de Wong-Parker (2006)[2], esto enfatiza la necesidad de calibrar estas ecuaciones con mediciones reales a lo largo del transcurso del hidrograma.

Esta investigación representa la primera medición de transporte de fondo en ríos de montaña en Perú mediante zanjas en el lecho del río. Comprender la dinámica del transporte de sedimentos es fundamental para el manejo de ríos y la protección de infraestructuras tales como hidroeléctricas, puentes, defensas ribereñas y bocatomas.

Transporte de sedimentos

FIGURA 9.11: [a] Comparación del transporte de sedimentos en suspensión y carga de lecho en la estación Chinchavito. El transporte de carga de lecho fue calculado utilizando la plataforma BedloadWeb [129], y se emplearon todas las ecuaciones presentadas en la tabla 4.8. El transporte de carga de sólidos en suspensión fue calculado mediante el uso de la ecuación 4.12. La línea verde corresponde a las dimensiones de la zanja de mayor tamaño. [b] Zoom del intervalo del eje Y (0-8000). Fuente: Elaboración propia.

9.3.1 Contraste entre ríos de montaña y ríos llanos

El transporte de carga de lecho en ríos de montaña, caracterizado principalmente por rodamiento o degradación de rocas y grava, se diferencia sustancialmente del observado en ríos llanos, como los de la Amazonía, donde predomina el movimiento de dunas de sedimentos más finos. El uso de zanjas para medir el transporte de carga de lecho en ríos de montaña es un método directo y efectivo, adaptado a las características específicas
de estos ríos, como el aporte significativo de sedimentos por quebradas y el predominio de material fluvial más grueso.

9.3.2 Especificaciones sobre ríos llanos

Es importante especificar que el término "ríos llanos" no se refiere exclusivamente a ríos de baja pendiente en la Amazonía, sino también a tramos cortos en la cabecera de cuenca donde se presenta baja pendiente y alto factor de confinamiento, debido a un valle ancho en comparación con el ancho del río. Esta diferenciación es crucial para el estudio y aplicación de técnicas de monitoreo y análisis.

9.4 Granulometría Óptica

La aplicación de la granulometría óptica en la caracterización de sedimentos en ríos de montaña demuestra una notable flexibilidad y eficacia. Esta técnica es capaz de analizar un amplio rango de tamaños de partículas, desde las más finas hasta los sedimentos más gruesos. El empleo de cámaras macro o equipadas con lentes microscópicos facilita el estudio detallado de diversas fracciones de sedimento, lo que convierte a la granulometría óptica en una herramienta excepcionalmente versátil y precisa para la caracterización granulométrica. Esta capacidad se ve respaldada por la investigación de Buscombe en 2019 [77], que resalta la eficacia de esta metodología en el ámbito de los estudios sedimentológicos. En el contexto de este estudio específico, se utilizaron tanto cámaras convencionales como drones, lo que demuestra la adaptabilidad de la granulometría óptica a diferentes tipos de equipamiento y contextos de muestreo, asegurando así una cobertura completa y detallada de las características sedimentarias del río Huallaga.

9.5 Caracterización granulométrica de sedimentos gruesos

La aplicación de la granulometría óptica en esta investigación ha revelado aspectos fundamentales sobre la capacidad del río Huallaga para transportar sedimentos superficiales. Las figuras 8.21 y 8.23 ilustran claramente que el río es capaz de movilizar los sedimentos muestreados en cada estación. Este hallazgo es particularmente notorio en la zona de Ambo-Aguas arriba (9.12), donde la alta pendiente y la presencia de varias quebradas contribuyen a un dinámico transporte de caudal sólido. Esta situación contrasta con la estación Ambo-Aguas abajo (9.13), donde, a pesar de la influencia constante del afluente principal (río Huertas - 9.13a) y la quebrada Huamanpari (9.13b), el diámetro máximo de los sedimentos transportados es considerablemente menor.

FIGURA 9.12: Estación Ambo-Upstream, donde se puede apreciar la pendiente considerable y la configuración sedimentaria del lecho. Fotografía por CITA-UTEC, 09/07/2021.

FIGURA 9.13: Estación Ambo-Downstream: [a] Vista aguas arriba, [b] Vista aguas abajo. Configuración sedimentaria y geomorfología con baja pendiente. Fotografías por CITA-UTEC, 03/06/2019.

En la estación Chinchavito, la determinación de los diámetros característicos (D10, D50 y D90) y su correspondiente caudal necesario para el transporte (9.14c) destaca que únicamente durante eventos extremos con caudales superiores a $353.5 m^3/s$ se moviliza el sedimento de mayor tamaño (28.71 cm). Esto se compara con el transporte más frecuente de sedimentos de diámetro medio D50 (8.51 cm) durante épocas lluviosas y del sedimento más fino D10 (0.91 cm), que se transporta de manera continua.

Un aspecto crucial en la dinámica fluvial de este tipo de ríos es el fenómeno de acorazamiento. Tal como se describe en la literatura [1], el acorazamiento se refiere a la formación de una capa superficial gruesa en el lecho del río, que protege los sedimentos más finos subyacentes, evitando que sean arrastrados por las corrientes. Esta característica es esencial para entender los procesos de transporte de sedimentos en ríos con lechos de grava y es fundamental para interpretar correctamente la dinámica de sedimentos observada en las diversas estaciones de muestreo.

Los resultados obtenidos mediante la granulometría óptica (9.14) proporcionan

una perspectiva detallada y cuantitativa de la distribución de sedimentos en el río Huallaga, lo que contribuye significativamente a la comprensión de su comportamiento geomorfológico y la capacidad de transporte de sedimentos. La interacción entre los distintos tamaños de sedimentos y las condiciones hidrológicas del río subraya la complejidad de los sistemas fluviales de montaña y la importancia de aplicar técnicas de análisis avanzadas para su estudio y gestión.

Puntos de muestreo de sedimento grueso mediante

FIGURA 9.14: Resultados obtenidos mediante el uso de la técnica de granulometría óptica. [a] Localización en perfil longitudinal de los puntos de medición de sedimento grueso (grava), la obtención de los diámetros característicos se realizó mediante la técnica de granulometría óptica. [b] Distribución de diámetros característicos por cada punto de medición. [c] Caudal requerido para el transporte de los diámetros característicos de la estación Chinchavito. Elaboración propia.

9.6 Consolidado

A partir de los detalles mencionados en líneas anteriores y las figuras 9.8 y 9.4, se verifica que las quebradas y afluentes presentan aporte de sedimentos en época de máximas y en los meses de julio y agosto (época seca). Esto se debe a lluvias localizadas en los afluentes y quebradas, ya que según la teoría, el aporte de sedimentos significativo de suspendidos y fondo solo se evidencia en época de máximas. Adicionalmente, la comparación de los valores calculados para el transporte de sedimentos, ilustrados en la figura 9.11, muestra que el transporte de carga de sedimentos suspendidos es predominante, en concordancia con la teoría [65, 104].

Estos aportes extraordinarios de sedimentos por parte de quebradas y afluentes, producto de lluvias localizadas, generan la necesidad de conocer la dinámica de sedimentos de quebradas y afluentes para tener una visión completa y detallada del transporte de sedimentos (suspendidos + fondo).

Al concluir esta investigación sobre la dinámica física del río Huallaga, es crucial reconocer ciertas limitaciones y considerar la aplicabilidad más amplia de los conocimientos adquiridos. A pesar de los avances significativos, una limitación principal reside en la representatividad espacial y temporal de los datos recopilados. La investigación se enfocó en los primeros 250 km del río, pero la variabilidad de los ríos de montaña sugiere la necesidad de investigaciones adicionales en otras secciones y bajo diferentes condiciones hidrológicas para ampliar la generalización de los resultados. El enfoque en técnicas de monitoreo no intrusivo y granulometría óptica, aunque innovador y eficaz, podría beneficiarse de un estudio más detallado de la variabilidad vertical del sedimento y el impacto de fenómenos como el acorazamiento.

Los resultados de esta investigación ofrecen una visión integral de la dinámica física del río Huallaga, resaltando la eficacia de las técnicas empleadas en diversos contextos fluviales. La aplicación del LSPIV y la granulometría óptica, a pesar de sus limitaciones, demostraron ser herramientas valiosas en el análisis de caudales y la caracterización de sedimentos. La comprensión del transporte de sedimentos en ríos de montaña, en contraste con los ríos llanos, resalta la diversidad y complejidad de los procesos fluviales. Los hallazgos de este estudio tienen implicaciones para la gestión de recursos hídricos y la planificación de infraestructuras en el río Huallaga y ofrecen un marco para futuras investigaciones en ríos de características similares. Se recomienda una mayor integración de métodos de monitoreo y análisis para abordar la complejidad de los sistemas fluviales y mejorar la gestión y conservación de los ecosistemas acuáticos. Este enfoque integral es fundamental para enfrentar los desafíos emergentes en la hidrología y la gestión de cuencas fluviales en un mundo en constante cambio.

La metodología implementada en esta investigación, que representa una integración de enfoques nuevos y existentes, posee un potencial considerable para su aplicación en diferentes contextos de ríos de montaña, extendiéndose más allá de Perú a regiones con características geomorfológicas afines. Los conocimientos obtenidos son fundamentales para la planificación y gestión de infraestructuras hidráulicas, conservación de ecosistemas fluviales y mitigación de riesgos asociados a la erosión y sedimentación. Los descubrimientos sobre la dinámica de sedimentos y los aportes extraordinarios de las quebradas ofrecen una nueva perspectiva para entender la morfología de los ríos de montaña y su respuesta ante eventos extremos. Finalmente, esta investigación destaca la importancia de integrar múltiples disciplinas y enfoques para abordar las complejas interacciones entre el agua y los sedimentos en ecosistemas fluviales dinámicos.

CONCLUSIONES

- Una de las interrogantes principales cuando se estudia un río de montaña es ¿qué parámetros se deben medir y cómo deben ser medidos? Esta investigación responde a esa pregunta mediante el desarrollo de una metodología innovadora, que consiste en la unificación de técnicas nuevas y existentes, para caracterizar la dinámica física de un río de montaña (agua y sedimentos) con características de lecho rocoso y con aporte de sedimentos de quebradas. Esto es particularmente relevante para la configuración de ríos de montaña en Perú. La novedad en esta investigación es la integración de métodos no convencionales como LSPIV y granulometría óptica, proporcionando un enfoque más completo para el estudio de ríos de montaña.
- Esta investigación nos da la primera perspectiva de la dinámica de agua y sedimentos en los primeros 250 km del río Huallaga. Se registró un caudal máximo de 520.65 m³/s en la estación Chinchavito y picos de concentración de sedimentos suspendidos no solo en la estación lluviosa (264.50 mg/L) sino también en la estación seca (187.47 mg/L). Además, se encontraron concentraciones promedio de sedimentos suspendidos de 60.43 mg/L, con un máximo de 677.40 mg/L en la estación San Rafael, situada aguas arriba. La contribución fundamental de esta investigación es que los resultados ofrecen un modelo referencial para la gestión de ríos de montaña no solo en Perú sino también en regiones similares a nivel mundial, siendo cruciales para la planificación de infraestructuras hidráulicas, gestión de recursos hídricos y conservación de ecosistemas fluviales.

- Los análisis revelan que el transporte de sedimentos suspendidos es el más significativo, alcanzando un total anual de 106 718 m³/año en la estación Chinchavito. A diferencia del transporte de carga de lecho, que ocurre principalmente durante las épocas de máximas, los sedimentos suspendidos muestran aportes significativos en la época seca, atribuibles a lluvias localizadas en afluentes y quebradas. El aporte para los ingenieros y científicos son los descubrimientos sobre la dinámica de transporte de sedimentos en ríos de montaña, lo cual influye directamente en el diseño de infraestructuras y en la conservación de ecosistemas fluviales.
- Se demostró que el río Huallaga en el tramo de estudio tiene la capacidad de transportar sedimento grueso superficial, con un diámetro medio (D50) de 8.61 cm transportado continuamente y un diámetro máximo (D84) de 28.71 cm, transportable solo durante caudales mayor o igual a 353.1 m³/s.
- La técnica de granulometría óptica se consolidó como un método eficaz y preciso para la caracterización de sedimentos gruesos en el río Huallaga. Esta metodología permitió identificar un rango de diámetro medio (D50) de sedimentos que varía entre 3.60 y 22.09 cm, característico del material del lecho en el tramo de montaña del río Huallaga en estudio. Estos hallazgos son significativos para comprender la dinámica sedimentaria y la morfología del lecho del río en esta región específica.
- Ésta investigación estudia la dinámica física del río Huallaga, lo cual abarca tanto el agua como los sedimentos, tiene implicancias que van más allá del contexto local, proporcionando conocimientos valiosos en un marco más amplio de la geomorfología fluvial, sedimentología, hidráulica e hidrología de ríos de montaña. Los resultados obtenidos, que incluyen la caracterización granulométrica de sedimentos y aplicación de técnicas innovadoras de monitoreo, ofrecen un modelo referencial para entender y gestionar mejor los ríos de montaña, no solo en Perú sino también en regiones similares a nivel mundial. Esta comprensión mejorada es crucial para ra la planificación y el diseño de infraestructuras hidráulicas, gestión de recursos

hídricos, protección y conservación de ecosistemas fluviales. Además, los hallazgos sobre la variabilidad estacional y los aportes extraordinarios de sedimentos por quebradas y afluentes aportan una perspectiva integral para abordar desafíos en el manejo de sedimentos y prevención de riesgos asociados a fenómenos de erosión y sedimentación en zonas de alta montaña. Por lo tanto, esta investigación no solo enriquece el conocimiento técnico y científico en el campo de la hidrología de montaña, sino que también establece un precedente para futuras investigaciones y prácticas de gestión fluvial en contextos geográficos y climáticos comparables.

RECOMENDACIONES

- Se recomienda un monitoreo permanente de agua y sedimentos no solo del cauce principal del río Huallaga, sino también de sus principales quebradas y afluentes con mayor aporte de sedimentos. Para así poder comprender la dinámica completa de sedimentos que aportan los afluentes y el sedimento que ingresa como pulsos producto de la activación de quebradas. Asimismo, la realización de mediciones de campo permitirá comprender los procesos involucrados y verificará el comportamiento observado por las estaciones de monitoreo. Se sugiere que éstas mediciones se realicen mensualmente para así cubrir con el espectro anual y obtener una calibración óptima.
- Para futuras investigaciones se recomienda realizar una caracterización en vertical del material del lecho para evidenciar si existe o no una diferencia significativa entre el tamaño de sedimentos superficial y profundidad, esto debido al fenómeno de acorazamiento que se presenta en éste tipo de ríos, asimismo se debe realizar un inventario de campo detallado de todas las zonas geológicas que puedan generar un aporte de sedimentos significativos al río (Zonas geológicas erosionables). Asimismo para el estudio de la dinámica de sedimentos se sugiere utilizar la metodología de zanjas para cuantificar el transporte de fondo, esto debido que es fundamental determinar cuanto es el transporte de carga de lecho. Éste conocimiento es clave para la prevención de daños en la infraestructura existente sobre el cauce del río como también para la proyección de futuras obras. Complementariamente, se sugiere que

las estaciones de monitoreo de flujo en quebradas sea realizado mediante la técnica LSPIV con pares estereoscópicos (2 cámaras) esto debido los cambios abruptos de la geometría de sección que allí se generan.

El análisis de caracterización de sedimentos gruesos puede mejorarse realizando monitoreo continuo de zonas de interés a partir de ortofotos generadas por fotogrametría aérea a baja altura y usando códigos de auto aprendizaje para granulometria óptica de sedimentos gruesos y realizando mapas de evolución en tiempo de la configuración morfológica detallada por cada área de estudio teniendo en consideración: barras, lecho, zonas de deposición y erosión.

REFERENCIAS BIBLIOGRÁFICAS

- [1] E. Wohl, Mountain Rivers Revisited. American Geophysical Union, 2010.
- [2] M. Wong and G. Parker, "Reanalysis and correction of bed-load relation of meyerpeter and müller using their own database," *Journal of Hydraulic Engineering*, vol. 132, no. 11, pp. 1159–1168, 2006.
- [3] R. A. Bagnold, "An empirical correlation of bedload transport rates in flumes and natural rivers," *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences*, vol. 372, no. 1751, pp. 453–473, 1980.
- [4] B. Camenen and M. Larson, "A general formula for non-cohesive bed load sediment transport," *Estuarine, Coastal and Shelf Science*, vol. 63, no. 1-2, pp. 249– 260, 2005.
- [5] E. Meyer-Peter and R. Müller, "Formulas for bed-load transport," in *IAHSR 2nd meeting, Stockholm, appendix 2.* IAHR, 1948.
- [6] C. Hauer, G. Unfer, M. Tritthart, E. Formann, and H. Habersack, "Variability of mesohabitat characteristics in riffle-pool reaches: Testing an integrative evaluation concept (fgc) for mem-application," *River Research and Applications*, vol. 27, no. 4, pp. 403–430, 2011.
- [7] K. Bunte and S. R. Abt, Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. US Department of Agriculture,

Forest Service, Rocky Mountain Research Station, 2001. [Online]. Available: https://www.fs.usda.gov/rm/pubs/rmrs_gtr074.pdf

- [8] C. C. Masteller and N. J. Finnegan, "Interplay between grain protrusion and sediment entrainment in an experimental flume," *Journal of Geophysical Research: Earth Surface*, vol. 122, no. 1, pp. 274–289, 2017.
- [9] D. Rubin, D. Topping, P. Grams, R. Tusso, J. Schmidt, D. Buscombe, T. Melis, and S. Wright, "What sediment grain size reveals about suspended-sediment transport in the colorado river in grand canyon." 06 2014.
- [10] D. R. Montgomery, M. S. Panfil, and S. K. Hayes, "Channel-bed mobility response to extreme sediment loading at mount pinatubo," *Geology*, vol. 27, no. 3, pp. 271– 274, 1999.
- [11] A. M. Pfeiffer, N. J. Finnegan, and J. K. Willenbring, "Sediment supply controls equilibrium channel geometry in gravel rivers," *Proceedings of the National Academy of Sciences*, vol. 114, no. 13, pp. 3346–3351, 2017.
- [12] G. A. Paterson and D. Heslop, "New methods for unmixing sediment grain size data," *Geochemistry, Geophysics, Geosystems*, vol. 16, no. 12, pp. 4494–4506, 2015.
- [13] T. Szabó, A. Sipos, S. Shaw, D. Bertoni, A. Pozzebon, E. Grottoli, G. Sarti, P. Ciavola, G. Domokos, and D. Jerolmack, "Universal characteristics of particle shape evolution by bed-load chipping. sci adv 4 (3): eaao4946," 2018.
- [14] D. Rickenmann and A. Recking, "Evaluation of flow resistance in gravel-bed rivers through a large field data set," *Water Resources Research*, vol. 47, no. 7, 2011.
- [15] R. Sternberg, I. Berhane, and A. Ogston, "Measurement of size and settling velocity of suspended aggregates on the northern california continental shelf," *Marine geology*, vol. 154, no. 1-4, pp. 43–53, 1999.

- [16] R. Wheatcroft and J. Borgeld, "Oceanic flood deposits on the northern california shelf: large-scale distribution and small-scale physical properties," *Continental Shelf Research*, vol. 20, no. 16, pp. 2163–2190, 2000.
- [17] R. J. Bergillos, M. Ortega-Sánchez, G. Masselink, and M. A. Losada, "Morphosedimentary dynamics of a micro-tidal mixed sand and gravel beach, playa granada, southern spain," *Marine Geology*, vol. 379, pp. 28–38, 2016.
- [18] D. Buscombe, D. M. Rubin, J. R. Lacy, C. D. Storlazzi, G. Hatcher, H. Chezar, R. Wyland, and C. R. Sherwood, "Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size," *Limnology and Oceanography: Methods*, vol. 12, no. 6, pp. 390–406, 2014.
- [19] P. Carbonneau, S. Bizzi, and G. Marchetti, "Robotic photosieving from low-cost multirotor suas: a proof-of-concept," *Earth Surface Processes and Landforms*, vol. 43, no. 5, pp. 1160–1166, 2018.
- [20] D. M. Rubin, H. Chezar, J. N. Harney, D. J. Topping, T. S. Melis, and C. R. Sherwood, "Underwater microscope for measuring spatial and temporal changes in bedsediment grain size," *Sedimentary Geology*, vol. 202, no. 3, pp. 402–408, 2007.
- [21] A. Woodget, C. Fyffe, and P. Carbonneau, "From manned to unmanned aircraft: Adapting airborne particle size mapping methodologies to the characteristics of suas and sfm," *Earth Surface Processes and Landforms*, vol. 43, no. 4, pp. 857– 870, 2018.
- [22] M. Black, P. Carbonneau, M. Church, and J. Warburton, "Mapping sub-pixel fluvial grain sizes with hyperspatial imagery," *Sedimentology*, vol. 61, no. 3, pp. 691–711, 2014.
- [23] D. Buscombe, D. Rubin, and J. Warrick, "A universal approximation of grain size from images of noncohesive sediment," *Journal of Geophysical Research: Earth Surface*, vol. 115, no. F2, 2010.

- [24] D. Buscombe and D. M. Rubin, "Advances in the simulation and automated measurement of well-sorted granular material: 2. direct measures of particle properties," *Journal of Geophysical Research: Earth Surface*, vol. 117, no. F2, 2012.
- [25] D. Buscombe, "Transferable wavelet method for grain-size distribution from images of sediment surfaces and thin sections, and other natural granular patterns," *Sedimentology*, vol. 60, no. 7, pp. 1709–1732, 2013.
- [26] Z. Cheng and H. Liu, "Digital grain-size analysis based on autocorrelation algorithm," *Sedimentary Geology*, vol. 327, pp. 21–31, 2015.
- [27] P. E. Carbonneau, S. N. Lane, and N. E. Bergeron, "Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery," *Water resources research*, vol. 40, no. 7, 2004.
- [28] P. E. Carbonneau, N. Bergeron, and S. N. Lane, "Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes," *Water Resources Research*, vol. 41, no. 11, 2005.
- [29] P. E. Carbonneau, N. E. Bergeron, and S. N. Lane, "Texture-based image segmentation applied to the quantification of superficial sand in salmonid river gravels," *Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group*, vol. 30, no. 1, pp. 121–127, 2005.
- [30] M. V. Cuttler, R. J. Lowe, J. L. Falter, and D. Buscombe, "Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques," *Sedimentology*, vol. 64, no. 4, pp. 987–1004, 2017.
- [31] S. J. Dugdale, P. E. Carbonneau, and D. Campbell, "Aerial photosieving of exposed gravel bars for the rapid calibration of airborne grain size maps," *Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group*, vol. 35, no. 6, pp. 627–639, 2010.

- [32] C. J. Legleiter, T. K. Stegman, and B. T. Overstreet, "Spectrally based mapping of riverbed composition," *Geomorphology*, vol. 264, pp. 61–79, 2016.
- [33] D. M. Rubin, "A simple autocorrelation algorithm for determining grain size from digital images of sediment," *Journal of Sedimentary Research*, vol. 74, no. 1, pp. 160–165, 2004.
- [34] A. S. Woodget and R. Austrums, "Subaerial gravel size measurement using topographic data derived from a uav-sfm approach," *Earth Surface Processes and Landforms*, vol. 42, no. 9, pp. 1434–1443, 2017.
- [35] N. Surian, "Downstream variation in grain size along an alpine river: analysis of controls and processes," *Geomorphology*, vol. 43, no. 1-2, pp. 137–149, 2002.
- [36] J. Babej, Z. Máčka, P. Ondrejka, P. Peterová *et al.*, "Surface grain size variation within gravel bars: a case study of the river opava, czech republic," *Geogr. Fis. Dinam. Quatern*, vol. 39, pp. 3–12, 2016.
- [37] S. P. Rice and M. Church, "Grain-size sorting within river bars in relation to downstream fining along a wandering channel," *Sedimentology*, vol. 57, no. 1, pp. 232– 251, 2010.
- [38] W. C. Krumbein, F. J. Pettijohn et al., "Manual of sedimentary petrography," 1938.
- [39] R. Fehr, "Einfache bestimmung der korngrössenverteilung von geschiebematerial mit hilfe der linienzahlanalyse," *Tec21*, vol. 105, no. 38, pp. 1104–1109, 1987.
- [40] M. Detert, V. Weitbrecht *et al.*, "Automatic object detection to analyze the geometry of gravel grains–a free stand-alone tool," in *River flow*. Taylor & Francis Group London, 2012, pp. 595–600.
- [41] A. G. Roy, T. Buffin-Belanger, H. Lamarre, and A. D. Kirkbride, "Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river," *Journal of Fluid Mechanics*, vol. 500, pp. 1–27, 2004.

- [42] A. Sukhodolov, M. Thiele, and H. Bungartz, "Turbulence structure in a river reach with sand bed," *Water Resources Research*, vol. 34, no. 5, pp. 1317–1334, 1998.
- [43] R. J. Adrian, "Particle-imaging techniques for experimental fluid mechanics," Annual review of fluid mechanics, vol. 23, no. 1, pp. 261–304, 1991.
- [44] I. Fujita, M. Muste, and A. Kruger, "Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications," *Journal of hydraulic Research*, vol. 36, no. 3, pp. 397–414, 1998.
- [45] E. Meselhe, T. Peeva, and M. Muste, "Large scale particle image velocimetry for low velocity and shallow water flows," *Journal of Hydraulic Engineering*, vol. 130, no. 9, pp. 937–940, 2004.
- [46] M. Muste, I. Fujita, and A. Hauet, "Large-scale particle image velocimetry for measurements in riverine environments," *Water resources research*, vol. 44, no. 4, 2008.
- [47] M. Muste, H.-C. Ho, and D. Kim, "Considerations on direct stream flow measurements using video imagery: Outlook and research needs," *Journal of Hydroenvironment Research*, vol. 5, no. 4, pp. 289–300, 2011.
- [48] I. Fujita and T. Hino, "Unseeded and seeded piv measurements of river flows videotaped from a helicopter," *Journal of Visualization*, vol. 6, no. 3, pp. 245–252, 2003.
- [49] R. Le Boursicaud, L. Pénard, A. Hauet, F. Thollet, and J. Le Coz, "Gauging extreme floods on youtube: Application of lspiv to home movies for the post-event determination of stream discharges," *Hydrological Processes*, vol. 30, no. 1, pp. 90–105, 2016.

- [50] J. Le Coz, A. Hauet, G. Pierrefeu, G. Dramais, and B. Camenen, "Performance of image-based velocimetry (lspiv) applied to flash-flood discharge measurements in mediterranean rivers," *Journal of hydrology*, vol. 394, no. 1-2, pp. 42–52, 2010.
- [51] Q. W. Lewis and B. L. Rhoads, "Resolving two-dimensional flow structure in rivers using large-scale particle image velocimetry: An example from a stream confluence," *Water Resources Research*, vol. 51, no. 10, pp. 7977–7994, 2015.
- [52] F. Tauro, M. Porfiri, and S. Grimaldi, "Orienting the camera and firing lasers to enhance large scale particle image velocimetry for streamflow monitoring," *Water Resources Research*, vol. 50, no. 9, pp. 7470–7483, 2014.
- [53] V. A. Vanoni, Sedimentation Engineering: Theory, Measurements, Modeling, and Practice, 2nd ed., ser. Manuals and Reports on Engineering Practice No. 54; Asce Manual and Reports on Engineering Practice. American Society of Civil Engineers, 2006.
- [54] O. Kisi, "Suspended sediment estimation using neuro-fuzzy and neural network approaches/estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones," *Hydrological Sciences Journal*, vol. 50, no. 4, 2005.
- [55] S.-U. Choi and J. Lee, "Assessment of total sediment load in rivers using lateral distribution method," *Journal of Hydro-environment Research*, vol. 9, no. 3, pp. 381–387, 2015.
- [56] S. A. Schumm, A tentative classification of alluvial river channels: an examination of similarities and differences among some Great Plains rivers. US Department of the Interior, Geological Survey, 1963, vol. 477.
- [57] S.A. Schumm, *The fluvial system*. The Blackburn Press, 1977, vol. 338.

- [58] S. A. Schumm, "Evolution and response of the fluvial system, sedimentologic implications," 1981.
- [59] S.A. Schumm, "Patterns of alluvial rivers," Annual Review of Earth and Planetary Sciences, vol. 13, no. 1, pp. 5–27, 1985.
- [60] J. Buffington and D. Montgomery, "9.36 geomorphic classification of rivers," 2013. [Online]. Available: https://www.fs.usda.gov/rm/pubs_other/rmrs_2013_ buffington_j001.pdf
- [61] B. L. Rhoads, *River dynamics: geomorphology to support management*. Cambridge University Press, 2020.
- [62] D. L. Rosgen, "A classification of natural rivers," *Catena*, vol. 22, no. 3, pp. 169–199, 1994.
- [63] D. L. Rosgen and H. L. Silvey, *Applied river morphology*. Wildland Hydrology Pagosa Springs, CO, 1996, vol. 1481.
- [64] M. González del Tánago and D. García de Jalón, "Propuesta de caracterización jerárquica de los ríos españoles para su clasificación según la directiva marco de la unión europea," *Limnetica*, vol. 25, no. 3, pp. 693–712, 2006. [Online]. Available: https://limnologia.info/documentos/limnetica/limnetica-25-2-p-693.pdf
- [65] M. Garcia, "Sedimentation engineering: processes, measurements, modeling, and practice." American Society of Civil Engineers, 2008.
- [66] UTEC, RIOS DANZANTES : Guías metodolÓgicas para el desarrollo de la línea base física de los ríos en Andes-Amazonía, 1st ed. Centro de Investigación y Tecnología del Agua (CITA-UTEC), 2021. [Online]. Available: https://www.dancingrivers.com/publicaciones
- [67] T. Zingg, "Beitrag zur schotteranalyse," Ph.D. dissertation, ETH Zurich, 1935.

- [68] P. A. Basile, "Transporte de sedimentos y morfodinámica de ríos aluviales," 2018.
- [69] R. Szupiany, "Clases del curso de ingeniería de sedimentos," Maestría de Investigación en Ingeniería Civil con Certificación en Ciencias e Ingeniería del Agua, 2021, universidad de Ingeniería y Tecnología - UTEC, Ciclo 2021-II.
- [70] H. Guy, "Laboratory theory and methods for sediment analysis," Tech. Rep., 1969.
- [71] ASTM, "Standard test methods for determining sediment concentration in water samples," 2019.
- [72] R. Kellerhals and D. I. Bray, "Sampling procedures for coarse fluvial sediments," *Journal of the Hydraulics Division*, vol. 97, no. 8, pp. 1165–1180, 1971.
- [73] M. Church, "River bed gravels: sampling and analysis," Sediment transport in gravel-bed rivers, pp. 43–78, 1987.
- [74] M. G. Wolman, "A method of sampling coarse river-bed material," EOS, Transactions American Geophysical Union, vol. 35, no. 6, pp. 951–956, 1954.
- [75] E. W. Lane and E. Carlson, "Some factors affecting the stability of canals constructed in coarse granular materials," in *Proceedings: Minnesota International Hydraulic Convention.* ASCE, 1953, pp. 37–48.
- [76] B. Purinton and B. Bookhagen, "Introducing pebblecounts: a grain-sizing tool for photo surveys of dynamic gravel-bed rivers," *Earth Surface Dynamics*, vol. 7, no. 3, pp. 859–877, 2019.
- [77] D. Buscombe, "Sedinet: A configurable deep learning model for mixed qualitative and quantitative optical granulometry," *Earth Surface Processes and Landforms*, vol. 45, no. 3, pp. 638–651, 2020.
- [78] K. Sharma, M. Gold, C. Zurbruegg, L. Leal-Taixé, and J. D. Wegner, "Histonet: Predicting size histograms of object instances," in *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, 2020, pp. 3637–3645.

- [79] N. Lang, A. Irniger, A. Rozniak, R. Hunziker, J. D. Wegner, and K. Schindler, "Grainet: mapping grain size distributions in river beds from uav images with convolutional neural networks," *Hydrology and Earth System Sciences*, vol. 25, no. 5, pp. 2567–2597, 2021.
- [80] J. Langhammer, T. Lendzioch, J. Miřijovský, and F. Hartvich, "Uav-based optical granulometry as tool for detecting changes in structure of flood depositions," *Remote Sensing*, vol. 9, no. 3, p. 240, 2017.
- [81] T. K. Edwards, G. D. Glysson, H. P. Guy, and V. W. Norman, *Field methods for measurement of fluvial sediment*. US Geological Survey Denver, CO, 1999.
- [82] T. Geay, S. Zanker, C. Misset, and A. Recking, "Passive acoustic measurement of bedload transport: Toward a global calibration curve?" *Journal of Geophysical Research: Earth Surface*, vol. 125, no. 8, p. e2019JF005242, 2020.
- [83] H. Toniolo, "Bed-sediment transport conditions along the sagavanirktok river in northern alaska, usa," *Water*, vol. 12, p. 774, 2020.
- [84] A. Recking, BedloadWeb: Concepts and Equations for bedload computation, 2020. [Online]. Available: https://en.bedloadweb.com/The%20equations.pdf
- [85] D. S. Mueller, C. R. Wagner, M. S. Rehmel, K. A. Oberg, and F. Rainville, "Measuring discharge with acoustic doppler current profilers from a moving boat," U.S. Geological Survey, Techniques and Methods book 3 chap., December 2013. [Online]. Available: https://geology.humboldt.edu/courses/geology550/550_ handouts/suspended_load_computation.pdf
- [86] J. R. Gray and F. J. M. Simões, *Estimating Sediment Discharge: Appendix D*, ser. ASCE Manuals and Reports on Engineering Practice. Reston, VA: American Society of Civil Engineers, 2008, no. 110, ch. Appendix D, pp. 1065–1086. [Online]. Available: https://water.usgs.gov/osw/techniques/Gray_Simoes.pdf

- [87] D. S. Mueller, C. R. Wagner, M. S. Rehmel, K. A. Oberg, and F. Rainville, *Measuring discharge with acoustic Doppler current profilers from a moving boat*. US Department of the Interior, US Geological Survey Reston, Virginia (EUA), 2009.
- [88] D. P. Turnipseed and V. B. Sauer, "Discharge measurements at gaging stations," US Geological Survey, Tech. Rep., 2010.
- [89] A. Patalano, C. M. García, and A. Rodríguez, "Rectification of image velocity results (river): A simple and user-friendly toolbox for large scale water surface particle image velocimetry (piv) and particle tracking velocimetry (ptv)," *Computers & Geosciences*, vol. 109, pp. 323–330, 2017.
- [90] Teledyne Instruments, RD, "Winriver user's guide," RD Instruments Poway, CA, USA, 2007.
- [91] Y. P. Lopez Moreno, N. A. Vanegas Guzman *et al.*, "Manual de protocolo del equipo "riversurveyor de sontek–m9" con funcionamiento de tecnología satelital del laboratorio de servicios públicos," 2017.
- [92] T. H. Yorke and K. A. Oberg, "Measuring river velocity and discharge with acoustic doppler profilers," *Flow Measurement and Instrumentation*, vol. 13, no. 5-6, pp. 191–195, 2002.
- [93] F. Tauro, A. Petroselli, and E. Arcangeletti, "Assessment of drone-based surface flow observations," *Hydrological Processes*, vol. 30, no. 7, pp. 1114–1130, 2016.
- [94] S. E. Rantz, Measurement and computation of streamflow. US Department of the Interior, Geological Survey, 1982, vol. 2175.
- [95] E. R. Mueller and J. Pitlick, "Sediment supply and channel morphology in mountain river systems: 1. relative importance of lithology, topography, and climate," *Journal of Geophysical Research: Earth Surface*, vol. 118, no. 4, pp. 2325–2342, 2013.

- [96] E.R. Mueller and J. Pitlick, "Sediment supply and channel morphology in mountain river systems: 2. single thread to braided transitions," *Journal of Geophysical Research: Earth Surface*, vol. 119, no. 7, pp. 1516–1541, 2014.
- [97] A. Recking, "Influence of sediment supply on mountain streams bedload transport," *Geomorphology*, vol. 175, pp. 139–150, 2012.
- [98] W. Li, Q. Liao, and Q. Ran, "Stereo-imaging lspiv (si-lspiv) for 3d water surface reconstruction and discharge measurement in mountain river flows," *Journal of Hydrology*, vol. 578, p. 124099, 2019.
- [99] Y.-C. Chen, "Flood discharge measurement of a mountain river–nanshih river in taiwan," *Hydrology and Earth System Sciences*, vol. 17, no. 5, pp. 1951–1962, 2013.
- [100] G. Dramais, J. Le Coz, B. Camenen, and A. Hauet, "Advantages of a mobile lspiv method for measuring flood discharges and improving stage–discharge curves," *Journal of Hydro-Environment Research*, vol. 5, no. 4, pp. 301–312, 2011.
- [101] M. C. Botelli, M. A. Chalabe, C. M. García, N. F. Guillén, A. Patalano *et al.*,
 "Aplicación de la técnica lspiv en el diseño hidrológico de infraestructura hídrica," 2020.
- [102] J. P. F. Charaja Casas, "Implementación computacional de un prototipo de sistema robótico para asistir en la rehabilitación del movimiento de flexión y extensión del codo de personas afectadas por un accidente cerebrovascular," 2022.
- [103] J. C. Bathurst, "Slope-area discharge gaging in mountain rivers," *Journal of Hydraulic Engineering*, vol. 112, no. 5, pp. 376–391, 1986.
- [104] "Geometría hidráulica aguas abajo a lo largo de un río de montaña tropical," in *El Río Chagres, Panamá*, Springer, Ed.

- [105] E. Armijos, A. Crave, P. Vauchel, P. Fraizy, W. Santini, J.-S. Moquet, N. Arevalo, J. Carranza, and J.-L. Guyot, "Suspended sediment dynamics in the amazon river of peru," *Journal of South American Earth Sciences*, vol. 44, pp. 75–84, 2013.
- [106] J.-M. Martinez, J.-L. Guyot, N. Filizola, and F. Sondag, "Increase in suspended sediment discharge of the amazon river assessed by monitoring network and satellite data," *Catena*, vol. 79, no. 3, pp. 257–264, 2009.
- [107] V. Chardon, G. Piasny, and L. Schmitt, "Comparison of software accuracy to estimate the bed grain size distribution from digital images: A test performed along the rhine river," *River Research and Applications*, vol. 38, no. 2, pp. 358–367, 2022.
- [108] "Monitoreo de la calidad de aguas superficiales: Vertiente del atlántico, río huallaga," 2000. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.
 12543/1549
- [109] "Informe del monitoreo participativo de la calidad del agua superficial en la cuenca del río huallaga (noviembre diciembre de 2018)," 2019. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/3876
- [110] "Creación del servicio de protección contra inundaciones en las localidades de huaytía, huaracalla y chacapampa en los márgenes del río huallaga, en el distrito de ambo, provincia de ambo - huánuco," 2018. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/4349
- [111] "Informe del monitoreo participativo de la calidad del agua superficial en la cuenca del río huallaga (junio - julio de 2018)," 2018. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/3875
- [112] "Priorización de cuencas: Vertiente del atlántico," 2016. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/1872

- [113] "Evaluación de recursos hídricos de doce cuencas hidrográficas del peru: Resumen ejecutivo integrado," 2016. [Online]. Available: https://repositorio.ana.gob.pe/ handle/20.500.12543/202
- [114] "Evaluación de recursos hídricos en la cuenca de huallaga," 2015. [Online].Available: https://repositorio.ana.gob.pe/handle/20.500.12543/19
- [115] "Acciones de protección y prevención de los recursos hídricos y sus bienes asociados en la cuenca hídrica del alto huallaga," 2015. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/2426
- [116] "Estudio de aprovechamiento hídrico de la central hidroeléctrica huallaga i: Resumen ejecutivo," 2015. [Online]. Available: https://repositorio.ana.gob.pe/ handle/20.500.12543/4276
- [117] "Estudio hidrológico para la acreditación de la disponibilidad hídrica superficial del río huallaga," 2015. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/4252
- [118] "Estudio hidrológico provincia de leoncio prado: Estudio hidrológico río huallaga (metas al 31 de julio del 2012)," 2012. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/4602
- [119] "Plan de desarrollo integral de la cuenca del huallaga: Documento preliminar,"
 1989. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/
 2360
- [120] "Inventario de proyectos de irrigación del departamento de huánuco: diagnóstico de la cuenca del alto huallaga y alto mara nón," 1986. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500. 12543/2903

- [121] "Proyectos identificados en las cuencas hidrográficas del alto huallaga y alto mara nón," 1986. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.
 12543/1706
- [122] "Construcción e implementación de estaciones hidrométricas en el distrito de riego alto huallaga (departamento de huánuco)," 1983. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/1980
- [123] "Plan básico de protección ambiental para la zona de huallaga central y bajo mayo," 1979. [Online]. Available: https://repositorio.ana.gob.pe/handle/20.500. 12543/1024
- [124] "Estudio de los suelos de la zona del huallaga central y bajo mayo (reconocimiento sistemático)," 1968. [Online]. Available: https://repositorio.ana.gob.pe/handle/20. 500.12543/1009
- [125] C. Typsa-Tecnoma-Engecorps, G. Inclam *et al.*, "Evaluación de recursos hídricos en la cuenca de huallaga - resumen ejecutivo," 2015. [Online]. Available: https: //repositorio.ana.gob.pe/bitstream/handle/20.500.12543/19/ANA0000049_1.pdf
- [126] "ALOS PALSAR DEM Alaska Satellite Facility," https://search.asf.alaska.edu/#/, 2011, accedido: [2022].
- [127] C. Typsa-Tecnoma-Engecorps, G. Inclam *et al.*, "Evaluación de recursos hídricos en la cuenca de huallaga - informe final," 2015. [Online]. Available: https: //repositorio.ana.gob.pe/bitstream/handle/20.500.12543/19/ANA0000049_2.pdf
- [128] H. Llauca, K. Leon, W. Lavado, and O. Felipe, "Sonics: A new peruvian hydrological dataset of simulated daily streamflow for flood monitoring and forecasting," Copernicus Meetings, Tech. Rep., 2023.
- [129] A. Recking, "Bedloadweb user manual," 2019.

- [130] E. N. Armijos Cardenas, "Cuantificación de flujos sedimentarios de las cuencas amazónicas de perú," 2010. [Online]. Available: https://repositorio.lamolina.edu. pe/handle/20.500.12996/1713
- [131] W. WHITE, P. ACKERS, M. GOURLAY, MILLI, J. FRANCIS, A. CRABBE, and T. MADDOCK, "Discussion. sediment transport theories: A review." *Proceedings* of the Institution of Civil Engineers, vol. 61, no. 1, pp. 207–227, 1976.

ANEXOS

ANEXO A: Constancia de uso de datos, CITA-UTEC

Lima, 06 de setiembre de 2022

CONSTANCIA DE AUTORIZACIÓN DE USO DE DATOS DEL CITA-UTEC

Por la presente autorizo al Sr. CHICCHON JUSTINIANO, HERNAN ARTURO, identificado(a) con DNI N° 71197020 quien ha trabajado en el Centro de Investigación y Tecnología del Agua – CITA la cual forma parte de la empresa UNIVERSIDAD DE INGENIERIA Y TECNOLOGIA con RUC N° 20545990998 desde el 16 de Julio del 2018 hasta el 15 de Diciembre del 2021, desempeñando el cargo de ASISTENTE DE INVESTIGACIÓN DE CITA en el área de DIRECCIÓN DE INGENIERÍA AMBIENTAL, CIVIL Y CITA, a hacer uso de los datos pertenecientes al CITA-UTEC para su trabajo de tesis de posgrado en la maestría que cursa en UTEC.

Esta autorización permite al solicitante a hacer uso de los datos para uso exclusivo de su tesis, en la cual debe indicarse la pertenencia de los datos al CITA-UTEC. Igualmente, en caso de que los datos quieran ser utilizados para otras publicaciones, debe gestionarse una nueva solicitud de uso de datos.

Asimismo, pedimos incluir a CITA-UTEC y la organización Gordon y Betty Moore en la sección de agradecimientos como proveedores de datos.

Se expide la presente constancia a solicitud del interesado para los fines que crea conveniente.

Atentamente,

4 Afart

Cartick Venail Z. Director Centro de Investigación y Tecnología del Agua – CITA Director departamento de Ingeniería Ambiental Universidad de Ingeniería y Tecnología – UTEC

ANEXO B: Distribución granulométrica de sedimentos gruesos

Puntos de muestreo de sedimento grueso mediante el uso de granulometría óptica

FIGURA B.1: Ubicación de las zonas de muestreo de sedimentos gruesos

FIGURA B.2: Distribución granulométrica de los puntos de muestreo de sedimento grueso a lo largo del tramo de estudio

ANEXO C: Datos de sedimentos suspendidos y caudal

FIGURA C.1: Localización de estaciones de monitoreo LSPIV a lo largo del perfil longitudinal del río respecto al área de estudio.

TABLA C.1: Localización de las estaciones LSPIV a lo largo de	l cauce del río Huallaga
---	--------------------------

ID	Estacion LSPIV	Rio monitoreado	Latitud	Lognitud	Altitud (m.s.n.m)	Km respecto al eje principal del rio [km 0 es la naciente del rio principal] Inicia en la Laguna Taulicocha
1	San Rafael	Huallaga	-76.18260700	-10.34029500	2,695	57.67
2	Huancapata	Huallaga	-76.20317110	-10.12939970	2,066	85.00
3	Puente Tingo Confluencia	Huallaga	-76.24925620	-9.94115410	1,901	105.00
4	Chinchavito	Huallaga	-75.93792370	-9.50769480	812	218.80
5	Tingo Maria	Huallaga	-76.00186100	-9.29574000	646	248.00

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-02-20	San Rafael	4.592	10.836	49.144	136.703	178.453	237.488	256.978	304.581	341.196	38.958			22.05
2019-02-23	San Rafael	8.642	17.738	39.293	77.592	131.929	224.876	253.737	322.267	377.379	78.649			9.07
2019-02-25	San Rafael	2.366	3.986	16.717	37.921	48.826	154.926	200.492	462.882	466.521	46.178			28.72
2019-02-26	San Rafael	1.559	1.637	1.845	1.968	2.09	2.25	2.298	2.607	2.842	0.248			28.67
2019-02-27	San Rafael	1.602	1.704	1.922	2.135	2.23	2.446	2.55	2.804	3.08	0.321			31.81
2019-03-01	San Rafael	1.443	1.536	1.724	1.854	1.902	2.004	2.078	2.22	2.289	0.223			14.34
2019-03-02	San Rafael	9.806	17.108	45.966	64.028	81.377	179.06	242.367	421.259	464.205	58.501			16.87
2019-03-04	San Rafael	4.722	6.844	47.942	63.075	294.793	419.045	456.109	465.233	467.673	26.398			14.46
2019-03-10	San Rafael	3.869	6.329	21.541	47.845	59.57	154.139	287.745	461.803	465.992	56.343			71.74
2019-03-12	San Rafael	3.812	5.734	18.012	50.029	57.981	75.641	139.108	462.363	466.266	32.831			176.2
2019-03-13	San Rafael	3.41	5.057	13.238	40.547	48.454	57.793	61.05	101.492	363.497	20.964			85.74
2019-03-16	San Rafael	5.242	9.302	53.521	68.837	76.791	94.534	101.746	127.424	184.392	61.526			45.07
2019-03-19	San Rafael	4.068	6.288	28.096	63.808	79.646	234.016	460.602	465.539	467.823	37.797			21.39
2019-03-22	San Rafael	2.705	4.699	13.4	38.07	55.663	74.221	87.323	132.355	277.894	57.403			86.59
2019-03-25	San Rafael	3.128	4.994	13.479	37.894	47.686	57.258	60.184	69.066	77.737	27.793			28.22
2019-03-28	San Rafael	2.868	4.718	12.984	37.75	49.041	63.394	69.373	86.331	102.575	30.426			33.27
2019-03-31	San Rafael	3.024	5.186	14.943	30.734	40.582	53.575	58.182	70.528	83.969	66.499			9.08
2019-04-04	San Rafael	3.731	6.022	20.184	48.005	57.435	74.921	87.084	133.283	222.751	56.572			32.11
2019-04-06	San Rafael	2.666	4.571	12.828	24.09	32.25	47.684	53.574	70.636	87.514	90.218			38.87

TABLA C.2: Diámetros característicos de sedimentos gruesos obtenidos mediante granulometría óptica

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-04-09	San Rafael	1.876	3.261	8.883	15.265	19.489	30.235	36.457	64.81	116.018	344.989			11.5
2019-04-12	San Rafael	6.0	11.833	42.35	202.187	303.106	460.486	462.603	466.493	468.289	52.506			8.27
2019-04-14	San Rafael	3.906	7.887	31.565	46.926	55.248	99.871	150.154	463.289	466.721	55.262			9.9
2019-04-15	San Rafael	3.318	6.367	35.414	48.444	59.098	462.714	464.339	467.319	468.693	37.284			38.79
2019-04-18	San Rafael	2.705	4.459	12.815	31.991	41.894	55.579	61.563	96.7	461.363	90.164			16.51
2019-04-21	San Rafael	4.46	8.629	33.085	51.988	60.367	85.662	107.608	461.771	465.976	74.725			8.57
2019-04-23	San Rafael	2.452	4.221	12.668	40.433	56.542	101.908	116.353	256.479	464.63	79.695			8.17
2019-04-25	San Rafael	1.824	3.15	8.603	19.375	36.096	51.836	59.137	463.87	467.005	37.056			7.83
2019-04-26	San Rafael	3.008	5.23	15.574	30.317	38.615	51.624	57.064	73.266	94.743	159.11			7.76
2019-04-27	San Rafael	2.512	4.427	11.382	25.487	39.029	56.234	64.004	460.655	465.427	75.514			20.59
2019-04-30	San Rafael	3.088	5.477	15.419	35.01	42.684	52.723	57.948	460.745	465.471	48.147			8.0
2019-05-03	San Rafael	3.506	5.896	17.009	45.409	51.931	66.86	400.649	464.844	467.483	34.335			9.56
2019-05-06	San Rafael	5.363	9.093	45.655	57.759	64.302	87.282	99.414	131.842	262.729	45.173			11.15
2019-05-09	San Rafael	2.939	5.632	16.954	33.46	39.835	48.01	50.811	58.674	65.027	49.179			7.26
2019-05-10	San Rafael	2.008	3.81	10.445	25.102	37.59	46.764	49.281	54.974	59.976	28.507			7.13
2019-05-12	San Rafael	2.765	5.584	19.797	43.553	47.856	53.051	55.516	60.954	65.161	28.519			7.0
2019-05-14	San Rafael	0.721	1.276	3.098	5.981	8.785	25.562	40.537	62.037	463.632	60.135			11.21
2019-05-15	San Rafael	1.413	2.33	6.626	12.148	15.625	23.245	27.189	40.047	52.923	512.388			8.23
2019-05-18	San Rafael	2.053	3.784	10.386	19.816	29.078	47.955	55.205	80.163	118.798	101.996			6.74
2019-05-20	San Rafael	1.985	3.723	17.392	61.28	100.85	164.495	412.061	465.23	467.672	126.999			17.24

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-05-21	San Rafael	1.827	3.148	8.372	14.143	17.948	26.995	31.957	50.094	72.808	640.578			9.94
2019-05-23	San Rafael	1.65	2.767	7.276	12.725	16.17	24.111	28.364	43.38	59.934	492.044			6.76
2019-05-24	San Rafael	1.463	2.386	6.097	10.828	13.813	20.398	23.878	36.081	49.013	369.105			6.47
2019-05-27	San Rafael	1.664	2.84	7.934	14.836	19.892	32.754	38.362	51.264	61.273	96.265			9.49
2019-05-28	San Rafael	1.647	2.77	7.282	12.509	15.958	24.801	29.985	46.291	60.801	136.41			7.2
2019-05-31	San Rafael	1.646	2.778	7.527	13.158	16.645	24.703	28.861	42.888	58.278	573.069			6.03
2019-06-02	San Rafael	0.937	1.581	3.885	7.113	9.391	14.324	16.825	26.261	37.296	309.512			5.88
2019-06-04	San Rafael	1.703	2.87	8.829	33.277	50.813	86.607	158.59	464.144	467.14	75.267			5.78
2019-06-05	San Rafael	1.575	2.55	5.785	9.049	11.072	15.364	17.604	27.309	46.261	334.177			5.73
2019-06-08	San Rafael	1.495	2.402	6.313	43.301	59.546	117.356	191.046	462.902	466.531	81.535			5.57
2019-06-11	San Rafael	1.607	2.825	7.793	14.459	21.913	43.292	49.1	63.206	214.245	57.916			5.42
2019-06-15	San Rafael	3.941	7.286	48.203	64.357	79.518	115.07	129.667	461.869	466.024	59.612			5.22
2019-06-17	San Rafael	1.711	2.817	7.318	13.231	17.63	31.136	38.127	54.603	71.978	89.676			5.37
2019-06-20	San Rafael	1.608	2.74	8.223	15.836	22.386	53.257	87.602	195.498	317.36	285.786			5.0
2019-06-27	San Rafael	1.849	3.19	15.118	87.998	187.316	402.196	447.256	464.991	467.555	73.379			4.68
2019-06-28	San Rafael	2.17	3.82	15.122	67.432	104.562	225.195	284.108	436.686	464.488	62.309			4.62
2019-06-30	San Rafael	1.897	3.219	8.473	14.23	17.917	26.42	31.116	51.197	92.787	677.402			4.82
2019-07-01	San Rafael	2.109	3.556	11.671	30.779	67.956	189.763	239.187	348.071	414.443	88.139			4.58
2019-07-02	San Rafael	1.19	1.89	4.881	9.636	12.724	19.178	22.441	34.085	52.57	315.318			4.48
2019-07-04	San Rafael	1.188	1.913	5.143	8.923	11.159	15.596	17.732	25.435	36.253	481.93			4.38

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena		μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-07-05	San Rafael	1.483	2.432	6.43	11.386	14.437	21.154	24.648	38.079	62.615	511.141			4.34
2019-07-06	San Rafael	1.331	2.163	6.178	11.107	14.054	20.22	23.293	34.478	50.2	563.856			4.29
2019-07-08	San Rafael	1.248	1.967	5.407	10.44	13.792	21.896	26.39	46.025	90.161	128.75			4.2
2019-07-09	San Rafael	1.267	2.007	5.194	9.952	13.126	20.32	24.162	41.445	83.397	116.263			4.16
2019-07-10	San Rafael	1.429	2.325	6.961	16.833	28.353	132.757	237.018	460.341	465.273	89.348			4.12
2019-07-11	San Rafael	1.073	1.743	4.545	8.296	10.915	18.204	23.98	74.855	132.643	76.016			4.08
2019-07-14	San Rafael	1.18	1.899	4.329	7.162	8.871	12.078	13.565	17.964	22.343	16.345			3.97
2019-07-15	San Rafael	1.294	2.133	5.261	8.717	10.909	15.715	18.532	76.893	134.784	52.519			5.56
2019-07-21	San Rafael	1.658	3.119	7.185	11.76	14.377	19.229	21.261	26.517	30.956	12.705			3.71
2019-07-28	San Rafael	1.625	3.816	6.843	9.846	11.253	13.643	14.66	17.555	19.811	9.26			7.12
2019-08-02	San Rafael	1.419	3.104	6.01	8.019	9.611	11.801	12.693	15.081	16.958	4.902			3.3
2019-08-03	San Rafael	0.955	1.894	5.228	8.499	10.635	14.676	16.597	24.387	35.198	17.641			3.26
2019-08-04	San Rafael	2.638	4.744	17.261	43.682	66.239	180.377	234.285	451.03	464.783	28.046			3.22
2019-08-13	San Rafael	2.4	3.674	14.755	38.396	43.863	55.574	63.832	86.8	112.142	21.932			2.97
2019-08-15	San Rafael	2.29	4.911	14.539	53.81	94.602	154.208	173.497	224.703	274.07	54.438			2.9
2019-08-18	San Rafael	1.32	1.968	5.884	11.182	15.139	25.207	30.982	52.417	78.96	64.717			2.82
2019-08-20	San Rafael	1.559	2.502	8.331	14.281	18.133	27.024	31.801	49.712	74.013	182.15			2.76
2019-08-24	San Rafael	1.022	1.594	3.84	7.412	9.889	15.203	17.748	25.879	34.136	137.816			2.65
2019-08-28	San Rafael	1.583	2.54	8.231	14.092	17.931	26.925	31.755	49.02	70.159	226.486			2.56
2019-08-29	San Rafael	1.304	2.0	6.409	11.892	15.966	27.344	35.167	68.711	104.211	48.825			2.52

Tabla C.2 Continuación de página previa
Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-08-31	San Rafael	1.591	2.581	8.243	15.934	22.534	44.102	56.751	93.252	127.705	75.342			2.47
2019-09-01	San Rafael	1.159	1.772	5.255	9.79	13.373	23.277	29.73	53.423	77.432	43.506			2.46
2019-09-03	San Rafael	1.103	1.697	4.718	8.556	11.344	17.661	20.886	31.605	42.6	31.077			2.41
2019-09-05	San Rafael												3.71	2.36
2019-09-06	San Rafael	1.111	1.737	5.605	10.586	14.172	22.339	26.461	38.872	50.067	17.254			2.34
2019-09-10	San Rafael	1.086	1.709	5.243	9.704	12.882	19.69	22.906	32.583	41.703	11.463			2.24
2019-09-11	San Rafael	0.788	1.328	3.121	6.507	8.545	13.242	15.576	23.088	30.998	27.07			2.22
2019-09-15	San Rafael	1.04	1.796	5.456	10.274	13.832	21.645	25.491	37.101	46.588	8.977			2.3
2019-09-18	San Rafael	2.883	6.583	38.964	112.841	140.687	212.596	263.22	341.545	383.326	35.425			2.08
2019-09-20	San Rafael	15.957	71.455	137.647	172.297	191.874	237.169	257.371	303.041	329.395	142.855			17.2
2019-09-23	San Rafael	5.508	13.429	35.021	47.947	55.54	72.811	82.603	126.242	284.059	65.513			5.38
2019-09-24	San Rafael	6.035	18.861	47.224	71.702	88.248	117.831	131.069	174.949	259.383	52.69			3.05
2019-09-28	San Rafael	9.341	26.881	61.022	88.107	112.162	193.206	260.506	379.07	420.104	57.485			5.56
2019-09-30	San Rafael	7.378	21.256	48.064	72.24	87.413	139.989	182.043	310.422	392.503	49.786			6.97
2019-10-01	San Rafael	20.955	46.186	82.566	102.163	119.643	176.721	209.899	308.744	391.809	106.504			13.07
2019-10-11	San Rafael	37.599	61.469	95.571	113.195	124.628	171.448	205.719	326.461	399.808	180.091			1.81
2019-10-13	San Rafael											1.8		1.65
2019-10-14	San Rafael	14.023	27.661	70.559	133.177	176.919	293.978	344.947	410.873	435.521	51.863			2.68
2019-10-19	San Rafael	51.761	69.378	97.055	119.4	135.463	167.787	185.039	243.47	318.985	211.767			21.28
2019-10-20	San Rafael	18.258	33.477	66.943	109.188	141.373	253.026	329.606	408.132	434.104	59.0			10.6

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-10-21	San Rafael	18.797	34.624	69.253	118.693	161.851	278.723	325.736	404.259	432.094	57.396	1.39		13.95
2019-10-22	San Rafael	24.979	39.977	71.582	130.787	179.245	265.418	302.707	384.765	422.197	98.645			28.67
2019-10-24	San Rafael	19.592	33.482	64.488	137.413	235.729	346.233	369.857	415.681	437.995	97.821			5.31
2019-10-28	San Rafael											0.67		1.46
2019-10-30	San Rafael	17.898	45.187	83.111	152.186	193.496	276.359	322.782	398.804	429.246	90.244			2.07
2019-10-31	San Rafael	1.074	3.066	12.619	30.219	41.908	57.504	62.471	77.805	103.284	5.988			1.93
2019-11-01	San Rafael	7.219	26.476	86.323	124.349	143.188	178.482	198.217	330.814	411.263	28.248			6.78
2019-11-02	San Rafael	15.347	42.859	64.158	79.079	88.142	112.972	125.512	177.135	252.009	73.538			26.83
2019-11-03	San Rafael											0.65		10.26
2019-11-04	San Rafael	4.23	10.181	52.54	71.159	80.511	101.219	114.516	180.956	312.962	15.088			4.6
2019-11-05	San Rafael	2.258	5.108	25.062	50.413	66.975	198.921	293.11	376.224	416.13	8.234			7.63
2019-11-07	San Rafael	21.932	46.856	71.919	98.296	119.761	184.707	230.993	349.428	402.016	54.326			15.51
2019-11-10	San Rafael	1.389	3.447	17.239	37.571	50.642	87.066	115.666	254.632	329.744	7.261			19.72
2019-11-14	San Rafael	2.515	6.432	30.837	63.147	80.851	119.018	141.37	228.417	318.817	12.044			3.89
2019-11-15	San Rafael	2.64	6.141	33.234	67.71	85.903	131.929	155.351	242.093	311.475	13.51			9.86
2019-11-16	San Rafael	2.259	5.091	24.023	56.6	76.245	166.708	227.039	308.761	345.538	7.851			9.1
2019-11-20	San Rafael	6.583	18.253	57.513	88.412	103.808	143.102	166.93	245.54	304.495	15.41			2.23
2019-11-22	San Rafael	2.824	5.711	27.266	61.03	74.628	102.838	118.552	172.216	244.644	10.568			2.56
2019-11-23	San Rafael											1.17		9.24
2019-11-25	San Rafael	10.059	32.968	63.412	80.167	89.424	115.934	131.909	195.88	269.759	22.003			3.88

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-11-28	San Rafael											0.14		4.3
2019-12-01	San Rafael	4.507	10.917	65.443	108.216	126.834	168.612	194.647	271.523	337.161	14.906			7.77
2019-12-05	San Rafael	2.56	5.709	28.879	73.39	102.596	179.313	211.677	279.229	319.8	14.111			24.82
2019-12-07	San Rafael	7.74	13.808	32.064	52.243	66.655	103.026	124.649	202.724	278.338	71.396			10.94
2019-12-08	San Rafael	3.698	8.013	33.666	58.787	74.809	112.172	132.617	202.72	260.941	22.703			14.04
2019-12-10	San Rafael	1.803	3.048	9.46	20.358	34.83	79.761	103.292	191.688	268.589	47.419			40.49
2019-12-13	San Rafael	2.008	3.779	12.441	33.053	56.598	94.232	111.044	173.35	232.804	35.632			63.42
2019-12-14	San Rafael	15.466	47.464	95.947	117.575	131.824	172.102	200.685	313.142	374.751	62.98			36.01
2019-12-15	San Rafael	1.482	2.249	6.744	12.574	16.644	27.094	33.318	61.087	104.307	115.984			13.66
2019-12-17	San Rafael											13.08		17.88
2019-12-19	San Rafael	1.45	2.172	6.368	11.641	15.157	23.061	27.332	43.909	68.919	101.47			32.03
2019-12-20	San Rafael	2.158	4.005	12.605	27.543	41.097	76.374	98.768	193.477	272.419	51.109			25.36
2019-12-22	San Rafael	2.285	4.385	22.034	65.594	117.88	237.625	277.012	352.683	395.371	42.645			14.09
2019-12-25	San Rafael	5.822	14.572	55.309	77.632	95.191	150.339	181.585	272.768	334.411	24.885			10.77
2019-12-27	San Rafael	5.668	13.758	74.89	103.147	119.95	156.845	172.156	220.077	266.552	26.236			10.01
2019-12-28	San Rafael	11.261	33.839	63.321	87.511	109.006	170.564	202.886	289.964	349.506	32.558			16.06
2019-12-30	San Rafael	1.495	2.286	7.499	13.454	17.387	27.393	33.558	63.583	120.418	216.954			13.73
2019-12-31	San Rafael	2.186	4.265	13.822	29.473	43.824	80.977	101.714	183.896	262.92	64.967			21.44
2020-01-01	San Rafael	1.327	2.159	6.333	11.846	15.655	23.302	26.78	35.169	39.992	8.545			15.86
2020-01-02	San Rafael	1.438	2.086	5.643	10.484	13.757	21.32	25.609	45.237	93.923	129.818			24.14

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Estación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-01-03	San Rafael	1.585	2.465	7.484	13.937	18.847	33.282	42.902	87.633	156.814	114.517			35.14
2020-01-05	San Rafael	1.561	2.447	7.753	13.557	17.242	26.059	30.993	52.432	96.887	260.548			21.96
2020-01-06	San Rafael	1.778	2.935	8.25	14.258	18.428	28.656	34.435	58.304	95.491	110.736			7.9
2020-01-09	San Rafael	1.609	2.494	7.4	12.682	16.057	23.973	28.543	49.449	95.927	222.751			3.15
2020-01-10	San Rafael	1.193	1.816	4.897	12.634	24.988	175.732	250.375	357.201	407.007	78.559			1.59
2020-01-12	San Rafael	1.42	2.26	8.153	21.962	37.662	107.043	162.877	243.153	300.732	7.889			8.25
2020-01-13	San Rafael											12.33		14.85
2020-01-14	San Rafael	1.628	2.554	6.997	12.107	15.744	24.788	30.108	52.81	89.801	130.746			22.99
2020-01-15	San Rafael	1.468	2.21	6.564	11.376	14.364	20.728	23.887	34.873	47.447	153.503			34.97
2020-01-19	San Rafael	1.615	2.528	7.584	13.303	16.984	25.526	30.0	46.011	69.14	97.178			10.9
2020-01-20	San Rafael	1.921	3.536	12.229	30.52	42.628	60.43	68.319	94.131	116.787	29.063	13.78		33.5
2020-01-21	San Rafael	1.289	1.947	5.501	10.768	15.17	27.558	35.293	80.123	237.947	32.704			32.71
2020-01-24	San Rafael	2.876	6.335	59.471	90.714	107.313	142.586	159.997	226.689	273.361	42.111			73.23
2020-01-25	San Rafael	1.573	2.404	6.229	10.01	12.37	17.27	19.567	26.851	34.001	51.838			28.3
2020-01-27	San Rafael	1.577	2.445	6.469	10.354	12.709	17.402	19.53	26.155	32.218	21.299			4.88
2020-01-29	San Rafael											19.28		2.95
2020-01-30	San Rafael	1.706	2.669	6.896	11.648	15.015	22.979	27.326	43.265	61.634	99.934			2.12
2020-02-01	San Rafael	1.537	2.443	6.527	10.573	13.253	19.274	22.426	32.875	44.197	15.026	15.64		12.32
2020-02-02	San Rafael	1.349	2.106	5.621	9.039	11.214	15.805	18.074	26.168	36.655	12.242			68.18
2020-02-05	San Rafael	1.738	2.737	7.684	12.665	15.694	22.019	25.144	35.366	46.327	181.717			61.16

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
recha	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-02-07	San Rafael											21.59		33.92
2020-02-08	San Rafael											35.33		51.49
2020-02-09	San Rafael											27.73		110.2
2020-02-10	San Rafael											44.96		67.39
2020-02-11	San Rafael											37.7		33.08
2020-02-12	San Rafael	1.604	2.43	6.633	11.55	14.699	21.397	24.711	35.801	48.213	170.785	46.14		14.13
2020-02-13	San Rafael											18.85		78.66
2020-02-14	San Rafael	1.58	2.376	6.728	11.435	14.324	20.408	23.373	33.87	46.625	196.994	45.73		29.5
2020-02-16	San Rafael	1.518	2.297	6.272	10.401	12.936	17.982	20.281	27.408	34.627	109.627	39.9		22.64
2020-02-18	San Rafael	1.577	2.486	6.783	10.771	13.157	18.006	20.236	27.247	34.277	74.554			12.79
2020-02-20	San Rafael	1.334	2.017	5.381	8.839	11.138	15.985	18.351	25.922	33.509	109.539			11.71
2020-02-22	San Rafael	1.5	2.341	6.012	9.401	11.444	15.506	17.3	22.782	27.985	33.745			4.56
2020-02-24	San Rafael	1.508	2.532	6.88	10.975	13.556	19.457	22.838	37.344	55.068	20.466			2.8
2020-02-26	San Rafael	1.512	2.498	6.821	10.867	13.443	19.229	22.464	37.336	62.776	28.17			12.66
2020-02-27	San Rafael											20.95		9.42
2020-02-28	San Rafael	0.648	1.846	5.28	8.403	10.239	13.71	15.226	19.331	22.919	8.995			6.15
2020-02-29	San Rafael											25.91		30.33
2020-03-01	San Rafael	1.48	2.248	5.959	9.863	12.365	17.619	20.068	27.904	35.917	106.413			55.62
2020-03-03	San Rafael											29.85		9.07
2020-03-05	San Rafael											18.75		3.68

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Listación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-03-06	San Rafael	7.034	16.168	95.248	117.723	127.665	141.967	149.948	190.385	339.721	145.794			3.19
2020-03-08	San Rafael	0.502	1.803	5.656	9.152	11.205	15.153	16.811	21.793	26.161	7.215	11.25		2.95
2020-03-11	San Rafael											17.97		9.02
2020-03-12	San Rafael	1.792	3.302	9.014	16.525	25.926	118.015	156.993	261.429	321.409	39.254			5.07
2020-03-14	San Rafael	1.493	2.489	6.552	10.62	13.337	19.519	22.823	34.328	46.825	35.103			14.11
2020-03-16	San Rafael	1.339	2.183	5.886	9.095	11.024	14.914	16.669	22.505	28.454	39.924			6.98
2020-03-18	San Rafael	1.567	2.666	7.287	12.001	15.256	22.841	27.006	41.86	57.959	34.465			11.82
2020-03-20	San Rafael	1.797	2.878	7.578	12.471	15.446	21.609	24.643	35.218	48.73	92.151			38.51
2020-03-24	San Rafael	1.472	2.385	6.623	10.765	13.342	18.861	21.648	30.963	41.667	63.336			5.53
2020-03-28	San Rafael	1.865	3.088	8.256	13.427	16.597	23.839	27.722	43.78	71.986	224.137			71.1
2020-03-30	San Rafael	1.631	2.525	6.729	11.297	14.183	20.575	23.93	37.405	61.804	256.871			29.17
2020-03-31	San Rafael	1.571	2.551	7.381	12.239	15.429	22.855	27.158	46.937	89.219	118.776			12.87
2020-04-01	San Rafael	1.69	2.738	7.401	12.192	15.359	22.765	27.148	50.94	143.58	152.016			6.44
2020-04-04	San Rafael	2.547	5.213	13.538	35.325	75.511	148.409	182.308	315.792	399.323	76.346			2.93
2020-04-08	San Rafael	2.299	4.653	12.464	31.252	73.85	155.254	195.995	349.906	412.747	55.833			2.64
2020-04-12	San Rafael	2.099	3.958	9.72	16.465	22.169	46.372	78.994	286.3	394.703	83.329			2.57
2020-04-16	San Rafael	2.598	5.07	12.186	23.218	38.139	127.859	181.288	336.477	405.25	95.067			111.5
2020-04-18	San Rafael	3.141	6.255	17.455	67.454	140.321	269.883	321.555	402.471	431.162	55.392			21.51
2020-04-20	San Rafael	3.079	6.511	25.393	107.7	163.082	294.216	341.163	409.108	434.609	29.1			6.2
2020-04-24	San Rafael	3.247	7.216	27.528	152.259	214.984	333.805	365.748	417.242	438.795	23.736			2.51

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Listación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-04-28	San Rafael	0.0	2.739	11.603	18.112	21.895	29.596	33.3	48.65	63.692	4.248			2.27
2020-04-30	San Rafael	4.95	8.682	35.877	105.902	182.194	314.51	343.463	395.82	427.679	11.349			2.22
2020-05-01	San Rafael	2.019	3.499	9.144	16.355	23.397	54.488	71.703	138.335	242.157	15.215			2.2
2020-05-04	San Rafael	1.533	2.355	5.963	10.008	12.858	19.805	23.97	42.152	74.782	70.911			84.08
2020-05-06	San Rafael	1.635	2.938	7.875	12.886	16.068	23.197	27.144	42.185	57.225	10.95			15.85
2020-05-08	San Rafael	2.086	3.753	9.711	18.532	28.95	104.514	167.19	301.272	366.345	67.123			4.59
2020-05-11	San Rafael	2.311	4.443	10.721	19.671	29.337	103.384	173.983	308.671	372.493	87.761			2.52
2020-05-12	San Rafael	2.713	5.079	11.951	22.178	34.265	192.136	262.288	356.426	400.956	77.392			2.39
2020-05-14	San Rafael	5.384	9.146	73.137	170.212	218.255	305.445	333.65	384.998	420.773	76.378			2.01
2020-05-15	San Rafael	2.163	3.786	9.931	18.921	27.054	46.191	53.536	70.321	83.463	25.841			1.95
2020-05-16	San Rafael	2.559	4.623	10.262	16.323	21.197	48.17	77.934	371.712	418.927	11.61			1.92
2020-05-18	San Rafael	8.971	18.667	92.816	128.884	143.192	168.309	180.969	215.433	242.92	68.942			1.88
2020-05-19	San Rafael	2.976	5.085	13.883	299.678	350.284	400.008	412.801	437.213	448.897	12.375			1.86
2020-05-21	San Rafael	6.168	10.767	49.108	197.661	253.759	324.427	351.214	406.13	433.066	10.984			1.83
2020-05-24	San Rafael	2.968	4.627	10.622	18.471	23.88	35.169	40.485	59.367	88.155	8.87			9.59
2020-05-27	San Rafael	3.173	5.212	11.318	17.328	21.155	29.815	34.805	59.401	293.564	13.067			2.29
2020-05-28	San Rafael	3.285	5.125	10.826	15.95	18.885	24.881	27.697	38.214	48.629	5.308			1.89
2020-05-31	San Rafael	2.478	3.765	8.166	12.937	16.044	24.139	29.605	53.546	75.833	6.534			1.66
2020-06-01	San Rafael	2.882	4.775	10.467	16.687	22.578	80.307	122.5	133.625	139.065	5.703			1.63
2020-06-04	San Rafael	6.596	9.836	20.667	291.885	345.882	398.779	411.817	436.72	448.651	7.802			3.47

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-06-08	San Rafael	5.94	9.148	20.959	59.616	78.879	160.71	184.476	271.079	347.211	8.235			1.66
2020-06-10	San Rafael	0.594	4.227	12.912	19.982	24.778	36.197	41.743	53.08	142.359	3.79			1.51
2020-06-14	San Rafael	1.729	2.744	7.145	11.52	13.951	18.814	21.095	28.108	34.775	2.035			4.08
2020-06-16	San Rafael	2.264	4.472	11.014	20.233	33.629	54.209	58.788	68.976	74.781	3.297			1.67
2020-06-20	San Rafael	4.933	9.425	36.54	59.127	67.961	81.078	85.713	102.111	143.791	9.384			1.35
2020-06-24	San Rafael	2.108	4.029	9.941	15.15	18.227	25.163	29.235	51.009	78.153	8.149			1.29
2020-06-30	San Rafael	3.364	6.616	17.8	52.467	73.635	96.528	103.986	123.541	140.63	9.255			1.21
2020-07-01	San Rafael	3.934	7.253	42.087	102.139	132.527	161.841	169.531	190.075	200.506	43.746			1.2
2020-07-04	San Rafael	1.965	3.401	8.745	14.198	17.663	26.217	31.38	46.017	55.849	5.387			1.16
2020-07-10	San Rafael	1.997	3.638	9.127	14.601	18.045	26.33	31.14	125.227	157.461	3.587			2.83
2020-07-12	San Rafael	1.461	2.186	5.574	8.973	11.112	15.35	17.212	22.807	27.905	21.117			1.24
2020-07-14	San Rafael	2.198	3.995	9.758	16.266	20.889	32.017	37.29	50.299	60.081	9.679			1.06
2020-07-16	San Rafael	2.585	4.742	11.731	22.952	40.3	84.707	100.344	139.187	164.468	14.511			1.03
2020-07-18	San Rafael	1.15	2.342	7.089	11.587	14.037	18.881	21.296	29.945	37.483	2.439			1.0
2020-07-20	San Rafael	5.174	9.253	71.384	100.376	112.051	131.078	137.972	155.299	165.76	9.006			0.98
2020-07-24	San Rafael	2.778	5.564	17.843	53.888	62.647	73.842	78.569	89.232	100.247	11.292			2.33
2020-08-04	San Rafael	1.403	2.097	4.877	7.628	9.434	13.336	15.29	21.827	29.199	27.842			0.84
2020-08-08	San Rafael	2.233	5.157	12.438	19.234	23.558	31.826	35.404	44.407	51.453	2.356			0.8
2020-08-12	San Rafael	2.347	4.863	13.354	25.101	32.429	42.944	46.588	55.11	61.53	6.885			0.77
2020-08-16	San Rafael	6.479	12.042	52.367	76.216	83.985	96.543	100.885	115.111	126.352	8.102			0.73

Tabla C.2 Continuación de página previa

Fecha	Fetación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
гспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-08-18	San Rafael	5.574	11.254	42.988	62.402	68.053	76.048	79.602	86.522	94.675	5.709			0.72
2020-08-24	San Rafael	7.536	14.076	58.82	76.935	83.473	94.667	98.968	112.075	121.937	13.323			0.92
2020-08-28	San Rafael	10.507	27.552	63.812	77.835	85.555	104.387	117.332	154.805	181.879	11.747			0.65
2020-08-31	San Rafael	6.722	11.555	131.263	257.137	297.885	352.346	371.235	413.305	436.774	5.65			15.15
2020-09-01	San Rafael	2.382	4.872	19.869	54.549	74.488	93.039	98.7	110.385	116.391	8.823			17.41
2020-09-04	San Rafael	12.067	47.248	69.421	80.704	85.746	96.069	99.848	109.713	116.045	17.796			1.16
2020-09-08	San Rafael	2.36	5.179	9.667	16.249	25.426	64.198	70.407	79.934	83.922	1.412			0.58
2020-09-10	San Rafael	0.0	0.582	34.85	39.772	41.162	42.929	43.454	44.429	44.884	0.816			0.57
2020-09-16	San Rafael	8.401	18.479	85.489	102.395	111.782	127.28	134.432	153.184	168.638	8.434			2.08
2020-09-18	San Rafael	5.218	7.227	21.549	53.35	61.794	74.736	80.898	99.0	122.043	3.485			1.58
2020-09-20	San Rafael	1.929	4.153	10.13	21.02	34.384	57.259	65.646	172.088	211.528	2.875			1.58
2020-09-24	San Rafael	19.866	32.8	56.001	69.177	75.46	86.222	91.198	104.909	119.435	5.528			0.51
2020-09-28	San Rafael	1.434	2.278	6.841	13.203	19.352	41.219	51.167	72.693	92.447	6.577			11.56
2020-09-30	San Rafael	1.829	2.985	7.625	12.147	15.023	21.174	24.292	35.132	47.448	96.345			6.56
2020-10-01	San Rafael	1.594	2.567	7.158	11.65	14.413	20.48	23.607	35.033	48.597	9.286			2.42
2020-10-04	San Rafael	1.72	2.877	8.08	15.456	22.22	41.02	50.146	74.766	97.665	9.006			0.52
2020-10-08	San Rafael	3.737	7.025	45.89	82.088	97.634	118.657	126.203	143.608	162.157	13.777			0.43
2020-10-12	San Rafael	1.268	2.584	7.916	14.687	20.291	30.362	33.658	39.768	42.527	2.504			0.41
2020-10-15	San Rafael	1.758	3.738	10.188	23.317	33.623	55.517	68.853	94.255	119.221	2.671			0.4
2020-10-16	San Rafael	12.802	54.512	127.249	155.798	166.484	192.402	203.146	249.464	304.009	12.554			0.4

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-10-20	San Rafael	5.497	8.463	48.05	71.52	81.065	98.024	105.2	128.284	144.034	3.857			18.16
2020-10-24	San Rafael	1.898	3.245	8.067	13.2	16.881	28.301	36.684	67.755	92.18	15.317			59.12
2020-10-25	San Rafael	1.619	2.943	7.911	12.474	15.373	21.833	25.063	34.041	39.609	7.552			37.2
2020-10-27	San Rafael	1.388	2.486	7.386	11.952	14.867	21.387	24.608	33.499	39.27	5.462			122.7
2020-10-28	San Rafael	4.56	6.996	15.905	37.009	56.854	81.027	90.186	118.358	141.029	3.819			57.54
2020-10-31	San Rafael	1.789	3.038	8.206	13.981	18.632	33.96	44.406	74.94	94.623	25.057			324.7
2020-11-01	San Rafael	1.78	2.972	7.899	12.578	15.503	21.915	25.29	37.374	52.748	195.438			137.0
2020-11-02	San Rafael	2.227	4.44	10.797	20.031	31.053	69.155	81.623	110.662	134.254	31.882			59.87
2020-11-04	San Rafael	3.492	6.587	19.76	60.683	74.619	95.362	103.717	128.727	148.107	26.761			12.55
2020-11-05	San Rafael											0.61	3.74	9.57
2020-11-07	San Rafael											0.34		1.95
2020-11-09	San Rafael											0.51		0.64
2020-11-20	San Rafael											0.75		32.86
2020-11-23	San Rafael											0.58		3.52
2020-11-25	San Rafael											0.22		0.63
2020-11-27	San Rafael											0.44		5.14
2020-12-04	San Rafael											0.43		3.77
2020-12-06	San Rafael											1.19		14.42
2020-12-08	San Rafael											1.66		6.01
2020-12-10	San Rafael											1.21		40.19

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
I tena	Estación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-12-12	San Rafael											0.94		10.95
2019-06-07	Huancapata	1.757	2.838	9.005	25.0	68.431	148.738	179.416	273.443	344.957	14.753			23.32
2019-06-20	Huancapata											1.31		20.75
2019-06-25	Huancapata	2.015	3.234	9.242	24.479	46.309	117.788	144.393	201.24	249.488	16.064			19.7
2019-06-30	Huancapata	10.665	19.929	46.535	75.694	94.05	133.633	151.528	201.678	247.309	18.909			18.8
2019-07-01	Huancapata	3.264	5.285	20.256	57.489	78.865	123.197	143.007	195.877	238.422	21.294	1.39		18.61
2019-07-02	Huancapata	3.121	5.634	21.08	83.275	104.892	141.068	157.019	201.143	244.836	16.043			18.44
2019-07-03	Huancapata	16.142	81.623	152.19	183.288	196.967	234.167	254.851	318.562	384.049	35.106			18.28
2019-07-05	Huancapata	5.365	10.106	43.298	65.578	80.083	116.462	138.597	225.074	309.627	65.348	0.73		17.92
2019-07-06	Huancapata	2.885	3.611	6.754	52.168	93.861	145.756	164.164	211.434	249.069	24.191			17.72
2019-07-09	Huancapata	4.676	7.871	57.019	107.108	132.033	172.069	188.373	230.75	267.033	19.407	2.03		17.16
2019-07-10	Huancapata	4.273	7.584	50.436	99.789	124.536	166.082	183.197	227.884	265.231	20.473			16.98
2019-07-12	Huancapata	2.502	3.972	11.276	31.915	51.752	101.803	127.435	196.521	252.448	52.062			16.67
2019-07-13	Huancapata											1.38		16.49
2019-07-15	Huancapata	5.45	9.463	51.155	98.993	124.124	165.531	182.297	226.4	263.351	21.034			16.2
2019-07-17	Huancapata											1.32		15.87
2019-07-20	Huancapata	8.4	32.485	101.885	160.18	194.031	254.604	282.604	375.867	438.936	44.737			15.38
2019-07-21	Huancapata	3.933	7.132	33.05	67.606	86.391	127.956	146.923	199.473	246.183	33.416	1.7		15.25
2019-07-25	Huancapata											0.46		14.64
2019-07-26	Huancapata	5.131	13.155	57.615	88.739	108.746	150.627	168.988	225.238	276.411	30.56			16.98

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-07-28	Huancapata	6.559	21.53	85.812	140.526	173.789	243.92	274.683	361.187	425.707	27.314			14.98
2019-07-30	Huancapata	4.019	7.465	41.468	79.902	101.923	146.148	164.894	216.932	261.029	29.493			14.5
2019-07-31	Huancapata	3.878	7.124	72.363	126.077	151.031	195.833	216.009	268.441	312.735	17.426			14.32
2019-08-01	Huancapata	3.44	6.45	27.512	69.972	94.606	141.344	161.0	215.266	262.078	32.182			14.12
2019-08-02	Huancapata	4.585	7.88	36.523	72.246	95.163	145.209	168.261	235.768	298.369	47.292			13.93
2019-08-04	Huancapata	4.674	6.906	43.217	73.044	88.434	123.746	143.024	212.104	289.767	51.475			13.61
2019-08-06	Huancapata	9.186	16.546	44.208	77.413	100.187	152.896	179.312	265.409	346.186	160.864			13.28
2019-08-10	Huancapata	70.534	95.912	131.087	153.924	163.745	185.123	194.767	237.15	277.674	321.364			12.77
2019-08-11	Huancapata	6.335	15.77	53.541	72.97	84.785	113.117	129.39	190.326	257.853	52.076			12.69
2019-08-14	Huancapata	8.001	23.567	60.595	94.017	119.285	199.955	278.01	451.142	464.9	75.598			12.22
2019-08-15	Huancapata	6.012	10.511	59.834	108.424	138.63	193.731	217.485	279.916	337.514	33.764			12.08
2019-08-20	Huancapata	4.51	6.457	38.335	80.536	102.567	149.247	169.839	234.317	288.602	40.687			11.7
2019-08-24	Huancapata	2.401	5.095	21.005	84.828	114.577	164.023	184.588	240.627	288.326	27.389			11.19
2019-08-25	Huancapata	5.753	15.629	116.907	149.982	164.794	211.881	258.555	443.486	464.783	166.238			11.06
2019-08-26	Huancapata	1.39	2.038	5.853	12.737	20.645	63.692	95.635	180.989	247.01	69.883			10.91
2019-08-30	Huancapata	1.676	2.636	7.785	13.836	17.853	27.408	33.029	61.585	123.912	218.858			10.42
2019-08-31	Huancapata	3.587	7.285	23.263	69.42	108.873	170.992	196.913	263.356	314.941	33.206			10.31
2019-09-01	Huancapata	3.432	7.281	29.491	90.353	125.83	182.857	207.007	272.749	325.798	27.05			10.23
2019-09-02	Huancapata	22.911	56.08	105.808	146.018	166.724	207.248	225.348	273.17	316.405	14.742			10.11
2019-09-04	Huancapata												5.69	9.94

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
гспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-09-05	Huancapata	2.901	5.928	15.812	99.516	140.514	461.062	463.052	466.707	468.394	6.658			9.8
2019-09-06	Huancapata	2.027	4.128	11.071	45.489	56.09	73.047	80.317	100.968	121.047	4.426			9.69
2019-09-08	Huancapata	0.919	1.432	3.306	6.2	7.647	10.762	12.189	16.988	22.487	19.524			9.47
2019-09-09	Huancapata	1.458	2.185	6.156	9.726	11.921	16.599	18.914	26.338	33.914	21.76			9.4
2019-09-10	Huancapata	1.917	3.404	8.907	21.552	52.75	92.309	103.316	127.759	143.789	20.703			9.29
2019-09-11	Huancapata	1.609	2.496	6.761	11.002	14.173	26.392	37.975	78.898	109.521	20.59			9.19
2019-09-12	Huancapata	1.683	2.96	9.019	15.174	19.658	32.179	38.698	56.162	69.346	7.132			9.1
2019-09-14	Huancapata	1.546	2.448	7.277	11.965	15.004	21.571	24.946	36.198	48.514	17.669			8.93
2019-09-15	Huancapata	1.895	4.359	10.984	22.589	40.101	69.473	81.052	306.239	370.914	2.704			8.81
2019-09-16	Huancapata	1.589	2.59	8.594	17.154	24.043	40.259	47.985	68.7	87.029	5.841			8.71
2019-09-18	Huancapata	1.66	2.42	7.458	14.451	21.333	49.292	62.824	99.633	143.312	9.574			8.65
2019-09-20	Huancapata	1.584	2.485	7.91	13.616	17.897	33.097	48.138	88.884	117.731	11.237			13.04
2019-09-21	Huancapata	1.547	2.342	6.482	10.186	12.449	17.47	20.155	31.862	50.624	124.937			10.6
2019-09-22	Huancapata	1.001	1.516	4.144	7.186	9.101	13.801	16.877	40.487	85.672	41.711			10.0
2019-09-23	Huancapata	1.522	2.899	8.606	14.111	18.095	28.831	35.169	58.379	84.288	30.345			9.82
2019-09-24	Huancapata	1.548	2.414	7.185	11.532	14.14	19.676	22.592	32.386	44.046	104.709			9.57
2019-09-25	Huancapata	1.686	2.88	8.217	12.853	15.767	22.426	26.109	39.864	59.212	33.888			9.39
2019-09-26	Huancapata	5.489	10.013	24.948	41.795	52.614	75.647	86.328	119.564	151.994	30.337			9.19
2019-09-28	Huancapata	5.684	10.293	22.612	35.461	43.582	61.473	70.841	101.211	133.45	48.665			8.86
2019-09-29	Huancapata	1.954	3.481	9.51	18.701	26.675	44.716	53.331	79.385	103.382	20.262			8.77

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Listación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-10-10	Huancapata	1.792	3.025	8.911	15.998	22.141	40.264	50.287	82.81	116.91	29.288			7.92
2019-10-11	Huancapata	1.65	2.851	8.529	14.279	18.844	33.35	43.376	83.242	121.041	18.823			7.78
2019-10-12	Huancapata	1.809	3.213	10.653	26.079	39.967	65.263	75.781	105.745	133.974	19.533			7.64
2019-10-13	Huancapata	1.841	3.42	8.854	14.334	18.81	36.141	49.683	85.987	115.473	12.892			7.5
2019-10-14	Huancapata	1.346	2.143	6.956	12.179	16.393	32.891	47.239	89.492	127.546	13.542			7.43
2019-10-15	Huancapata	8.75	15.933	40.886	62.288	75.194	99.555	110.963	143.436	176.281	12.044			7.39
2019-10-16	Huancapata	1.73	2.972	8.934	16.107	23.172	59.921	78.505	119.259	154.396	19.581			10.63
2019-10-17	Huancapata	2.45	5.121	12.741	34.099	51.671	81.588	95.17	139.092	181.647	15.169			21.35
2019-10-18	Huancapata	2.027	4.207	10.305	24.134	49.332	94.945	114.528	197.457	274.267	5.911			12.18
2019-10-19	Huancapata	1.775	3.392	8.474	13.542	17.998	44.107	72.471	144.329	209.134	11.435			10.24
2019-10-20	Huancapata	1.764	3.047	8.468	13.932	17.896	29.039	35.522	54.474	67.498	7.995			9.66
2019-10-21	Huancapata	1.639	2.579	7.211	11.785	15.192	24.513	29.755	44.901	56.785	6.124			9.37
2019-10-22	Huancapata	1.619	2.542	6.889	11.52	14.788	22.397	26.256	38.042	49.879	4.208			9.02
2019-10-25	Huancapata	0.0	0.0	0.491	7.806	8.41	9.273	9.546	10.067	10.744	0.037			9.18
2019-10-26	Huancapata	1.402	2.083	6.017	9.649	11.917	16.771	19.248	27.494	36.54	34.241			8.62
2019-10-27	Huancapata	1.486	2.238	6.913	10.781	12.979	17.411	19.55	27.157	36.003	31.159			10.11
2019-10-28	Huancapata	1.988	4.29	10.963	19.831	30.479	96.803	415.912	464.986	467.552	42.853			10.54
2019-10-30	Huancapata	2.083	3.692	9.102	13.601	15.523	18.765	20.009	23.49	26.77	0.624			28.98
2019-11-01	Huancapata	1.759	2.731	6.611	9.805	11.697	15.761	17.821	26.371	48.905	40.497			15.28
2019-11-03	Huancapata	1.888	3.191	8.388	13.608	16.926	24.762	28.924	43.963	62.781	140.773			9.2

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
гспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-11-04	Huancapata	1.802	3.034	8.398	13.696	16.963	24.269	27.917	40.364	54.158	105.528			8.68
2019-11-05	Huancapata	1.653	2.747	8.46	13.477	16.491	23.168	26.637	37.657	49.677	33.077			8.38
2019-11-06	Huancapata	1.641	2.719	8.36	13.195	16.03	21.906	24.708	33.061	41.067	15.842			8.24
2019-11-07	Huancapata	2.001	3.289	8.402	13.767	17.101	24.311	27.766	38.911	50.796	50.239			8.09
2019-11-08	Huancapata	2.151	3.282	7.984	13.178	16.409	23.207	26.537	36.639	46.657	36.289			7.99
2019-11-09	Huancapata	1.337	2.103	5.877	9.945	13.106	23.069	30.849	68.066	111.697	24.6			7.92
2019-11-10	Huancapata	1.978	3.059	7.783	13.497	17.587	27.665	33.018	50.898	70.744	44.422			8.32
2019-11-11	Huancapata	2.667	4.715	12.702	34.345	71.743	334.855	395.188	463.064	466.611	25.694			11.75
2019-11-12	Huancapata	4.64	7.934	24.488	72.384	101.043	122.791	130.222	145.584	161.918	7.876			9.82
2019-11-13	Huancapata	1.316	1.941	5.555	11.123	16.248	39.28	62.917	126.835	186.227	16.218			8.83
2019-11-14	Huancapata	3.055	5.968	18.085	59.424	88.305	105.379	110.735	121.222	134.286	7.171			8.26
2019-11-15	Huancapata	1.572	2.988	9.998	18.252	24.968	42.372	50.405	70.613	85.914	32.2			8.57
2019-11-16	Huancapata	1.874	3.06	7.806	12.206	14.875	20.194	22.784	30.94	38.843	46.015			8.29
2019-11-17	Huancapata	1.533	2.422	7.062	11.302	13.725	18.213	20.041	25.351	29.608	4.42			7.87
2019-11-18	Huancapata	1.504	2.362	7.148	11.67	14.412	19.973	22.699	31.02	38.807	41.043			7.68
2019-11-19	Huancapata	1.584	2.392	6.226	10.468	13.149	18.633	21.25	29.405	37.509	86.083			7.37
2019-11-20	Huancapata	1.525	2.219	6.267	9.972	12.019	15.957	17.624	22.349	26.471	7.155	2.4		8.25
2019-11-21	Huancapata	1.566	2.543	7.605	12.002	14.669	20.098	22.822	31.398	39.776	28.588			7.58
2019-11-22	Huancapata	1.484	2.178	6.226	9.64	11.497	14.939	16.379	20.63	24.534	11.522			7.22
2019-11-23	Huancapata	1.713	2.677	7.217	12.128	15.288	22.102	25.511	36.551	48.539	98.217			9.51

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-11-24	Huancapata	1.545	2.342	6.762	11.162	13.808	19.054	21.492	28.543	35.077	21.075			8.41
2019-11-25	Huancapata	1.584	2.422	7.004	11.446	14.165	19.781	22.542	30.561	37.585	16.144			7.49
2019-11-26	Huancapata	1.491	2.218	5.722	10.209	13.247	19.699	22.932	33.261	44.122	123.307			7.05
2019-11-27	Huancapata	1.623	2.528	7.123	12.342	15.85	24.386	29.236	47.105	65.484	70.259			6.91
2019-11-28	Huancapata	1.565	2.398	6.887	11.331	13.93	19.267	21.914	30.319	39.044	65.272			7.15
2019-11-29	Huancapata	1.603	2.482	7.031	11.413	14.005	19.36	22.01	30.18	38.088	74.311			6.91
2019-11-30	Huancapata	1.596	2.424	6.026	9.782	12.032	16.771	19.194	27.187	36.203	75.66			6.94
2019-12-01	Huancapata	1.548	2.308	5.806	10.036	12.842	18.777	21.696	31.074	41.176	144.555			7.06
2019-12-02	Huancapata	1.853	2.9	7.998	14.57	19.409	32.526	40.507	66.888	91.385	43.473			34.23
2019-12-03	Huancapata	1.702	2.787	7.844	12.501	15.301	21.141	23.962	32.979	42.397	80.035			27.52
2019-12-04	Huancapata	1.692	2.72	7.647	12.941	16.592	26.997	34.51	78.287	114.437	44.364			17.96
2019-12-05	Huancapata	1.521	2.368	7.158	12.717	16.657	26.665	31.732	46.284	58.295	25.127			19.54
2019-12-06	Huancapata	1.591	2.403	6.513	11.331	14.278	20.293	23.105	31.831	40.705	111.101			12.07
2019-12-07	Huancapata	2.009	3.272	8.822	16.002	21.611	37.071	45.804	72.346	102.283	40.609			11.04
2019-12-08	Huancapata	1.816	3.202	8.662	14.008	17.363	24.824	28.429	39.816	50.959	72.536			12.12
2019-12-09	Huancapata	1.632	2.508	6.611	11.196	14.093	20.38	23.445	33.209	43.19	69.091			45.95
2019-12-10	Huancapata	1.744	5.068	12.621	20.622	24.97	31.686	34.577	42.602	49.299	2.724			26.02
2019-12-11	Huancapata	1.478	2.303	7.344	11.811	14.387	19.414	21.78	28.49	34.725	13.96	17.44		21.01
2019-12-12	Huancapata	1.512	2.274	6.934	11.046	13.39	17.984	20.001	26.316	31.93	11.098			27.73
2019-12-13	Huancapata	1.578	2.474	7.308	11.163	13.187	17.004	18.753	23.416	27.488	5.796			130.1

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-12-14	Huancapata	1.616	2.468	6.815	10.954	13.431	18.498	20.84	27.62	34.248	8.08			63.86
2019-12-15	Huancapata	0.669	0.783	2.077	3.127	4.072	5.447	5.897	7.059	8.228	0.432			33.18
2019-12-16	Huancapata	1.454	2.21	6.894	10.902	13.133	17.415	19.321	24.985	29.994	6.856			44.5
2019-12-17	Huancapata	3.367	6.687	36.718	94.634	104.994	119.659	126.072	144.178	167.293	16.149			37.97
2019-12-18	Huancapata	1.736	3.279	9.556	15.596	20.062	34.391	57.25	251.615	279.794	8.032	25.29		89.03
2019-12-19	Huancapata	6.447	12.358	77.446	97.743	109.236	142.188	168.911	266.767	346.127	17.986			88.19
2019-12-20	Huancapata	1.623	2.501	7.08	12.075	15.218	21.967	25.444	37.778	54.55	103.893			55.81
2019-12-21	Huancapata	1.448	2.224	7.134	12.093	15.268	22.337	26.088	39.245	55.588	110.415			38.73
2019-12-22	Huancapata	1.483	2.287	6.538	11.168	14.187	21.234	24.955	37.936	53.568	85.017			33.68
2019-12-23	Huancapata	1.431	2.111	5.621	9.378	11.936	18.942	24.225	110.467	237.684	41.536			51.56
2019-12-24	Huancapata	1.757	3.51	10.592	21.333	39.853	116.583	143.697	222.932	269.912	19.345			32.83
2019-12-25	Huancapata	1.891	3.052	7.78	12.959	16.364	24.749	29.635	53.535	117.456	161.316	39.16		24.31
2019-12-26	Huancapata	1.77	2.764	7.147	12.125	15.382	22.69	26.68	43.602	82.82	135.873			50.49
2019-12-28	Huancapata	2.221	3.836	9.739	17.021	22.758	42.87	67.027	296.668	375.658	104.405			24.92
2019-12-29	Huancapata	2.289	4.749	10.988	18.33	24.046	40.576	52.511	161.44	339.544	85.563			52.59
2019-12-30	Huancapata	1.677	2.896	8.667	14.274	18.628	34.332	50.851	213.889	329.735	33.422			58.45
2019-12-31	Huancapata	1.895	4.134	10.839	18.369	24.249	41.711	56.13	167.404	252.142	16.467	10.1		42.21
2020-01-01	Huancapata	1.395	2.062	6.521	10.238	12.363	16.675	18.901	26.538	35.304	10.952			28.13
2020-01-02	Huancapata	2.394	5.555	14.315	29.043	40.343	60.006	67.447	85.135	99.344	5.448			23.53
2020-01-03	Huancapata	1.94	3.103	7.719	12.739	16.032	23.778	28.17	46.332	76.013	56.146	13.88		21.27

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-01-04	Huancapata	1.596	2.648	8.66	14.373	18.432	30.46	38.593	78.6	126.206	31.938			20.38
2020-01-05	Huancapata	1.533	2.503	7.608	11.984	14.762	20.91	23.954	33.576	42.962	6.792			19.37
2020-01-06	Huancapata	1.514	2.53	8.355	13.558	16.889	25.369	30.15	48.203	69.445	12.68			18.61
2020-01-07	Huancapata	2.159	4.607	12.607	25.682	40.017	102.22	155.631	367.357	460.481	38.746	4.27		17.88
2020-01-08	Huancapata	1.597	2.709	8.782	15.409	20.346	37.638	50.996	103.093	152.747	10.131	6.94		17.33
2020-01-09	Huancapata	1.944	3.334	9.072	15.479	19.803	30.279	35.765	55.71	80.771	112.23			16.76
2020-01-10	Huancapata	1.938	4.324	10.942	18.259	24.311	43.526	56.733	116.94	335.951	62.601	3.86		16.3
2020-01-11	Huancapata	1.634	2.501	6.903	12.283	15.837	23.737	27.749	41.908	58.721	93.296			16.05
2020-01-12	Huancapata	1.995	4.431	12.539	24.909	36.283	63.911	76.401	115.644	163.364	22.952			15.71
2020-01-13	Huancapata	2.005	4.537	10.938	17.94	23.64	43.584	59.879	197.778	414.367	54.699			15.51
2020-01-14	Huancapata	1.762	3.336	9.496	15.017	18.572	27.118	31.949	51.419	83.913	46.216			17.86
2020-01-15	Huancapata	1.653	2.788	8.824	15.444	20.451	35.188	44.323	78.821	112.277	15.198	3.99		19.59
2020-01-16	Huancapata	1.878	3.731	11.352	22.934	34.279	60.101	71.933	112.412	169.264	27.295			18.91
2020-01-17	Huancapata	1.603	2.474	7.031	12.1	15.34	22.737	26.775	42.615	65.165	75.223	8.51		17.06
2020-01-18	Huancapata	1.542	2.468	7.97	12.921	16.001	23.23	27.302	42.583	60.769	19.446			16.28
2020-01-19	Huancapata	2.157	4.469	10.972	18.655	24.502	39.163	47.591	83.295	150.107	41.751			16.29
2020-01-20	Huancapata	7.858	16.436	47.406	86.564	108.84	155.128	179.163	268.692	345.462	11.008			39.6
2020-01-21	Huancapata	2.094	4.218	11.367	22.963	36.841	87.27	112.865	215.755	325.27	10.478			24.5
2020-01-22	Huancapata	1.681	2.973	10.189	19.545	28.41	56.647	74.003	136.128	219.377	13.276			21.22
2020-01-23	Huancapata											6.73		29.08

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-01-24	Huancapata	1.678	2.779	9.222	17.604	25.785	54.743	72.607	129.228	197.718	12.381	11.2		55.71
2020-01-25	Huancapata	1.776	3.096	9.581	18.23	26.585	60.697	87.719	202.516	319.972	35.889			38.53
2020-01-26	Huancapata	1.845	3.685	9.397	14.678	18.164	26.641	31.352	49.822	76.483	64.808			29.77
2020-01-27	Huancapata	1.656	2.659	7.59	12.348	15.335	22.12	25.836	40.241	62.336	80.011			24.88
2020-01-28	Huancapata	2.004	3.79	10.33	17.997	23.952	40.367	50.213	93.669	171.356	38.436			22.06
2020-01-29	Huancapata	1.877	2.996	7.884	13.427	17.003	25.398	29.784	45.713	67.415	110.741			20.41
2020-01-30	Huancapata	1.882	3.08	7.962	13.058	16.283	23.781	27.747	43.436	66.506	71.786	5.72		19.31
2020-01-31	Huancapata	1.78	2.999	8.378	13.704	17.087	25.277	29.821	48.661	81.667	229.283	5.01		18.45
2020-02-01	Huancapata	2.146	4.144	10.112	16.461	20.896	31.707	37.897	65.823	113.033	170.485			19.13
2020-02-02	Huancapata	2.092	4.128	10.195	16.877	21.842	34.511	42.147	81.639	167.967	73.442			74.03
2020-02-04	Huancapata	1.803	2.965	8.946	22.346	55.821	86.766	95.731	118.704	140.265	145.572			44.33
2020-02-05	Huancapata	1.667	2.709	8.044	13.205	16.457	24.634	29.505	53.946	117.683	78.811	17.06		46.36
2020-02-06	Huancapata	2.168	3.909	9.782	16.35	20.962	31.967	38.175	66.718	122.528	79.625			141.9
2020-02-07	Huancapata	1.761	3.132	9.48	16.113	21.376	40.317	58.109	184.113	317.004	61.801			52.31
2020-02-08	Huancapata	2.46	4.421	11.066	19.105	25.205	42.242	53.598	116.662	226.104	78.628			79.91
2020-02-09	Huancapata	1.647	2.657	7.668	12.448	15.401	22.181	25.981	42.006	70.914	70.731			76.43
2020-02-10	Huancapata	2.336	4.642	11.041	17.857	22.6	34.066	40.592	67.682	107.785	101.299			67.41
2020-02-12	Huancapata	1.853	3.006	8.308	15.202	20.863	39.463	51.544	93.462	153.999	86.44	23.67		34.04
2020-02-13	Huancapata	1.96	3.311	8.507	14.441	18.698	29.575	35.879	61.645	97.682	77.65			75.09
2020-02-14	Huancapata	2.284	4.664	10.726	17.066	21.604	32.742	39.504	70.839	122.445	92.803			42.38

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Listacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-02-15	Huancapata	2.229	4.297	10.551	18.324	25.671	74.302	123.226	249.832	329.729	33.324			37.09
2020-02-16	Huancapata	2.25	4.422	11.267	20.116	27.649	49.717	62.566	113.529	181.508	50.867	17.66		30.93
2020-02-17	Huancapata	3.781	6.987	18.423	54.171	92.323	214.674	272.05	366.322	414.543	37.482			28.01
2020-02-18	Huancapata	1.76	2.887	8.644	16.098	22.502	44.925	62.127	124.08	185.223	27.904			34.1
2020-02-19	Huancapata	1.958	3.594	10.111	20.089	31.666	86.954	115.004	186.58	247.066	27.61	12.95		27.55
2020-02-20	Huancapata	1.916	3.461	9.923	19.413	29.339	70.106	95.819	173.006	238.823	27.714			25.47
2020-02-21	Huancapata	3.503	6.793	20.834	49.173	62.761	85.69	97.114	138.074	189.682	35.075			31.67
2020-02-22	Huancapata	1.985	3.758	9.85	17.141	23.057	39.848	50.546	97.376	154.862	92.827			38.93
2020-02-23	Huancapata	1.975	3.797	10.119	17.019	22.117	35.278	43.13	79.13	135.254	180.704	7.23		26.88
2020-02-24	Huancapata	2.295	5.221	13.797	27.138	39.524	81.445	107.428	197.972	275.305	35.82			24.2
2020-02-25	Huancapata	8.298	10.279	17.271	22.753	24.74	27.22	28.303	30.97	32.277	4.432			23.25
2020-02-26	Huancapata	11.17	15.385	22.813	26.474	28.032	30.979	31.888	35.31	37.538	4.078	4.06		54.32
2020-02-27	Huancapata	0.0	0.0	2.503	2.64	2.69	2.851	2.926	3.068	3.135	0.02			62.32
2020-02-28	Huancapata	11.898	19.482	38.154	113.056	186.617	285.518	305.294	349.942	377.121	58.512			31.37
2020-02-29	Huancapata	4.919	6.687	13.298	18.95	21.475	25.176	26.429	29.977	32.269	11.005	4.45		116.9
2020-03-01	Huancapata	12.718	15.556	23.8	26.659	27.871	30.173	30.873	32.194	34.383	4.396			87.57
2020-03-02	Huancapata											15.41		57.87
2020-03-11	Huancapata	10.679	11.828	20.524	25.435	27.064	29.981	30.959	33.437	36.403	6.542			25.18
2020-03-12	Huancapata											5.58		23.62
2020-03-14	Huancapata											3.79		70.18

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гспа	Estación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-03-19	Huancapata											17.18		32.74
2020-03-23	Huancapata	6.073	8.555	13.722	21.3	24.797	29.441	31.038	35.36	38.116	10.044			47.45
2020-03-25	Huancapata											12.94		31.84
2020-03-27	Huancapata											13.93		68.83
2020-04-04	Huancapata											12.0		26.38
2020-04-05	Huancapata											9.78		25.33
2020-04-11	Huancapata											8.47		22.18
2020-04-12	Huancapata											6.67		21.79
2020-04-19	Huancapata											3.97		26.79
2020-04-20	Huancapata											5.98		23.69
2020-04-28	Huancapata											2.2		18.49
2020-04-30	Huancapata											1.35		17.96
2020-05-02	Huancapata											2.83		17.65
2020-05-04	Huancapata											5.83		93.49
2020-05-08	Huancapata											2.56		21.04
2020-05-12	Huancapata											1.75		17.66
2020-05-14	Huancapata											1.46		16.92
2020-11-07	Huancapata												6.44	12.39
2019-09-22	Puente Tingo Confluencia												29.7	23.24
2019-10-07	Puente Tingo Confluencia											28.07		12.17

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
recha	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-10-15	Puente Tingo Confluencia											21.15		12.08
2019-10-17	Puente Tingo Confluencia											26.01		50.06
2019-10-19	Puente Tingo Confluencia											34.85		35.53
2019-10-21	Puente Tingo Confluencia											23.1		26.01
2019-10-22	Puente Tingo Confluencia											34.4		40.17
2019-10-24	Puente Tingo Confluencia											21.81		18.72
2019-10-28	Puente Tingo Confluencia											19.79		14.12
2019-10-30	Puente Tingo Confluencia											25.89		34.15
2019-11-01	Puente Tingo Confluencia											36.28		24.57
2019-11-04	Puente Tingo Confluencia											32.17		15.46
2019-11-07	Puente Tingo Confluencia											44.74		25.75
2019-11-11	Puente Tingo Confluencia											122.32		55.63
2019-11-16	Puente Tingo Confluencia											59.44		19.6
2019-11-20	Puente Tingo Confluencia											38.29		12.39
2019-11-23	Puente Tingo Confluencia											34.43		22.55
2019-11-25	Puente Tingo Confluencia											25.67		13.52
2019-11-28	Puente Tingo Confluencia											30.7		13.16
2019-12-03	Puente Tingo Confluencia											120.19		61.42
2019-12-06	Puente Tingo Confluencia											100.08		34.35
2019-12-08	Puente Tingo Confluencia											135.94		29.8

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Feena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-12-10	Puente Tingo Confluencia											155.39		73.78
2019-12-13	Puente Tingo Confluencia											188.81		269.6
2019-12-17	Puente Tingo Confluencia											157.4		67.06
2019-12-19	Puente Tingo Confluencia											306.63		136.8
2019-12-21	Puente Tingo Confluencia											246.34		65.65
2019-12-24	Puente Tingo Confluencia											189.5		75.04
2019-12-28	Puente Tingo Confluencia											153.41		52.17
2019-12-30	Puente Tingo Confluencia											128.1		79.29
2020-01-02	Puente Tingo Confluencia											192.87		56.7
2020-01-04	Puente Tingo Confluencia											119.78		85.21
2020-01-06	Puente Tingo Confluencia											82.74		32.11
2020-01-11	Puente Tingo Confluencia											62.1		29.17
2020-01-15	Puente Tingo Confluencia											71.55		59.44
2020-01-19	Puente Tingo Confluencia											128.21		31.42
2020-01-24	Puente Tingo Confluencia											167.9		143.6
2020-01-25	Puente Tingo Confluencia											128.09		74.29
2020-01-30	Puente Tingo Confluencia											155.74		25.35
2020-02-05	Puente Tingo Confluencia											374.72		159.0
2020-02-10	Puente Tingo Confluencia											202.76		167.3
2020-02-15	Puente Tingo Confluencia											138.73		82.31

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Feena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-02-19	Puente Tingo Confluencia											114.47		59.53
2020-02-21	Puente Tingo Confluencia											104.65		48.97
2020-11-06	Puente Tingo Confluencia											13.56		23.29
2020-11-09	Puente Tingo Confluencia											11.73		12.6
2020-11-11	Puente Tingo Confluencia											5.77		17.14
2020-11-13	Puente Tingo Confluencia											4.01		19.25
2020-11-16	Puente Tingo Confluencia											4.66		8.71
2020-11-18	Puente Tingo Confluencia											10.45		21.06
2020-11-20	Puente Tingo Confluencia											7.13		79.77
2020-11-22	Puente Tingo Confluencia											8.31		29.54
2020-11-24	Puente Tingo Confluencia											11.92		12.14
2020-11-26	Puente Tingo Confluencia											2.86		8.87
2020-11-30	Puente Tingo Confluencia											9.37		27.24
2020-12-02	Puente Tingo Confluencia											11.68		32.83
2020-12-04	Puente Tingo Confluencia											15.33		26.59
2020-12-06	Puente Tingo Confluencia											33.55		47.76
2020-12-08	Puente Tingo Confluencia											59.73		26.0
2020-12-10	Puente Tingo Confluencia											41.32		138.7
2020-12-12	Puente Tingo Confluencia											26.13		40.27
2020-12-14	Puente Tingo Confluencia											21.78		24.1

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-12-16	Puente Tingo Confluencia											29.13		74.99
2020-12-18	Puente Tingo Confluencia											63.23		41.03
2020-12-21	Puente Tingo Confluencia											53.24		17.77
2020-12-23	Puente Tingo Confluencia											45.33		181.7
2020-12-26	Puente Tingo Confluencia											54.58		89.28
2020-12-29	Puente Tingo Confluencia											113.01		37.22
2020-12-31	Puente Tingo Confluencia											87.94		226.4
2021-01-02	Puente Tingo Confluencia											194.27		
2021-01-04	Puente Tingo Confluencia											141.78		
2021-01-06	Puente Tingo Confluencia											314.82		
2021-01-08	Puente Tingo Confluencia											259.81		
2021-01-11	Puente Tingo Confluencia											129.78		
2021-01-13	Puente Tingo Confluencia											104.04		
2021-01-16	Puente Tingo Confluencia											244.51		
2021-01-18	Puente Tingo Confluencia											244.15		
2021-01-20	Puente Tingo Confluencia											249.87		
2021-01-22	Puente Tingo Confluencia											147.53		
2021-01-26	Puente Tingo Confluencia											220.5		
2021-01-28	Puente Tingo Confluencia											158.52		
2021-01-30	Puente Tingo Confluencia											159.95		

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
гспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-05-01	Chinchavito	8.293	15.786	40.574	55.92	65.34	88.418	102.033	156.255	231.863	51.166			357.1
2019-05-02	Chinchavito	54.948	62.053	74.423	84.868	90.699	106.754	115.339	139.913	163.829	52.322			207.7
2019-05-04	Chinchavito	34.576	43.148	60.527	78.848	90.238	114.394	125.09	163.773	213.97	43.158			147.2
2019-05-05	Chinchavito	2.254	4.761	12.029	21.681	29.765	51.081	63.308	112.643	176.333	77.576			175.1
2019-05-10	Chinchavito	2.112	4.563	14.832	33.338	44.768	68.117	79.664	119.43	165.825	38.057			129.0
2019-05-12	Chinchavito	37.783	48.175	62.125	73.218	81.214	98.411	106.752	136.426	169.26	133.618			128.6
2019-05-15	Chinchavito	3.783	7.261	24.469	55.254	74.112	105.273	117.469	150.011	178.318	15.01			145.0
2019-05-20	Chinchavito	15.07	40.986	77.079	100.09	113.377	145.739	167.366	248.723	342.528	55.942			127.6
2019-05-25	Chinchavito	1.872	2.983	8.374	15.253	19.8	30.072	35.233	52.786	73.099	107.908			112.2
2019-05-28	Chinchavito	34.475	41.944	55.585	67.947	75.61	95.203	105.016	144.066	194.135	83.247			109.3
2019-05-29	Chinchavito	47.388	56.02	71.9	83.508	89.363	106.664	116.024	144.554	176.225	28.978			107.2
2019-05-30	Chinchavito	6.792	13.229	43.824	80.153	102.214	143.964	162.477	218.799	273.191	35.409			105.2
2019-06-21	Chinchavito											118.38		87.83
2019-07-10	Chinchavito											26.62		74.95
2019-07-21	Chinchavito											6.14		68.15
2019-07-25	Chinchavito											22.08		67.11
2019-07-28	Chinchavito											27.08		75.08
2019-08-02	Chinchavito	1.531	2.849	17.839	32.333	37.7	46.752	50.043	58.897	66.715	3.188	39.63		59.72
2019-08-04	Chinchavito	0.0	23.191	32.79	44.091	49.31	57.624	61.504	76.835	85.682	1.537			57.44
2019-08-08	Chinchavito	3.562	7.652	24.647	38.934	48.058	66.174	76.002	130.758	190.973	3.872	4.49		53.74

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	СС	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-08-09	Chinchavito											10.99		52.96
2019-08-10	Chinchavito	3.973	7.708	47.065	66.473	73.602	98.759	191.7	249.734	289.636	5.764	22.21		52.76
2019-08-11	Chinchavito											1.37		52.94
2019-08-12	Chinchavito	1.932	5.35	33.072	48.951	57.404	76.663	84.444	131.268	169.39	2.496	17.43		54.25
2019-08-13	Chinchavito	33.623	36.555	45.589	62.795	87.225	169.213	181.215	206.777	226.527	1.248	74.46		52.35
2019-08-14	Chinchavito	23.838	29.303	44.573	54.83	63.132	79.108	84.145	114.102	147.511	2.589	2.53		50.55
2019-08-16	Chinchavito	62.385	66.419	74.814	88.673	112.336	143.297	152.106	169.659	194.032	1.72	39.15		49.25
2019-08-20	Chinchavito											83.52		57.95
2019-08-21	Chinchavito	1.656	4.537	25.806	53.269	140.362	180.635	192.435	219.952	235.081	1.121			74.12
2019-08-22	Chinchavito	1.658	2.436	34.483	43.968	47.863	52.87	58.124	215.023	242.739	0.644	9.03		56.11
2019-08-23	Chinchavito											27.34		53.15
2019-08-24	Chinchavito	20.884	22.683	28.812	34.491	37.483	44.297	47.242	55.669	245.138	0.578			51.09
2019-08-26	Chinchavito	25.448	27.417	38.118	49.959	148.083	194.23	208.551	236.814	258.795	0.702	49.35		47.72
2019-08-29	Chinchavito											47.92		45.51
2019-08-30	Chinchavito	35.298	36.93	41.272	44.444	46.517	52.564	57.377	237.833	263.606	0.551	3.67		44.53
2019-08-31	Chinchavito	2.057	4.282	13.893	27.521	36.333	53.729	61.797	85.491	109.244	16.104			43.82
2019-09-01	Chinchavito	5.533	7.1	14.652	29.934	37.604	49.255	53.176	64.557	74.07	4.81			43.22
2019-09-03	Chinchavito											23.61		41.74
2019-09-04	Chinchavito											51.48		44.06
2019-09-05	Chinchavito	2.157	4.691	32.339	47.226	52.567	62.38	66.899	78.262	86.774	4.07			41.75

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-09-06	Chinchavito	2.162	4.134	14.955	33.797	43.316	59.556	66.196	84.022	100.265	15.248	1.89	33.4	41.38
2019-09-07	Chinchavito											12.14		39.96
2019-09-09	Chinchavito	5.348	12.555	34.813	48.539	53.915	65.584	70.823	84.186	100.243	3.252	33.8		38.78
2019-09-10	Chinchavito	1.641	2.595	7.428	32.787	40.651	50.226	53.297	64.125	74.283	3.726	34.57		38.44
2019-09-14	Chinchavito											46.27		39.23
2019-09-15	Chinchavito	2.36	3.606	14.354	42.649	53.258	70.254	76.816	95.388	114.346	10.457	2.16		38.0
2019-09-16	Chinchavito	2.484	3.84	16.539	39.809	48.825	62.647	68.646	84.653	100.951	14.633	58.52		36.67
2019-09-20	Chinchavito	11.261	21.87	44.81	69.027	83.251	117.713	131.126	163.765	191.495	4.751			79.3
2019-09-21	Chinchavito	1.97	3.19	9.104	17.23	22.897	35.668	42.19	64.681	90.519	108.849			79.09
2019-09-25	Chinchavito	2.689	4.764	12.288	20.293	25.022	33.941	37.818	49.594	60.212	14.726	20.97		40.04
2019-09-26	Chinchavito											31.81		43.82
2019-09-30	Chinchavito	1.628	2.68	8.815	19.028	25.583	37.338	42.493	57.719	72.542	36.22			113.3
2019-10-04	Chinchavito	0.0	35.072	45.89	51.804	55.019	62.752	67.091	77.376	84.31	3.1	68.17		60.9
2019-10-05	Chinchavito											169.14		139.0
2019-10-07	Chinchavito											169.63		118.9
2019-10-08	Chinchavito	0.0	58.355	68.215	74.153	0.0	251.191	259.273	274.699	290.474	0.583	79.13		79.62
2019-10-09	Chinchavito											165.52		59.3
2019-10-16	Chinchavito	0.0	0.0	35.268	41.151	44.662	51.846	54.857	63.78	72.669	2.83	94.01		167.5
2019-10-18	Chinchavito											86.78		151.7
2019-10-22	Chinchavito	4.538	11.378	37.531	64.47	83.024	126.072	146.663	208.411	264.259	31.551	159.23		126.6

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
гспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-10-23	Chinchavito											156.17		119.5
2019-10-24	Chinchavito	1.694	2.845	8.407	14.599	19.1	30.344	36.181	56.152	78.515	59.508			70.31
2019-10-25	Chinchavito											144.92	117.0	55.73
2019-10-28	Chinchavito											41.16		55.96
2019-10-30	Chinchavito											86.3		233.3
2019-10-31	Chinchavito	1.567	2.403	7.822	28.932	43.622	68.323	80.29	128.182	179.492	11.933	94.58		108.3
2019-11-05	Chinchavito											169.27		58.08
2019-11-12	Chinchavito											267.34		89.93
2019-11-19	Chinchavito											175.45		53.04
2019-11-23	Chinchavito											86.29		153.6
2019-11-26	Chinchavito											85.57		56.41
2019-11-29	Chinchavito											87.06		56.88
2019-12-01	Chinchavito											67.87		283.7
2019-12-09	Chinchavito											201.45		403.3
2019-12-11	Chinchavito											321.13		238.3
2019-12-16	Chinchavito											208.57		311.8
2019-12-23	Chinchavito											520.65		335.2
2019-12-31	Chinchavito											220.54		435.8
2020-01-01	Chinchavito	2.004	3.243	9.26	17.818	23.792	37.154	43.963	67.953	96.268	150.965			357.8
2020-01-05	Chinchavito	1.083	1.673	4.151	7.853	10.576	17.223	20.968	34.656	50.58	73.254			150.0

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	СС	Q_LSPIV	Aforo	Q_SENAMHI
ГСПа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-01-09	Chinchavito											257.44		169.6
2020-01-10	Chinchavito	2.151	3.958	12.865	25.938	35.056	54.006	63.082	93.366	126.658	92.315			126.8
2020-01-15	Chinchavito	2.015	3.606	8.612	13.172	16.043	22.907	27.032	47.712	101.335	56.217			182.1
2020-01-16	Chinchavito											237.6		170.6
2020-01-20	Chinchavito	1.658	2.648	8.007	16.675	24.282	44.803	56.463	100.977	164.037	36.642			190.0
2020-01-23	Chinchavito											283.39		167.8
2020-01-25	Chinchavito	2.006	3.488	10.481	20.584	28.449	47.302	57.553	98.399	165.226	84.275			202.5
2020-01-29	Chinchavito											214.33		128.5
2020-01-30	Chinchavito	1.978	3.767	11.707	22.772	31.141	51.129	62.237	107.14	171.491	67.289	182.75		115.1
2020-02-07	Chinchavito											413.05		418.6
2020-02-14	Chinchavito											418.01		204.9
2020-02-20	Chinchavito											409.58		149.9
2020-02-27	Chinchavito											202.84		489.0
2020-03-01	Chinchavito	1.776	3.095	10.234	23.286	34.962	60.695	73.17	115.113	161.899	39.996			495.3
2020-03-02	Chinchavito	1.695	2.934	8.192	14.247	19.01	33.073	41.939	75.752	113.466	42.185	293.45		266.9
2020-03-03	Chinchavito	1.743	3.119	8.357	13.937	17.859	28.335	34.702	58.976	86.029	33.854			188.8
2020-03-04	Chinchavito	2.62	5.15	12.566	22.697	32.423	64.083	78.635	114.036	143.953	24.385	342.96		157.5
2020-03-05	Chinchavito	1.647	2.749	7.353	12.576	16.386	26.39	31.986	51.781	73.362	48.185			141.1
2020-03-06	Chinchavito	2.008	3.535	9.094	16.96	24.399	48.903	61.956	92.693	117.364	27.496	145.72		155.5
2020-03-07	Chinchavito	1.667	2.835	8.848	17.536	25.259	43.477	51.027	69.612	84.0	13.128			133.4

Tabla C.2 Continuación de página previa

Fecha	Fetación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-03-08	Chinchavito	1.984	3.747	10.876	22.829	38.045	78.532	90.228	114.105	131.893	19.756			124.8
2020-03-09	Chinchavito	1.653	2.709	8.387	16.299	22.168	37.07	45.522	78.514	116.828	40.187			162.9
2020-03-10	Chinchavito	1.711	2.634	7.035	12.714	16.478	24.95	29.336	44.487	62.135	37.222			173.4
2020-03-11	Chinchavito	1.612	2.569	7.276	13.519	18.053	29.597	36.149	60.079	84.417	39.477	199.07		203.0
2020-03-12	Chinchavito	1.852	3.053	8.563	15.522	20.32	31.482	37.174	56.373	76.804	52.396	175.73		149.0
2020-03-13	Chinchavito	1.796	3.14	9.436	18.63	26.487	43.912	51.414	72.117	90.621	21.425			154.9
2020-03-14	Chinchavito	2.712	5.423	12.564	19.973	24.591	33.508	37.425	49.031	59.846	12.574			361.9
2020-03-15	Chinchavito	2.199	4.131	11.361	21.072	28.226	43.929	51.349	73.611	96.182	32.759			320.8
2020-03-16	Chinchavito	2.716	5.66	15.984	29.413	37.759	53.683	60.984	82.598	103.082	15.714			191.5
2020-03-18	Chinchavito	2.358	4.647	11.012	19.428	26.648	45.757	55.317	80.272	100.511	25.885	463.37		235.1
2020-03-19	Chinchavito	3.741	7.02	23.869	54.66	73.496	109.834	128.381	232.778	435.418	48.808			177.6
2020-03-20	Chinchavito	6.002	10.497	31.555	75.432	100.989	151.177	186.299	414.332	463.355	32.383			750.6
2020-03-21	Chinchavito	3.953	6.869	24.157	52.766	63.858	84.183	94.103	127.887	165.083	25.689			903.7
2020-03-22	Chinchavito	2.253	4.674	12.637	23.946	32.395	51.124	59.458	81.798	101.038	24.754			468.2
2020-03-23	Chinchavito											291.76		255.2
2020-03-24	Chinchavito	2.138	3.763	9.989	18.045	23.763	37.049	43.909	68.35	97.467	139.56			183.1
2020-03-25	Chinchavito	2.525	5.088	13.032	23.157	30.442	47.381	56.935	98.021	166.943	159.851			154.2
2020-03-26	Chinchavito	2.652	5.518	13.5	22.806	29.098	42.456	49.06	71.583	98.469	132.431			153.4
2020-03-27	Chinchavito	4.965	8.857	21.171	37.411	49.942	74.686	84.601	114.919	147.063	30.957			383.0
2020-03-29	Chinchavito											277.08		397.6

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
геспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-04-09	Chinchavito											193.53		144.6
2020-04-10	Chinchavito											325.45		127.9
2020-04-11	Chinchavito											309.9		122.0
2020-04-13	Chinchavito											244.71		466.1
2020-04-14	Chinchavito											294.58		240.7
2020-04-20	Chinchavito											282.02		132.9
2020-04-28	Chinchavito											175.63		99.97
2020-04-29	Chinchavito											133.04		97.62
2020-05-01	Chinchavito	1.901	3.057	8.629	16.494	22.259	35.92	43.202	70.683	107.312	190.055			97.89
2020-05-03	Chinchavito											132.78		96.78
2020-05-05	Chinchavito	2.183	3.95	11.625	23.088	31.74	52.915	65.067	113.458	180.092	84.938	179.34		403.4
2020-05-08	Chinchavito											280.51		113.4
2020-05-10	Chinchavito											254.86		95.84
2020-05-14	Chinchavito											165.19		95.83
2020-05-15	Chinchavito	2.412	4.399	10.76	18.267	23.531	36.417	43.462	69.02	99.51	82.367			92.04
2020-05-17	Chinchavito											186.46		85.59
2020-05-20	Chinchavito	2.067	3.569	9.663	16.707	21.519	32.461	38.27	60.305	89.214	207.098	104.1		98.49
2020-05-21	Chinchavito											117.35		86.87
2020-05-25	Chinchavito	1.975	3.587	11.719	26.457	39.207	70.876	87.545	157.78	249.772	53.156			88.98
2020-05-28	Chinchavito											157.44		77.74

Tabla C.2 Continuación de página previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
геспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-05-30	Chinchavito	1.449	2.261	7.292	15.984	23.071	42.8	55.19	116.15	220.614	57.216			74.67
2020-06-03	Chinchavito											40.58		189.0
2020-06-05	Chinchavito											290.17		99.77
2020-06-11	Chinchavito											55.3		69.89
2020-06-16	Chinchavito											98.34		67.87
2020-06-23	Chinchavito											99.12		59.5
2020-06-25	Chinchavito											74.79		57.65
2020-06-29	Chinchavito											23.03		54.94
2020-07-01	Chinchavito	3.463	7.036	30.139	62.158	79.422	110.643	123.994	164.745	205.725	24.022			52.98
2020-07-02	Chinchavito											71.22		53.9
2020-07-04	Chinchavito											10.16		92.92
2020-07-05	Chinchavito	15.536	27.354	68.807	92.151	105.347	133.857	147.392	200.367	275.273	22.859			84.62
2020-07-08	Chinchavito											39.9		64.54
2020-07-10	Chinchavito	54.18	59.043	72.124	91.15	103.481	128.359	140.387	177.571	222.323	13.303	21.75		59.6
2020-07-13	Chinchavito											81.44		52.16
2020-07-15	Chinchavito	62.389	66.871	75.37	85.253	91.769	112.244	121.499	154.486	190.83	31.614			48.85
2020-07-16	Chinchavito											97.45		54.03
2020-07-17	Chinchavito											52.0		54.32
2020-07-18	Chinchavito											20.33		49.68
2020-07-20	Chinchavito	73.343	78.6	92.079	115.923	147.819	410.71	461.78	466.101	468.098	20.177			48.8

Tabla C.2 Continuación de página previa

Tabla	C.2 Continuación	de página	previa
Labia	Cia Continuación	ue pagina	previa

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
геспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-07-22	Chinchavito											77.81		45.14
2020-07-23	Chinchavito											15.77		49.32
2020-07-28	Chinchavito											37.48		50.3
2020-07-30	Chinchavito	62.924	68.119	80.725	97.699	112.856	150.287	170.18	255.234	377.137	89.483			45.89
2020-07-31	Chinchavito											57.63		43.38
2020-08-01	Chinchavito											40.51		42.22
2020-08-02	Chinchavito											22.16		41.59
2020-08-04	Chinchavito											23.77		39.45
2020-08-09	Chinchavito											31.73		36.2
2020-08-11	Chinchavito											20.1		35.8
2020-08-14	Chinchavito											66.91		35.92
2020-08-15	Chinchavito											44.5		33.38
2020-08-16	Chinchavito											26.66		38.6
2020-08-17	Chinchavito											31.76		34.43
2020-08-18	Chinchavito											11.14		37.57
2020-08-20	Chinchavito											51.21		124.8
2020-08-28	Chinchavito											18.8		37.18
2020-09-04	Chinchavito											56.12		41.32
2020-09-07	Chinchavito											63.61		37.99
2020-09-10	Chinchavito											172.46		33.87

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
		μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-09-11	Chinchavito											40.5		32.09
2020-09-14	Chinchavito											88.49		29.13
2020-09-18	Chinchavito											54.46		34.96
2020-09-20	Chinchavito											24.1		31.54
2020-09-22	Chinchavito											105.06		96.21
2020-09-26	Chinchavito											49.05		31.34
2020-09-29	Chinchavito											61.93		74.7
2020-10-01	Chinchavito	9.784	18.126	49.186	64.325	73.91	100.847	118.922	208.539	326.046	63.452			37.27
2020-10-02	Chinchavito											55.18		33.92
2020-10-04	Chinchavito											65.84		40.5
2020-10-06	Chinchavito											87.72		82.61
2020-10-08	Chinchavito											186.86		43.3
2020-10-10	Chinchavito	7.636	12.499	45.623	84.462	100.057	134.42	154.212	229.977	308.64	47.361			35.43
2020-10-15	Chinchavito	1.956	3.876	14.163	34.215	48.661	79.851	96.221	157.668	229.372	36.724	41.62		24.63
2020-10-19	Chinchavito											12.45		180.5
2020-10-20	Chinchavito	1.762	2.936	8.271	16.624	26.284	78.145	115.638	217.126	311.908	56.562	91.62		105.4
2020-10-23	Chinchavito											76.29		36.06
2020-10-25	Chinchavito	2.917	6.027	22.079	46.732	60.685	89.082	103.462	151.97	197.287	64.035	193.53		570.4
2020-10-28	Chinchavito											68.1		168.1
2020-10-29	Chinchavito											62.21		104.5

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
		μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-10-30	Chinchavito	1.724	2.737	7.452	13.833	18.87	32.165	39.917	70.275	109.062	100.992			248.0
2020-11-02	Chinchavito											74.1		195.6
2020-11-05	Chinchavito	2.128	4.578	13.67	27.817	38.379	63.161	77.661	135.612	211.843	85.486	44.19		60.22
2020-11-06	Chinchavito	5.491	10.148	29.395	55.883	72.538	108.34	124.863	177.431	238.791	92.753			49.08
2020-11-08	Chinchavito											64.72		36.76
2020-11-10	Chinchavito	2.304	5.26	14.387	31.816	50.661	83.28	96.196	139.906	199.609	52.987		94.8	67.05
2020-11-11	Chinchavito											4.68		46.87
2020-11-12	Chinchavito											18.17		58.14
2020-11-14	Chinchavito	3.068	6.198	16.101	29.798	41.18	71.143	86.943	144.506	234.761	157.988			111.4
2020-11-15	Chinchavito	1.787	3.232	12.246	24.957	35.549	59.632	72.716	122.527	188.665	70.705	21.67		61.91
2020-11-19	Chinchavito											39.64		129.8
2020-11-20	Chinchavito	5.984	10.986	30.199	55.373	71.332	105.362	122.482	184.947	265.401	33.541			223.0
2020-11-22	Chinchavito											13.66		115.5
2020-11-24	Chinchavito											36.4		53.63
2020-11-25	Chinchavito	4.51	8.629	44.306	67.901	78.02	99.931	113.298	179.023	314.502	138.701			48.51
2020-11-27	Chinchavito											49.05		66.35
2020-11-30	Chinchavito	2.315	4.864	15.498	36.301	52.808	85.071	98.757	140.274	187.029	29.529	17.17		101.8
2020-12-01	Chinchavito	2.537	5.576	25.305	53.66	65.116	90.237	105.984	185.516	323.253	39.125			99.4
2020-12-02	Chinchavito											36.01		138.7
2020-12-04	Chinchavito	1.774	3.021	8.961	16.516	22.229	35.808	42.716	65.438	89.107	100.817	86.66		261.9

Tabla C.2 Continuación de página previa
Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
Гсспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2020-12-06	Chinchavito											206.66		168.6
2020-12-08	Chinchavito	1.997	3.788	12.702	32.102	49.527	75.866	84.979	113.044	142.656	34.381	93.75		90.36
2020-12-10	Chinchavito											116.66		458.0
2020-12-12	Chinchavito	1.998	3.819	16.013	66.671	86.276	136.91	205.23	400.843	461.996	56.623			195.3
2020-12-13	Chinchavito											31.87		115.4
2020-12-16	Chinchavito	2.061	3.585	9.656	18.783	26.571	47.304	59.531	110.817	186.049	64.361			213.5
2020-12-18	Chinchavito											147.96		116.2
2020-12-20	Chinchavito	2.126	3.994	10.561	19.169	25.803	42.35	51.437	84.031	121.342	110.224			76.13
2020-12-21	Chinchavito											132.09		104.4
2020-12-23	Chinchavito											486.36		483.3
2020-12-24	Chinchavito	1.26	1.977	6.372	13.259	18.86	33.072	40.512	64.522	88.561	88.187			198.8
2020-12-28	Chinchavito	1.685	2.801	8.954	16.932	22.631	35.595	42.177	64.855	91.923	134.885			314.3
2020-12-30	Chinchavito											337.41		388.1
2020-12-31	Chinchavito	2.33	4.545	13.308	25.572	33.799	52.09	61.796	99.031	148.864	193.935			523.2
2021-01-01	Chinchavito	3.513	7.229	20.509	40.423	55.767	96.875	120.797	209.838	316.825	264.503			
2021-01-05	Chinchavito	5.722	10.88	29.239	52.93	68.825	104.99	123.751	191.36	277.532	162.326			
2021-01-06	Chinchavito											316.73		
2021-01-09	Chinchavito	2.32	4.917	12.8	22.197	30.534	55.831	70.598	115.34	158.51	155.934	234.55		
2021-01-13	Chinchavito	2.163	5.032	13.854	25.638	36.07	65.134	79.163	116.187	144.464	71.603	125.21		
2021-01-17	Chinchavito	1.495	2.276	6.915	11.908	15.335	23.599	28.513	48.41	74.209	139.611	324.24		

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2021-01-20	Chinchavito											485.56		
2021-01-21	Chinchavito	1.575	2.754	8.924	15.677	21.086	36.972	45.935	73.269	96.811	57.706			
2021-01-22	Chinchavito											276.0		
2021-01-25	Chinchavito	4.008	10.71	45.564	79.371	98.07	134.523	150.89	207.837	285.738	46.337	272.84		
2021-01-29	Chinchavito	12.276	29.843	85.811	147.927	189.768	284.569	329.159	441.766	464.354	64.02			
2021-02-02	Chinchavito	1.482	2.442	9.231	18.228	26.647	47.392	56.244	80.482	101.462	58.721			
2021-02-06	Chinchavito	2.097	3.842	9.691	15.841	19.948	30.173	35.843	57.82	85.857	241.245			
2021-02-10	Chinchavito	1.705	3.148	13.072	28.086	39.508	63.666	74.651	105.185	132.434	46.505			
2021-02-14	Chinchavito	1.701	3.063	11.731	30.53	48.472	82.636	96.271	132.392	162.778	34.458			
2021-02-18	Chinchavito	1.473	2.404	9.115	17.208	23.913	41.564	50.538	77.099	100.076	55.674			
2021-02-22	Chinchavito	5.203	11.377	32.376	54.915	68.969	96.609	108.817	142.761	173.182	42.122			
2021-02-26	Chinchavito	2.111	4.499	12.46	26.635	39.799	69.17	81.623	114.711	141.572	43.952			
2021-03-02	Chinchavito	2.652	6.083	19.865	49.943	68.065	98.051	110.815	144.977	179.209	17.426			
2021-03-06	Chinchavito	2.817	7.21	46.5	74.836	88.171	114.809	125.83	154.661	182.41	12.974			
2021-03-10	Chinchavito	1.459	2.211	6.778	12.636	16.815	27.594	33.999	60.326	93.353	127.319			
2021-03-14	Chinchavito	1.451	2.249	7.765	15.515	21.813	39.011	48.659	79.98	109.773	90.521			
2021-03-18	Chinchavito	1.72	2.839	9.125	18.427	26.124	45.561	55.805	87.395	117.165	101.818			
2021-03-22	Chinchavito	2.018	4.189	11.677	21.413	28.805	46.234	55.513	87.292	122.236	200.549			
2021-03-26	Chinchavito	2.08	3.94	11.582	24.718	37.164	64.319	74.682	102.064	128.293	147.011			
2021-03-30	Chinchavito	2.305	4.522	12.933	26.512	37.203	57.999	66.538	90.774	114.364	124.282			

Tabla C.2 Continuación de página previa

Fecha	Fstación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
гспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2021-04-07	Chinchavito	1.708	2.977	10.124	20.369	28.891	49.504	59.535	88.607	114.97	75.806			
2021-04-15	Chinchavito	1.703	3.403	12.865	22.934	33.159	62.324	76.471	110.684	136.336	60.211			
2021-04-22	Chinchavito	3.659	7.73	22.864	44.171	58.021	86.421	99.916	139.756	178.313	102.245			
2021-05-07	Chinchavito	1.995	4.433	14.011	29.097	40.242	62.696	72.826	101.83	130.085	56.869			
2021-05-15	Chinchavito	2.226	5.005	12.869	22.142	28.696	43.333	50.776	75.04	100.217	126.066			
2021-05-23	Chinchavito	5.914	11.11	33.263	64.031	85.651	133.62	157.91	240.866	340.793	105.968			
2021-05-31	Chinchavito	8.443	14.954	35.326	55.237	66.946	89.182	99.765	130.101	158.445	21.183			
2021-06-08	Chinchavito	13.04	26.209	57.717	84.932	101.977	138.639	156.401	215.997	287.283	105.639			
2021-06-16	Chinchavito	4.477	8.39	28.216	58.59	74.902	100.655	111.381	140.07	165.221	31.449			
2021-06-24	Chinchavito	2.495	6.008	18.99	42.786	59.744	89.078	100.608	130.968	156.608	41.952			
2021-06-30	Chinchavito	1.968	4.497	12.742	25.729	36.313	59.269	69.367	97.104	120.912	42.843			
2021-07-01	Chinchavito	5.896	9.988	30.378	56.147	70.829	98.022	110.552	145.687	177.084	13.194			
2021-07-02	Chinchavito	17.727	29.147	67.464	112.718	139.35	195.018	225.675	345.343	454.031	24.346			
2021-07-03	Chinchavito	6.244	106.619	144.135	167.902	182.916	211.399	226.915	462.443	466.306	1.782			
2021-07-05	Chinchavito	14.598	33.17	67.174	95.59	112.727	152.373	174.344	294.898	397.733	114.847			
2021-07-06	Chinchavito	7.563	17.905	53.003	91.985	148.561	417.972	460.768	465.618	467.862	33.237			
2021-07-07	Chinchavito	9.51	21.607	57.542	83.881	97.968	125.259	136.86	167.337	197.223	11.079			
2021-07-10	Chinchavito	1.536	3.311	41.991	90.437	126.698	462.858	464.45	467.371	468.718	6.442			
2021-07-11	Chinchavito	2.011	6.333	66.171	461.693	463.863	466.534	467.309	468.728	469.38	7.103			
2021-07-12	Chinchavito	10.519	15.901	34.955	48.99	73.694	382.66	460.683	465.578	467.842	7.123			

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
reena	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2021-07-13	Chinchavito	15.794	24.74	52.206	84.811	106.469	150.49	169.987	240.134	329.166	62.209			
2021-07-14	Chinchavito	14.786	21.602	36.748	52.036	62.447	88.449	121.121	464.494	467.311	7.395			
2021-07-15	Chinchavito	1.416	2.173	295.904	326.963	365.578	462.948	464.521	467.405	468.735	2.141			
2021-07-16	Chinchavito	1.494	2.19	305.0	352.365	384.009	463.023	464.579	467.433	468.748	3.248			
2021-07-18	Chinchavito	5.323	14.957	33.349	277.374	304.979	375.34	461.251	465.849	467.974	6.74			
2021-07-19	Chinchavito	2.388	6.206	14.401	27.558	51.684	108.275	126.546	167.489	199.388	30.111			
2021-07-22	Chinchavito	1.725	5.636	273.073	301.805	310.463	321.398	324.633	332.152	381.422	4.897			
2021-07-23	Chinchavito	1.989	5.253	47.665	329.226	400.624	431.123	440.369	457.758	464.35	11.3			
2021-07-25	Chinchavito	1.019	1.386	74.247	121.903	141.513	172.942	188.525	232.717	281.684	11.162			
2021-07-27	Chinchavito	1.229	2.192	34.306	282.654	306.855	348.976	370.624	462.867	466.514	4.467			
2021-08-01	Chinchavito	0.827	1.109	13.022	26.961	38.572	71.894	87.385	131.927	164.208	12.925			
2021-08-02	Chinchavito	6.909	10.145	17.52	29.957	39.527	264.355	283.715	310.075	322.981	6.466			
2021-08-03	Chinchavito	0.718	1.544	4.748	7.166	8.632	11.65	13.059	17.891	212.563	5.867			
2021-08-04	Chinchavito	1.466	2.422	6.984	11.665	14.781	22.275	26.219	37.791	47.525	26.497			
2021-08-05	Chinchavito	2.618	5.556	12.98	20.576	25.545	35.919	40.907	57.334	75.547	63.645			
2021-08-06	Chinchavito	9.665	12.973	28.338	47.206	56.855	72.726	78.98	96.128	114.52	15.224			
2021-08-07	Chinchavito	1.0	1.35	16.368	33.776	46.93	75.608	87.619	121.297	149.853	21.082			
2021-08-08	Chinchavito	10.314	12.926	18.548	26.871	31.039	229.377	244.71	265.197	275.167	2.12			
2021-08-09	Chinchavito	9.596	12.06	21.801	31.69	35.862	42.65	45.085	54.337	326.324	7.115			
2021-08-10	Chinchavito	10.269	12.526	18.496	25.7	28.714	33.605	35.69	41.018	44.923	4.651			

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Estación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2021-08-11	Chinchavito	1.639	3.041	9.459	15.687	19.452	27.103	30.508	39.97	48.665	51.386			
2021-08-12	Chinchavito	1.779	3.332	10.085	16.444	20.127	27.351	30.606	39.549	47.832	41.687			
2021-08-13	Chinchavito	1.457	12.264	39.646	70.357	89.27	130.301	149.516	208.045	269.576	51.153			
2021-08-14	Chinchavito	13.786	17.276	31.238	40.972	47.663	298.314	316.032	427.612	464.836	7.473			
2021-08-15	Chinchavito	0.524	2.161	9.854	14.723	17.152	21.93	23.833	28.457	31.924	5.199			
2021-08-16	Chinchavito	6.858	9.294	18.408	27.946	32.363	39.312	42.203	49.694	55.916	15.98			
2021-08-17	Chinchavito	0.0	10.278	15.396	17.64	19.128	22.165	23.307	26.62	29.326	1.518			
2021-08-18	Chinchavito	0.479	1.317	9.266	14.092	16.357	21.042	23.158	27.728	31.378	2.907			
2021-08-19	Chinchavito	1.925	10.765	28.907	49.102	63.805	103.465	130.389	238.436	350.537	89.998			
2021-08-20	Chinchavito	2.505	8.822	20.928	32.955	40.602	57.275	65.762	95.227	130.214	187.472			
2021-08-21	Chinchavito	0.522	5.39	13.566	23.119	28.247	36.77	40.885	225.895	256.88	4.044			
2021-08-22	Chinchavito	1.235	4.639	15.104	27.368	32.906	41.405	44.657	55.906	69.724	6.546			
2021-08-23	Chinchavito	2.275	5.231	16.191	28.613	34.516	43.946	47.89	59.138	69.828	19.385			
2021-08-24	Chinchavito	0.0	0.0	0.0	0.518	14.877	18.168	19.553	25.984	30.839	0.458			
2021-08-25	Chinchavito	0.946	1.263	21.285	67.003	92.911	135.969	151.92	193.181	227.429	17.732			
2021-08-26	Chinchavito	0.0	0.0	22.083	29.809	32.383	37.024	38.638	48.074	246.662	1.786			
2021-08-27	Chinchavito	17.163	28.015	47.317	73.125	86.066	121.009	134.776	174.75	242.612	14.824			
2021-08-28	Chinchavito	26.796	32.722	42.62	49.234	52.353	62.609	69.479	81.809	87.385	5.008			
2021-08-29	Chinchavito	0.587	3.416	15.242	33.569	49.01	106.873	130.645	189.682	258.237	12.157			
2021-08-30	Chinchavito	2.14	4.978	21.452	54.178	87.747	146.914	171.675	279.813	462.959	32.054			

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Listación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2021-08-31	Chinchavito	0.645	0.86	1.374	31.769	43.452	64.481	75.356	108.058	136.603	7.082			
2019-02-03	Tingo Maria	3.086	5.642	14.931	24.545	31.289	52.564	61.694	84.87	111.112	35.868			
2019-02-06	Tingo Maria	3.866	7.064	17.708	28.255	34.857	49.035	55.926	79.358	108.018	121.215			
2019-02-25	Tingo Maria	1.53	2.363	7.428	14.108	19.146	32.118	39.089	63.597	90.252	93.648			
2019-03-01	Tingo Maria	2.698	5.21	15.195	27.191	37.195	62.205	72.441	104.124	143.602	56.941			
2019-03-02	Tingo Maria	2.225	3.802	9.826	16.748	21.485	32.397	38.524	63.261	99.09	220.116			
2019-03-04	Tingo Maria	2.766	4.812	12.375	20.0	24.918	36.393	42.869	63.542	84.336	38.507			
2019-03-05	Tingo Maria	2.511	4.582	13.291	24.085	31.29	46.71	54.16	78.998	106.622	203.63			
2019-03-07	Tingo Maria	2.42	4.119	11.512	20.179	25.893	38.409	45.084	68.116	95.159	59.257			
2019-03-08	Tingo Maria	1.762	3.091	9.056	16.209	20.763	30.669	35.861	54.753	77.882	107.717			
2019-03-10	Tingo Maria	4.419	8.315	20.879	34.392	43.057	61.197	70.226	100.786	135.966	311.261			
2019-03-11	Tingo Maria	2.167	3.759	10.359	19.795	26.96	43.596	52.092	80.931	113.077	133.73			
2019-03-13	Tingo Maria	2.946	5.317	14.744	25.068	31.423	44.794	51.452	72.675	97.19	139.034			
2019-03-14	Tingo Maria	2.333	4.153	10.958	20.556	28.196	47.449	58.192	98.886	147.995	54.905			
2019-03-15	Tingo Maria	1.727	2.711	7.969	16.526	23.735	42.55	52.896	91.911	139.57	85.733			
2019-03-16	Tingo Maria	1.669	2.6	7.402	14.38	19.651	32.389	39.064	62.963	93.012	55.939			
2019-03-17	Tingo Maria	2.358	4.254	11.764	19.744	24.551	34.319	38.954	54.277	70.569	74.613			
2019-03-19	Tingo Maria	2.496	4.398	11.986	20.419	25.932	37.421	43.197	62.382	84.753	248.643			
2019-03-20	Tingo Maria	8.546	16.514	42.35	66.181	80.479	109.273	122.157	160.985	191.102	212.729			
2019-03-21	Tingo Maria	1.833	3.008	9.23	18.313	25.321	42.205	51.13	83.137	121.64	74.272			

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Listación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-03-26	Tingo Maria	1.567	2.399	6.711	12.99	17.722	29.33	35.503	58.024	86.173	68.129			
2019-03-30	Tingo Maria	1.407	2.14	6.194	12.359	17.104	28.383	33.854	50.485	66.373	82.195			
2019-03-31	Tingo Maria	1.821	3.676	10.227	16.652	20.324	27.565	31.537	47.158	62.756	11.747			
2019-04-01	Tingo Maria	1.861	3.096	9.854	21.32	30.947	55.34	68.54	110.981	151.834	78.122			
2019-04-02	Tingo Maria	1.714	2.841	9.238	18.188	24.88	40.285	48.13	75.403	110.099	47.56			
2019-04-03	Tingo Maria	2.436	4.652	11.915	19.714	24.94	35.774	41.004	59.26	81.83	299.716			
2019-04-05	Tingo Maria	1.503	2.344	7.632	17.187	24.843	42.954	52.153	82.512	114.872	58.085			
2019-04-06	Tingo Maria	3.958	7.164	18.938	31.599	39.675	56.872	64.598	87.193	108.433	88.087			
2019-04-07	Tingo Maria	2.187	3.914	11.312	19.782	25.35	37.012	42.833	62.086	84.561	313.512			
2019-04-08	Tingo Maria	1.956	3.337	10.106	19.525	26.582	43.272	52.003	82.284	115.762	150.475			
2019-04-09	Tingo Maria	2.585	4.872	13.496	22.664	28.731	45.845	55.749	86.507	127.862	50.558			
2019-04-10	Tingo Maria	1.603	2.735	11.247	26.601	38.842	68.472	83.821	130.539	169.306	22.334			
2019-04-11	Tingo Maria	1.215	1.892	6.685	14.18	21.127	38.92	48.394	77.308	105.039	10.674			
2019-04-12	Tingo Maria	5.476	9.19	21.226	34.688	43.207	60.613	68.5	89.823	111.578	49.641			
2019-04-14	Tingo Maria	1.641	2.645	9.512	21.576	31.859	54.946	65.749	98.564	131.752	34.776			
2019-04-15	Tingo Maria	3.493	5.918	12.858	19.125	22.665	29.554	32.66	44.849	56.696	16.61			
2019-04-17	Tingo Maria	2.809	4.943	12.911	21.53	26.349	36.396	41.719	59.557	78.229	28.654			
2019-04-25	Tingo Maria	2.338	5.121	17.716	41.728	56.621	83.812	96.04	132.631	164.216	31.728			
2019-04-29	Tingo Maria	1.416	2.148	6.962	12.995	17.403	28.083	33.609	51.579	69.456	21.38			
2019-04-30	Tingo Maria	4.778	7.26	18.642	30.186	37.506	52.64	59.042	76.525	94.611	21.882			

Tabla C.2 Continuación de página previa

Fecha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
rtena	Listación	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-05-01	Tingo Maria	1.083	1.503	8.145	16.549	25.032	48.491	60.266	95.132	128.164	19.321			
2019-05-02	Tingo Maria	1.081	1.527	6.638	12.035	16.191	27.209	33.365	53.569	74.437	24.685			
2019-05-03	Tingo Maria	3.818	5.985	16.528	24.219	28.495	54.239	65.984	90.749	123.48	12.534			
2019-05-04	Tingo Maria	1.044	1.457	8.536	19.712	31.414	55.775	66.118	94.788	121.743	18.216			
2019-05-07	Tingo Maria	10.553	12.02	16.347	21.032	23.901	36.694	58.947	81.015	95.429	4.392			
2019-05-09	Tingo Maria	2.59	4.949	12.74	21.098	26.34	37.089	42.534	63.419	95.075	63.878			
2019-05-10	Tingo Maria	14.119	16.609	28.197	56.845	61.672	68.656	70.865	76.673	84.361	3.49			
2019-05-15	Tingo Maria	0.806	1.484	3.481	5.426	6.418	7.868	8.344	9.283	9.748	9.865			
2019-05-16	Tingo Maria	1.37	2.011	9.756	18.539	25.266	40.992	49.136	77.501	109.771	50.133			
2019-05-18	Tingo Maria	9.039	13.883	30.336	50.575	64.621	92.623	107.402	163.89	201.873	27.169			
2019-05-20	Tingo Maria	0.683	0.983	1.649	14.932	20.333	32.269	37.11	50.375	61.176	6.159			
2019-05-25	Tingo Maria	0.923	1.34	3.605	8.16	10.707	16.989	20.885	37.978	62.438	18.033			
2019-05-30	Tingo Maria	10.053	14.286	26.075	62.898	70.675	84.312	90.198	114.637	164.135	15.412			
2019-05-31	Tingo Maria	4.246	6.796	17.025	28.826	38.007	59.22	67.94	99.915	152.876	22.758			
2019-06-01	Tingo Maria	1.415	2.124	6.719	10.612	12.689	16.15	17.503	21.091	24.006	1.137			
2019-06-02	Tingo Maria	2.509	2.826	5.135	5.943	6.241	7.029	7.275	9.025	9.615	0.14			
2019-06-05	Tingo Maria	6.508	10.475	23.082	35.651	43.227	62.259	73.868	112.444	155.803	75.533			
2019-06-06	Tingo Maria	3.424	6.271	13.265	21.867	28.749	45.659	52.888	67.133	76.319	1.081			
2019-06-07	Tingo Maria	2.169	3.637	11.334	19.753	26.671	64.607	73.038	99.629	161.811	6.088			
2019-06-08	Tingo Maria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Tabla C.2 Continuación de página previa

241

Facha	Estación	D05	D10	D30	D50	D60	D75	D85	D90	D95	CC	Q_LSPIV	Aforo	Q_SENAMHI
геспа	Estacion	μm	mg/L	m^3/s	m^3/s	m^3/s								
2019-06-10	Tingo Maria	7.684	12.007	27.596	40.441	75.478	139.497	161.367	205.055	221.037	20.021			
2019-06-12	Tingo Maria	1.162	5.4	11.46	16.053	21.259	61.933	67.238	86.22	205.702	2.207			
2019-06-13	Tingo Maria	3.454	7.309	18.649	38.488	53.134	84.132	99.443	143.39	174.354	2.245			
2019-06-17	Tingo Maria	5.744	10.816	25.651	39.738	48.308	66.801	75.926	106.813	140.211	318.757			
2019-09-07	Tingo Maria												136.0	

Tabla C.2 Continuación de página previa

ANEXO D: Datos medidos de sedimentos gruesos

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
0	370314.502	8819252.56	Jarapampa	JAR	1	1	5	0.74	7.4
1	370314.502	8819252.56	Jarapampa	JAR	1	1	16	1.13	11.3
2	370314.502	8819252.56	Jarapampa	JAR	1	1	25	1.94	19.4
3	370314.502	8819252.56	Jarapampa	JAR	1	1	50	4.5	45.0
4	370314.502	8819252.56	Jarapampa	JAR	1	1	75	12.0	120.0
5	370314.502	8819252.56	Jarapampa	JAR	1	1	84	19.97	199.7
6	370314.502	8819252.56	Jarapampa	JAR	1	1	95	46.88	468.8
7	370314.502	8819252.56	Jarapampa	JAR	1	1	100	157.6	1576.0
8	370314.502	8819252.56	Jarapampa	JAR	1	2	5	0.62	6.2
9	370314.502	8819252.56	Jarapampa	JAR	1	2	16	2.0	20.0
10	370314.502	8819252.56	Jarapampa	JAR	1	2	25	2.78	27.8
11	370314.502	8819252.56	Jarapampa	JAR	1	2	50	5.49	54.9
12	370314.502	8819252.56	Jarapampa	JAR	1	2	75	10.74	107.4
13	370314.502	8819252.56	Jarapampa	JAR	1	2	84	15.32	153.2
14	370314.502	8819252.56	Jarapampa	JAR	1	2	95	29.47	294.7
15	370314.502	8819252.56	Jarapampa	JAR	1	2	100	126.76	1267.6
16	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	5	0.76	7.6
17	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	16	1.58	15.8
18	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	25	2.49	24.9
19	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	50	4.61	46.1

TABLA D.2: Diámetros característicos de sedimentos gruesos obtenidos por granulometría óptica.

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
20	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	75	8.48	84.8
21	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	84	11.42	114.2
22	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	95	24.04	240.4
23	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	1	100	191.78	1917.8
24	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	10	0.24	2.4
25	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	16	0.62	6.2
26	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	30	2.31	23.1
27	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	35	3.0	30.0
28	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	50	4.07	40.7
29	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	65	5.37	53.7
30	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	84	8.19	81.9
31	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	90	10.17	101.7
32	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	95	13.28	132.8
33	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	98	16.68	166.8
34	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	2	99	21.39	213.9
35	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	10	0.22	2.2
36	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	16	0.56	5.6
37	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	30	2.12	21.2
38	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	35	2.78	27.8
39	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	50	3.89	38.9
40	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	65	4.9	49.0

Tabla D.2 Continuación de página previa

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
41	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	84	6.93	69.3
42	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	90	8.22	82.2
43	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	95	9.4	94.0
44	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	98	11.37	113.7
45	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	3	99	12.68	126.8
46	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	10	0.25	2.5
47	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	16	0.63	6.3
48	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	30	2.34	23.4
49	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	35	3.05	30.5
50	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	50	4.29	42.9
51	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	65	5.68	56.8
52	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	84	8.68	86.8
53	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	90	11.38	113.8
54	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	95	13.53	135.3
55	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	98	16.42	164.2
56	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	4	99	18.06	180.6
57	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	10	0.15	1.5
58	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	16	0.38	3.8
59	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	30	1.49	14.9
60	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	35	2.01	20.1
61	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	50	3.38	33.8

Tabla D.2 Continuación de página previa

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
62	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	65	4.16	41.6
63	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	84	5.66	56.6
64	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	90	6.24	62.4
65	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	95	7.7	77.0
66	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	98	8.88	88.8
67	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	5	99	9.85	98.5
68	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	10	0.22	2.2
69	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	16	0.56	5.6
70	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	30	2.44	24.4
71	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	35	3.25	32.5
72	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	50	4.46	44.6
73	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	65	5.8	58.0
74	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	84	8.34	83.4
75	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	90	9.45	94.5
76	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	95	12.16	121.6
77	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	6	98	14.64	146.4
78	370710.137	8854839.373	San Rafael - Upstream	SNR₋US	2	6	99	16.11	161.1
79	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	10	0.19	1.9
80	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	16	0.49	4.9
81	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	30	1.97	19.7
82	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	35	2.71	27.1

Tabla D.2 Continuación de página previa

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
83	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	50	3.97	39.7
84	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	65	5.22	52.2
85	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	84	7.62	76.2
86	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	90	8.56	85.6
87	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	95	9.64	96.4
88	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	98	12.15	121.5
89	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	7	99	13.28	132.8
90	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	10	0.18	1.8
91	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	16	0.46	4.6
92	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	30	2.11	21.1
93	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	35	3.09	30.9
94	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	50	4.27	42.7
95	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	65	5.39	53.9
96	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	84	7.43	74.3
97	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	90	8.52	85.2
98	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	95	10.37	103.7
99	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	98	12.55	125.5
100	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	8	99	13.27	132.7
101	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	10	0.23	2.3
102	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	16	0.59	5.9
103	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	30	2.28	22.8

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
104	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	35	3.01	30.1
105	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	50	5.06	50.6
106	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	65	6.86	68.6
107	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	84	9.59	95.9
108	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	90	11.18	111.8
109	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	95	12.79	127.9
110	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	98	13.75	137.5
111	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	9	99	15.16	151.6
112	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	10	0.31	3.1
113	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	16	0.78	7.8
114	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	30	2.83	28.3
115	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	35	3.7	37.0
116	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	50	5.86	58.6
117	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	65	8.09	80.9
118	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	84	11.97	119.7
119	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	90	13.29	132.9
120	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	95	15.24	152.4
121	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	98	18.55	185.5
122	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	10	99	21.72	217.2
123	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	10	0.32	3.2
124	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	16	0.82	8.2

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
125	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	30	2.73	27.3
126	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	35	3.47	34.7
127	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	50	5.8	58.0
128	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	65	8.26	82.6
129	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	84	12.73	127.3
130	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	90	15.09	150.9
131	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	95	21.0	210.0
132	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	98	27.15	271.5
133	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	11	99	28.57	285.7
134	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	10	0.21	2.1
135	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	16	0.53	5.3
136	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	30	2.53	25.3
137	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	35	3.6	36.0
138	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	50	5.96	59.6
139	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	65	8.05	80.5
140	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	84	10.99	109.9
141	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	90	12.26	122.6
142	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	95	13.32	133.2
143	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	98	13.95	139.5
144	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	12	99	15.32	153.2
145	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	10	0.22	2.2

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
146	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	16	0.56	5.6
147	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	30	2.3	23.0
148	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	35	3.09	30.9
149	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	50	5.16	51.6
150	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	65	6.92	69.2
151	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	84	10.3	103.0
152	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	90	11.97	119.7
153	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	95	13.37	133.7
154	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	98	15.13	151.3
155	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	13	99	16.64	166.4
156	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	10	0.23	2.3
157	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	16	0.58	5.8
158	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	30	2.52	25.2
159	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	35	3.42	34.2
160	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	50	5.72	57.2
161	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	65	7.66	76.6
162	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	84	10.58	105.8
163	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	90	12.56	125.6
164	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	95	14.43	144.3
165	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	98	16.42	164.2
166	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	14	99	17.32	173.2

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
167	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	10	0.26	2.6
168	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	16	0.66	6.6
169	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	30	2.44	24.4
170	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	35	3.18	31.8
171	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	50	5.24	52.4
172	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	65	7.16	71.6
173	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	84	9.89	98.9
174	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	90	12.12	121.2
175	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	95	14.4	144.0
176	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	98	18.8	188.0
177	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	15	99	21.36	213.6
178	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	10	0.22	2.2
179	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	16	0.56	5.6
180	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	30	2.56	25.6
181	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	35	3.41	34.1
182	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	50	5.38	53.8
183	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	65	7.92	79.2
184	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	84	12.95	129.5
185	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	90	14.81	148.1
186	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	95	16.19	161.9
187	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	98	17.12	171.2

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
188	370710.137	8854839.373	San Rafael - Upstream	SNR_US	2	16	99	18.56	185.6
189	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	5	0.6	6.0
190	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	16	1.1	11.0
191	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	25	1.82	18.2
192	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	50	3.46	34.6
193	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	75	6.47	64.7
194	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	84	8.93	89.3
195	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	95	21.11	211.1
196	371301.573	8858299.271	San Rafael - Downstream	SNR_DS	4	1	100	249.53	2495.3
197	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	10	0.33	3.3
198	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	16	0.85	8.5
199	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	30	3.45	34.5
200	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	35	4.59	45.9
201	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	50	7.33	73.3
202	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	65	9.98	99.8
203	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	84	13.51	135.1
204	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	90	15.27	152.7
205	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	95	18.57	185.7
206	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	98	26.24	262.4
207	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	2	99	28.12	281.2
208	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	10	0.43	4.3

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
209	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	16	1.1	11.0
210	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	30	4.34	43.4
211	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	35	5.82	58.2
212	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	50	10.63	106.3
213	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	65	17.29	172.9
214	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	84	28.93	289.3
215	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	90	34.02	340.2
216	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	95	38.62	386.2
217	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	98	44.29	442.9
218	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	3	99	47.14	471.4
219	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	10	0.37	3.7
220	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	16	0.95	9.5
221	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	30	3.42	34.2
222	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	35	4.52	45.2
223	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	50	7.89	78.9
224	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	65	11.76	117.6
225	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	84	19.79	197.9
226	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	90	27.5	275.0
227	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	95	34.76	347.6
228	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	98	37.9	379.0
229	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	4	99	38.95	389.5

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
230	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	10	0.28	2.8
231	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	16	0.72	7.2
232	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	30	2.57	25.7
233	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	35	3.36	33.6
234	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	50	5.43	54.3
235	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	65	7.54	75.4
236	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	84	12.38	123.8
237	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	90	14.71	147.1
238	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	95	18.58	185.8
239	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	98	21.92	219.2
240	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	5	99	23.46	234.6
241	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	10	0.33	3.3
242	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	16	0.85	8.5
243	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	30	3.37	33.7
244	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	35	4.48	44.8
245	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	50	7.12	71.2
246	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	65	10.24	102.4
247	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	84	16.29	162.9
248	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	90	20.16	201.6
249	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	95	22.98	229.8
250	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	98	24.67	246.7

Tabla D.2 Continuación de página previa

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
251	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	6	99	26.48	264.8
252	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	10	0.39	3.9
253	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	16	1.0	10.0
254	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	30	3.97	39.7
255	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	35	5.2	52.0
256	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	50	8.21	82.1
257	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	65	11.4	114.0
258	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	84	16.62	166.2
259	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	90	19.82	198.2
260	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	95	25.7	257.0
261	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	98	34.94	349.4
262	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	7	99	37.47	374.7
263	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	10	0.35	3.5
264	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	16	0.9	9.0
265	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	30	3.78	37.8
266	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	35	4.92	49.2
267	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	50	7.79	77.9
268	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	65	10.63	106.3
269	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	84	15.51	155.1
270	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	90	18.15	181.5
271	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	95	21.49	214.9

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
272	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	98	24.04	240.4
273	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	8	99	24.9	249.0
274	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	10	0.32	3.2
275	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	16	0.83	8.3
276	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	30	2.94	29.4
277	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	35	3.81	38.1
278	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	50	6.18	61.8
279	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	65	8.94	89.4
280	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	84	18.94	189.4
281	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	90	25.91	259.1
282	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	95	29.46	294.6
283	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	98	38.5	385.0
284	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	9	99	43.78	437.8
285	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	10	0.36	3.6
286	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	16	0.92	9.2
287	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	30	3.87	38.7
288	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	35	4.99	49.9
289	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	50	8.36	83.6
290	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	65	13.95	139.5
291	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	84	22.53	225.3
292	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	90	26.77	267.7

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
293	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	95	29.32	293.2
294	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	98	34.53	345.3
295	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	10	99	37.27	372.7
296	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	10	0.32	3.2
297	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	16	0.8	8.0
298	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	30	2.85	28.5
299	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	35	3.7	37.0
300	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	50	6.31	63.1
301	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	65	11.07	110.7
302	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	84	16.98	169.8
303	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	90	20.45	204.5
304	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	95	24.19	241.9
305	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	98	27.45	274.5
306	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	11	99	28.73	287.3
307	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	10	0.33	3.3
308	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	16	0.83	8.3
309	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	30	3.12	31.2
310	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	35	4.09	40.9
311	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	50	6.63	66.3
312	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	65	10.26	102.6
313	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	84	16.21	162.1

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
314	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	90	20.22	202.2
315	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	95	24.08	240.8
316	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	98	27.37	273.7
317	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	12	99	28.69	286.9
318	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	10	0.31	3.1
319	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	16	0.79	7.9
320	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	30	3.29	32.9
321	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	35	4.44	44.4
322	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	50	7.13	71.3
323	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	65	9.73	97.3
324	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	84	13.95	139.5
325	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	90	17.66	176.6
326	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	95	21.63	216.3
327	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	98	23.65	236.5
328	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	13	99	24.33	243.3
329	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	10	0.33	3.3
330	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	16	0.83	8.3
331	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	30	3.51	35.1
332	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	35	4.68	46.8
333	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	50	7.79	77.9
334	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	65	11.61	116.1

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
335	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	84	17.72	177.2
336	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	90	21.13	211.3
337	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	95	23.96	239.6
338	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	98	26.84	268.4
339	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	14	99	28.42	284.2
340	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	10	0.42	4.2
341	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	16	1.07	10.7
342	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	30	4.02	40.2
343	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	35	5.34	53.4
344	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	50	9.57	95.7
345	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	65	17.35	173.5
346	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	84	39.81	398.1
347	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	90	47.07	470.7
348	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	95	58.47	584.7
349	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	98	68.39	683.9
350	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	15	99	71.69	716.9
351	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	10	0.31	3.1
352	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	16	0.79	7.9
353	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	30	2.62	26.2
354	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	35	3.32	33.2
355	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	50	5.31	53.1

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
356	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	65	7.48	74.8
357	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	84	11.68	116.8
358	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	90	13.82	138.2
359	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	95	16.72	167.2
360	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	98	24.3	243.0
361	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	16	99	27.13	271.3
362	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	10	0.25	2.5
363	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	16	0.64	6.4
364	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	30	2.46	24.6
365	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	35	3.22	32.2
366	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	50	5.3	53.0
367	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	65	7.38	73.8
368	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	84	11.28	112.8
369	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	90	12.93	129.3
370	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	95	15.03	150.3
371	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	98	17.89	178.9
372	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	17	99	18.94	189.4
373	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	10	0.28	2.8
374	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	16	0.71	7.1
375	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	30	2.56	25.6
376	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	35	3.38	33.8

Tabla D.2 Continuación de página previa

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
377	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	50	5.4	54.0
378	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	65	7.39	73.9
379	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	84	12.04	120.4
380	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	90	14.65	146.5
381	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	95	19.36	193.6
382	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	98	22.57	225.7
383	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	18	99	23.78	237.8
384	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	10	0.29	2.9
385	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	16	0.75	7.5
386	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	30	3.27	32.7
387	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	35	4.54	45.4
388	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	50	6.97	69.7
389	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	65	9.17	91.7
390	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	84	13.43	134.3
391	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	90	15.67	156.7
392	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	95	18.7	187.0
393	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	98	21.93	219.3
394	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	19	99	23.46	234.6
395	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	10	0.32	3.2
396	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	16	0.82	8.2
397	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	30	3.06	30.6

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
398	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	35	4.01	40.1
399	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	50	6.11	61.1
400	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	65	8.15	81.5
401	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	84	11.96	119.6
402	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	90	13.5	135.0
403	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	95	18.01	180.1
404	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	98	22.81	228.1
405	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	20	99	26.25	262.5
406	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	10	0.37	3.7
407	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	16	0.94	9.4
408	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	30	3.56	35.6
409	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	35	4.8	48.0
410	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	50	8.05	80.5
411	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	65	11.04	110.4
412	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	84	16.79	167.9
413	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	90	20.05	200.5
414	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	95	24.48	244.8
415	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	98	27.74	277.4
416	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	21	99	28.87	288.7
417	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	10	0.34	3.4
418	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	16	0.88	8.8

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
419	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	30	3.73	37.3
420	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	35	4.88	48.8
421	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	50	7.95	79.5
422	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	65	12.02	120.2
423	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	84	21.61	216.1
424	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	90	26.26	262.6
425	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	95	34.12	341.2
426	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	98	37.65	376.5
427	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	22	99	38.82	388.2
428	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	10	0.32	3.2
429	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	16	0.81	8.1
430	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	30	3.02	30.2
431	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	35	3.97	39.7
432	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	50	6.83	68.3
433	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	65	10.59	105.9
434	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	84	15.44	154.4
435	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	90	18.42	184.2
436	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	95	22.08	220.8
437	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	98	24.77	247.7
438	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	23	99	27.14	271.4
439	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	10	0.35	3.5

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
440	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	16	0.89	8.9
441	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	30	4.02	40.2
442	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	35	5.24	52.4
443	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	50	8.39	83.9
444	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	65	11.52	115.2
445	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	84	15.94	159.4
446	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	90	18.5	185.0
447	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	95	23.66	236.6
448	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	98	27.37	273.7
449	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	24	99	28.69	286.9
450	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	10	0.28	2.8
451	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	16	0.71	7.1
452	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	30	3.29	32.9
453	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	35	4.66	46.6
454	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	50	7.17	71.7
455	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	65	9.65	96.5
456	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	84	14.64	146.4
457	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	90	17.1	171.0
458	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	95	19.05	190.5
459	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	98	21.1	211.0
460	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	25	99	23.05	230.5

Tabla D.2 Continuación de página previa

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
461	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	10	0.3	3.0
462	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	16	0.77	7.7
463	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	30	3.28	32.8
464	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	35	3.98	39.8
465	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	50	5.96	59.6
466	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	65	8.27	82.7
467	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	84	12.94	129.4
468	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	90	16.63	166.3
469	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	95	22.17	221.7
470	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	98	24.72	247.2
471	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	26	99	34.03	340.3
472	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	10	0.33	3.3
473	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	16	0.85	8.5
474	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	30	3.2	32.0
475	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	35	4.21	42.1
476	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	50	6.94	69.4
477	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	65	9.58	95.8
478	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	84	15.09	150.9
479	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	90	19.36	193.6
480	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	95	23.08	230.8
481	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	98	30.88	308.8

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
482	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	27	99	35.44	354.4
483	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	10	0.32	3.2
484	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	16	0.81	8.1
485	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	30	2.96	29.6
486	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	35	3.87	38.7
487	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	50	5.8	58.0
488	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	65	7.9	79.0
489	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	84	12.34	123.4
490	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	90	14.32	143.2
491	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	95	16.31	163.1
492	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	98	21.47	214.7
493	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	28	99	26.5	265.0
494	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	10	0.31	3.1
495	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	16	0.8	8.0
496	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	30	3.04	30.4
497	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	35	4.02	40.2
498	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	50	6.53	65.3
499	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	65	10.02	100.2
500	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	84	16.99	169.9
501	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	90	21.37	213.7
502	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	95	24.89	248.9

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
503	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	98	34.9	349.0
504	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	29	99	37.45	374.5
505	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	10	0.27	2.7
506	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	16	0.7	7.0
507	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	30	2.44	24.4
508	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	35	3.18	31.8
509	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	50	5.18	51.8
510	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	65	6.94	69.4
511	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	84	9.58	95.8
512	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	90	11.11	111.1
513	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	95	13.02	130.2
514	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	98	14.95	149.5
515	371317.724	8858469.149	San Rafael - Downstream	SNR_DS	4	30	99	20.39	203.9
516	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	5	0.69	6.9
517	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	16	1.41	14.1
518	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	25	2.15	21.5
519	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	50	3.86	38.6
520	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	75	6.89	68.9
521	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	84	9.32	93.2
522	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	95	20.24	202.4
523	369443.826	8877990.879	Ambo - Upstream	AMB_US	5	1	100	365.06	3650.6

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
524	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	10	0.32	3.2
525	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	16	0.82	8.2
526	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	30	6.85	68.5
527	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	35	10.28	102.8
528	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	50	18.07	180.7
529	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	65	24.42	244.2
530	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	84	37.36	373.6
531	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	90	45.02	450.2
532	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	95	56.22	562.2
533	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	98	67.49	674.9
534	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	2	99	71.24	712.4
535	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	10	0.43	4.3
536	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	16	1.1	11.0
537	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	30	8.71	87.1
538	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	35	13.27	132.7
539	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	50	26.35	263.5
540	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	65	38.41	384.1
541	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	84	61.24	612.4
542	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	90	71.25	712.5
543	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	95	83.87	838.7
544	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	98	93.55	935.5

Tabla D.2 Continuación de página previa
ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
545	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	3	99	96.77	967.7
546	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	10	0.43	4.3
547	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	16	1.09	10.9
548	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	30	8.96	89.6
549	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	35	13.79	137.9
550	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	50	26.09	260.9
551	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	65	38.45	384.5
552	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	84	61.82	618.2
553	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	90	71.17	711.7
554	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	95	83.42	834.2
555	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	98	93.37	933.7
556	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	4	99	96.68	966.8
557	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	10	0.38	3.8
558	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	16	0.98	9.8
559	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	30	7.83	78.3
560	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	35	12.79	127.9
561	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	50	25.1	251.0
562	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	65	35.33	353.3
563	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	84	53.66	536.6
564	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	90	64.32	643.2
565	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	95	73.2	732.0

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
566	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	98	87.45	874.5
567	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	5	99	93.72	937.2
568	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	10	0.44	4.4
569	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	16	1.13	11.3
570	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	30	12.2	122.0
571	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	35	17.33	173.3
572	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	50	27.47	274.7
573	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	65	38.54	385.4
574	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	84	62.77	627.7
575	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	90	71.65	716.5
576	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	95	83.84	838.4
577	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	98	93.54	935.4
578	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	6	99	96.77	967.7
579	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	10	0.36	3.6
580	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	16	0.93	9.3
581	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	30	9.12	91.2
582	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	35	13.33	133.3
583	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	50	23.13	231.3
584	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	65	34.65	346.5
585	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	84	49.39	493.9
586	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	90	60.14	601.4

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
587	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	95	69.75	697.5
588	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	98	77.97	779.7
589	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	7	99	88.98	889.8
590	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	10	0.43	4.3
591	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	16	1.09	10.9
592	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	30	8.28	82.8
593	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	35	12.61	126.1
594	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	50	26.62	266.2
595	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	65	40.15	401.5
596	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	84	61.75	617.5
597	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	90	71.44	714.4
598	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	95	83.96	839.6
599	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	98	93.58	935.8
600	369420.589	8878075.518	Ambo - Upstream	AMB_US	5	8	99	96.79	967.9
601	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	5	0.67	6.7
602	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	16	1.02	10.2
603	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	25	1.87	18.7
604	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	50	3.53	35.3
605	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	75	6.69	66.9
606	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	84	9.26	92.6
607	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	95	22.69	226.9

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
608	369443.826	8877990.879	Ambo - Downstram	AMB_DS	7	1	100	253.92	2539.2
609	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	10	0.38	3.8
610	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	16	0.97	9.7
611	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	30	4.25	42.5
612	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	35	6.07	60.7
613	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	50	9.31	93.1
614	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	65	12.19	121.9
615	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	84	18.96	189.6
616	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	90	23.2	232.0
617	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	95	26.73	267.3
618	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	98	28.69	286.9
619	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	2	99	29.35	293.5
620	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	10	0.34	3.4
621	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	16	0.88	8.8
622	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	30	3.36	33.6
623	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	35	4.41	44.1
624	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	50	6.46	64.6
625	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	65	8.85	88.5
626	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	84	13.69	136.9
627	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	90	16.18	161.8
628	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	95	25.55	255.5

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
629	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	98	31.89	318.9
630	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	3	99	35.95	359.5
631	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	10	0.32	3.2
632	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	16	0.81	8.1
633	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	30	2.77	27.7
634	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	35	3.55	35.5
635	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	50	5.57	55.7
636	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	65	7.73	77.3
637	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	84	12.44	124.4
638	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	90	15.42	154.2
639	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	95	18.53	185.3
640	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	98	25.07	250.7
641	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	4	99	27.54	275.4
642	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	10	0.28	2.8
643	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	16	0.71	7.1
644	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	30	2.69	26.9
645	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	35	3.62	36.2
646	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	50	5.61	56.1
647	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	65	7.53	75.3
648	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	84	11.7	117.0
649	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	90	13.73	137.3

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
650	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	95	16.68	166.8
651	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	98	19.64	196.4
652	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	5	99	21.99	219.9
653	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	10	0.21	2.1
654	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	16	0.53	5.3
655	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	30	2.03	20.3
656	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	35	2.71	27.1
657	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	50	4.02	40.2
658	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	65	5.4	54.0
659	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	84	8.41	84.1
660	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	90	9.81	98.1
661	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	95	12.04	120.4
662	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	98	13.46	134.6
663	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	6	99	13.94	139.4
664	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	10	0.31	3.1
665	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	16	0.79	7.9
666	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	30	2.75	27.5
667	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	35	3.55	35.5
668	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	50	5.44	54.4
669	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	65	7.55	75.5
670	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	84	12.01	120.1

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
671	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	90	13.61	136.1
672	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	95	16.69	166.9
673	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	98	20.56	205.6
674	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	7	99	25.61	256.1
675	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	10	0.29	2.9
676	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	16	0.75	7.5
677	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	30	3.08	30.8
678	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	35	4.21	42.1
679	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	50	7.11	71.1
680	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	65	10.0	100.0
681	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	84	14.97	149.7
682	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	90	17.14	171.4
683	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	95	18.92	189.2
684	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	98	19.99	199.9
685	368079.537	8880814.831	Ambo - Downstram	AMB_DS	7	8	99	22.46	224.6
686	364993.186	8877121.06	Huacar	HUA	8	1	5	0.63	6.3
687	364993.186	8877121.06	Huacar	HUA	8	1	16	0.77	7.7
688	364993.186	8877121.06	Huacar	HUA	8	1	25	1.65	16.5
689	364993.186	8877121.06	Huacar	HUA	8	1	50	3.2	32.0
690	364993.186	8877121.06	Huacar	HUA	8	1	75	6.05	60.5
691	364993.186	8877121.06	Huacar	HUA	8	1	84	8.37	83.7

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
692	364993.186	8877121.06	Huacar	HUA	8	1	95	19.08	190.8
693	364993.186	8877121.06	Huacar	HUA	8	1	100	311.33	3113.3
694	364997.787	8877117.302	Huacar	HUA	8	2	5	0.7	7.0
695	364997.787	8877117.302	Huacar	HUA	8	2	16	1.41	14.1
696	364997.787	8877117.302	Huacar	HUA	8	2	25	2.22	22.2
697	364997.787	8877117.302	Huacar	HUA	8	2	50	4.3	43.0
698	364997.787	8877117.302	Huacar	HUA	8	2	75	8.72	87.2
699	364997.787	8877117.302	Huacar	HUA	8	2	84	12.61	126.1
700	364997.787	8877117.302	Huacar	HUA	8	2	95	26.59	265.9
701	364997.787	8877117.302	Huacar	HUA	8	2	100	453.58	4535.8
702	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	5	0.68	6.8
703	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	16	1.04	10.4
704	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	25	1.86	18.6
705	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	50	3.6	36.0
706	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	75	6.71	67.1
707	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	84	9.33	93.3
708	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	95	21.15	211.5
709	363319.882	8899871.146	Huanuco - Upstream	HUAN₋US	9	1	100	741.03	7410.3
710	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	5	0.72	7.2
711	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	16	1.41	14.1
712	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	25	2.11	21.1

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
713	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	50	3.83	38.3
714	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	75	7.41	74.1
715	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	84	10.55	105.5
716	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	95	28.39	283.9
717	366199.366	8906938.516	Huanuco - Downstram	HUAN_DS	12	1	100	324.5	3245.0
718	380233.125	8913124.231	Rancho	RAN	13	1	5	0.69	6.9
719	380233.125	8913124.231	Rancho	RAN	13	1	16	1.02	10.2
720	380233.125	8913124.231	Rancho	RAN	13	1	25	1.89	18.9
721	380233.125	8913124.231	Rancho	RAN	13	1	50	3.58	35.8
722	380233.125	8913124.231	Rancho	RAN	13	1	75	6.62	66.2
723	380233.125	8913124.231	Rancho	RAN	13	1	84	8.91	89.1
724	380233.125	8913124.231	Rancho	RAN	13	1	95	19.43	194.3
725	380233.125	8913124.231	Rancho	RAN	13	1	100	407.29	4072.9
726	381542.708	8913146.142	Rancho	RAN	13	2	5	2.04	20.4
727	381542.708	8913146.142	Rancho	RAN	13	2	16	4.08	40.8
728	381542.708	8913146.142	Rancho	RAN	13	2	25	6.04	60.4
729	381542.708	8913146.142	Rancho	RAN	13	2	50	13.48	134.8
730	381542.708	8913146.142	Rancho	RAN	13	2	75	39.68	396.8
731	381542.708	8913146.142	Rancho	RAN	13	2	84	52.57	525.7
732	381542.708	8913146.142	Rancho	RAN	13	2	95	115.57	1155.7
733	381542.708	8913146.142	Rancho	RAN	13	2	100	223.76	2237.6

Tabla D.2 Continuación de página previa

ID	x	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
734	400984.481	8940997.124	Mallcotingo	MAL	14	1	5	0.67	6.7
735	400984.481	8940997.124	Mallcotingo	MAL	14	1	16	1.34	13.4
736	400984.481	8940997.124	Mallcotingo	MAL	14	1	25	2.25	22.5
737	400984.481	8940997.124	Mallcotingo	MAL	14	1	50	4.37	43.7
738	400984.481	8940997.124	Mallcotingo	MAL	14	1	75	8.25	82.5
739	400984.481	8940997.124	Mallcotingo	MAL	14	1	84	11.47	114.7
740	400984.481	8940997.124	Mallcotingo	MAL	14	1	95	26.19	261.9
741	400984.481	8940997.124	Mallcotingo	MAL	14	1	100	276.47	2764.7
742	401003.096	8940986.782	Mallcotingo	MAL	14	2	5	0.64	6.4
743	401003.096	8940986.782	Mallcotingo	MAL	14	2	16	1.39	13.9
744	401003.096	8940986.782	Mallcotingo	MAL	14	2	25	2.16	21.6
745	401003.096	8940986.782	Mallcotingo	MAL	14	2	50	4.22	42.2
746	401003.096	8940986.782	Mallcotingo	MAL	14	2	75	8.05	80.5
747	401003.096	8940986.782	Mallcotingo	MAL	14	2	84	11.42	114.2
748	401003.096	8940986.782	Mallcotingo	MAL	14	2	95	28.29	282.9
749	401003.096	8940986.782	Mallcotingo	MAL	14	2	100	319.31	3193.1
750	401038.258	8940996.434	Mallcotingo	MAL	14	3	5	0.91	9.1
751	401038.258	8940996.434	Mallcotingo	MAL	14	3	16	2.26	22.6
752	401038.258	8940996.434	Mallcotingo	MAL	14	3	25	3.28	32.8
753	401038.258	8940996.434	Mallcotingo	MAL	14	3	50	6.6	66.0
754	401038.258	8940996.434	Mallcotingo	MAL	14	3	75	12.93	129.3

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
755	401038.258	8940996.434	Mallcotingo	MAL	14	3	84	18.55	185.5
756	401038.258	8940996.434	Mallcotingo	MAL	14	3	95	40.02	400.2
757	401038.258	8940996.434	Mallcotingo	MAL	14	3	100	276.06	2760.6
758	397173.551	8948650.352	Rio Chinchao	RCH	15	1	5	0.77	7.7
759	397173.551	8948650.352	Rio Chinchao	RCH	15	1	16	1.94	19.4
760	397173.551	8948650.352	Rio Chinchao	RCH	15	1	25	2.88	28.8
761	397173.551	8948650.352	Rio Chinchao	RCH	15	1	50	5.73	57.3
762	397173.551	8948650.352	Rio Chinchao	RCH	15	1	75	11.76	117.6
763	397173.551	8948650.352	Rio Chinchao	RCH	15	1	84	16.84	168.4
764	397173.551	8948650.352	Rio Chinchao	RCH	15	1	95	34.44	344.4
765	397173.551	8948650.352	Rio Chinchao	RCH	15	1	100	721.64	7216.4
766	397187.082	8948667.071	Rio Chinchao	RCH	15	2	5	0.82	8.2
767	397187.082	8948667.071	Rio Chinchao	RCH	15	2	16	1.68	16.8
768	397187.082	8948667.071	Rio Chinchao	RCH	15	2	25	2.61	26.1
769	397187.082	8948667.071	Rio Chinchao	RCH	15	2	50	5.06	50.6
770	397187.082	8948667.071	Rio Chinchao	RCH	15	2	75	10.45	104.5
771	397187.082	8948667.071	Rio Chinchao	RCH	15	2	84	15.87	158.7
772	397187.082	8948667.071	Rio Chinchao	RCH	15	2	95	38.49	384.9
773	397187.082	8948667.071	Rio Chinchao	RCH	15	2	100	324.45	3244.5
774	397193.545	8948654.23	Rio Chinchao	RCH	15	3	5	0.74	7.4
775	397193.545	8948654.23	Rio Chinchao	RCH	15	3	16	1.39	13.9

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
776	397193.545	8948654.23	Rio Chinchao	RCH	15	3	25	2.3	23.0
777	397193.545	8948654.23	Rio Chinchao	RCH	15	3	50	4.38	43.8
778	397193.545	8948654.23	Rio Chinchao	RCH	15	3	75	8.5	85.0
779	397193.545	8948654.23	Rio Chinchao	RCH	15	3	84	12.24	122.4
780	397193.545	8948654.23	Rio Chinchao	RCH	15	3	95	31.5	315.0
781	397193.545	8948654.23	Rio Chinchao	RCH	15	3	100	263.88	2638.8
782	397164.33	8948639.062	Rio Chinchao	RCH	15	4	5	0.68	6.8
783	397164.33	8948639.062	Rio Chinchao	RCH	15	4	16	1.15	11.5
784	397164.33	8948639.062	Rio Chinchao	RCH	15	4	25	1.91	19.1
785	397164.33	8948639.062	Rio Chinchao	RCH	15	4	50	3.89	38.9
786	397164.33	8948639.062	Rio Chinchao	RCH	15	4	75	7.63	76.3
787	397164.33	8948639.062	Rio Chinchao	RCH	15	4	84	11.16	111.6
788	397164.33	8948639.062	Rio Chinchao	RCH	15	4	95	27.2	272.0
789	397164.33	8948639.062	Rio Chinchao	RCH	15	4	100	809.66	8096.6
790	397175.275	8948630.272	Rio Chinchao	RCH	15	5	5	0.68	6.8
791	397175.275	8948630.272	Rio Chinchao	RCH	15	5	16	1.12	11.2
792	397175.275	8948630.272	Rio Chinchao	RCH	15	5	25	1.94	19.4
793	397175.275	8948630.272	Rio Chinchao	RCH	15	5	50	3.76	37.6
794	397175.275	8948630.272	Rio Chinchao	RCH	15	5	75	7.6	76.0
795	397175.275	8948630.272	Rio Chinchao	RCH	15	5	84	10.99	109.9
796	397175.275	8948630.272	Rio Chinchao	RCH	15	5	95	24.63	246.3

Tabla D.2 Continuación de página previa

ID	X	у	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
797	397175.275	8948630.272	Rio Chinchao	RCH	15	5	100	316.91	3169.1
798	397313.596	8948672.242	Chinchavito	CHI	15	1	5	0.67	6.7
799	397313.596	8948672.242	Chinchavito	CHI	15	1	16	1.01	10.1
800	397313.596	8948672.242	Chinchavito	CHI	15	1	25	1.81	18.1
801	397313.596	8948672.242	Chinchavito	CHI	15	1	50	3.38	33.8
802	397313.596	8948672.242	Chinchavito	CHI	15	1	75	6.38	63.8
803	397313.596	8948672.242	Chinchavito	CHI	15	1	84	9.19	91.9
804	397313.596	8948672.242	Chinchavito	CHI	15	1	95	23.24	232.4
805	397313.596	8948672.242	Chinchavito	CHI	15	1	100	290.42	2904.2
806	397121.239	8948942.161	Chinchavito	CHI	15	2	5	0.71	7.1
807	397121.239	8948942.161	Chinchavito	CHI	15	2	16	1.09	10.9
808	397121.239	8948942.161	Chinchavito	CHI	15	2	25	1.9	19.0
809	397121.239	8948942.161	Chinchavito	CHI	15	2	50	3.6	36.0
810	397121.239	8948942.161	Chinchavito	CHI	15	2	75	6.93	69.3
811	397121.239	8948942.161	Chinchavito	CHI	15	2	84	9.76	97.6
812	397121.239	8948942.161	Chinchavito	CHI	15	2	95	23.1	231.0
813	397121.239	8948942.161	Chinchavito	CHI	15	2	100	332.83	3328.3
814	397196.734	8948803.238	Chinchavito	CHI	15	3	5	0.66	6.6
815	397196.734	8948803.238	Chinchavito	CHI	15	3	16	1.07	10.7
816	397196.734	8948803.238	Chinchavito	CHI	15	3	25	1.98	19.8
817	397196.734	8948803.238	Chinchavito	CHI	15	3	50	3.66	36.6

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
818	397196.734	8948803.238	Chinchavito	CHI	15	3	75	6.59	65.9
819	397196.734	8948803.238	Chinchavito	CHI	15	3	84	9.02	90.2
820	397196.734	8948803.238	Chinchavito	CHI	15	3	95	21.01	210.1
821	397196.734	8948803.238	Chinchavito	CHI	15	3	100	246.54	2465.4
822	397148.472	8948897.003	Chinchavito	CHI	15	4	5	0.84	8.4
823	397148.472	8948897.003	Chinchavito	CHI	15	4	16	2.17	21.7
824	397148.472	8948897.003	Chinchavito	CHI	15	4	25	3.03	30.3
825	397148.472	8948897.003	Chinchavito	CHI	15	4	50	5.42	54.2
826	397148.472	8948897.003	Chinchavito	CHI	15	4	75	9.9	99.0
827	397148.472	8948897.003	Chinchavito	CHI	15	4	84	13.37	133.7
828	397148.472	8948897.003	Chinchavito	CHI	15	4	95	28.24	282.4
829	397148.472	8948897.003	Chinchavito	CHI	15	4	100	804.41	8044.1
830	397271.194	8948699.475	Chinchavito	CHI	15	5	5	0.85	8.5
831	397271.194	8948699.475	Chinchavito	CHI	15	5	16	1.97	19.7
832	397271.194	8948699.475	Chinchavito	CHI	15	5	25	3.02	30.2
833	397271.194	8948699.475	Chinchavito	CHI	15	5	50	5.75	57.5
834	397271.194	8948699.475	Chinchavito	CHI	15	5	75	11.06	110.6
835	397271.194	8948699.475	Chinchavito	CHI	15	5	84	15.85	158.5
836	397271.194	8948699.475	Chinchavito	CHI	15	5	95	36.08	360.8
837	397271.194	8948699.475	Chinchavito	CHI	15	5	100	262.68	2626.8
838	397213.97	8948754.631	Chinchavito	CHI	15	6	5	0.72	7.2

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
839	397213.97	8948754.631	Chinchavito	CHI	15	6	16	1.14	11.4
840	397213.97	8948754.631	Chinchavito	CHI	15	6	25	1.99	19.9
841	397213.97	8948754.631	Chinchavito	CHI	15	6	50	3.35	33.5
842	397213.97	8948754.631	Chinchavito	CHI	15	6	75	5.5	55.0
843	397213.97	8948754.631	Chinchavito	CHI	15	6	84	7.19	71.9
844	397213.97	8948754.631	Chinchavito	CHI	15	6	95	14.22	142.2
845	397213.97	8948754.631	Chinchavito	CHI	15	6	100	299.25	2992.5
846	397180.907	8948816.18	Chinchavito	CHI	15	7	10	0.28	2.8
847	397180.907	8948816.18	Chinchavito	CHI	15	7	16	0.72	7.2
848	397180.907	8948816.18	Chinchavito	CHI	15	7	30	5.18	51.8
849	397180.907	8948816.18	Chinchavito	CHI	15	7	35	8.11	81.1
850	397180.907	8948816.18	Chinchavito	CHI	15	7	50	14.21	142.1
851	397180.907	8948816.18	Chinchavito	CHI	15	7	65	19.48	194.8
852	397180.907	8948816.18	Chinchavito	CHI	15	7	84	30.22	302.2
853	397180.907	8948816.18	Chinchavito	CHI	15	7	90	35.65	356.5
854	397180.907	8948816.18	Chinchavito	CHI	15	7	95	40.38	403.8
855	397180.907	8948816.18	Chinchavito	CHI	15	7	98	46.15	461.5
856	397180.907	8948816.18	Chinchavito	CHI	15	7	99	48.08	480.8
857	397180.907	8948816.18	Chinchavito	CHI	15	8	10	0.36	3.6
858	397180.907	8948816.18	Chinchavito	CHI	15	8	16	0.93	9.3
859	397180.907	8948816.18	Chinchavito	CHI	15	8	30	4.2	42.0

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
860	397180.907	8948816.18	Chinchavito	CHI	15	8	35	5.66	56.6
861	397180.907	8948816.18	Chinchavito	CHI	15	8	50	9.66	96.6
862	397180.907	8948816.18	Chinchavito	CHI	15	8	65	13.27	132.7
863	397180.907	8948816.18	Chinchavito	CHI	15	8	84	19.06	190.6
864	397180.907	8948816.18	Chinchavito	CHI	15	8	90	22.52	225.2
865	397180.907	8948816.18	Chinchavito	CHI	15	8	95	27.2	272.0
866	397180.907	8948816.18	Chinchavito	CHI	15	8	98	35.23	352.3
867	397180.907	8948816.18	Chinchavito	CHI	15	8	99	55.0	550.0
868	397180.907	8948816.18	Chinchavito	CHI	15	9	10	0.21	2.1
869	397180.907	8948816.18	Chinchavito	CHI	15	9	16	0.54	5.4
870	397180.907	8948816.18	Chinchavito	CHI	15	9	30	3.38	33.8
871	397180.907	8948816.18	Chinchavito	CHI	15	9	35	5.02	50.2
872	397180.907	8948816.18	Chinchavito	CHI	15	9	50	9.58	95.8
873	397180.907	8948816.18	Chinchavito	CHI	15	9	65	12.35	123.5
874	397180.907	8948816.18	Chinchavito	CHI	15	9	84	17.55	175.5
875	397180.907	8948816.18	Chinchavito	CHI	15	9	90	19.36	193.6
876	397180.907	8948816.18	Chinchavito	CHI	15	9	95	23.18	231.8
877	397180.907	8948816.18	Chinchavito	CHI	15	9	98	29.47	294.7
878	397180.907	8948816.18	Chinchavito	CHI	15	9	99	34.56	345.6
879	397180.907	8948816.18	Chinchavito	CHI	15	10	10	0.31	3.1
880	397180.907	8948816.18	Chinchavito	CHI	15	10	16	0.78	7.8

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
881	397180.907	8948816.18	Chinchavito	CHI	15	10	30	5.84	58.4
882	397180.907	8948816.18	Chinchavito	CHI	15	10	35	8.83	88.3
883	397180.907	8948816.18	Chinchavito	CHI	15	10	50	12.44	124.4
884	397180.907	8948816.18	Chinchavito	CHI	15	10	65	16.9	169.0
885	397180.907	8948816.18	Chinchavito	CHI	15	10	84	25.38	253.8
886	397180.907	8948816.18	Chinchavito	CHI	15	10	90	29.47	294.7
887	397180.907	8948816.18	Chinchavito	CHI	15	10	95	37.46	374.6
888	397180.907	8948816.18	Chinchavito	CHI	15	10	98	55.56	555.6
889	397180.907	8948816.18	Chinchavito	CHI	15	10	99	65.28	652.8
890	397180.907	8948816.18	Chinchavito	CHI	15	11	10	0.19	1.9
891	397180.907	8948816.18	Chinchavito	CHI	15	11	16	0.49	4.9
892	397180.907	8948816.18	Chinchavito	CHI	15	11	30	2.94	29.4
893	397180.907	8948816.18	Chinchavito	CHI	15	11	35	4.53	45.3
894	397180.907	8948816.18	Chinchavito	CHI	15	11	50	9.25	92.5
895	397180.907	8948816.18	Chinchavito	CHI	15	11	65	12.64	126.4
896	397180.907	8948816.18	Chinchavito	CHI	15	11	84	18.16	181.6
897	397180.907	8948816.18	Chinchavito	CHI	15	11	90	21.75	217.5
898	397180.907	8948816.18	Chinchavito	CHI	15	11	95	24.93	249.3
899	397180.907	8948816.18	Chinchavito	CHI	15	11	98	29.39	293.9
900	397180.907	8948816.18	Chinchavito	CHI	15	11	99	33.75	337.5
901	397180.907	8948816.18	Chinchavito	CHI	15	12	10	0.21	2.1

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
902	397180.907	8948816.18	Chinchavito	CHI	15	12	16	0.54	5.4
903	397180.907	8948816.18	Chinchavito	CHI	15	12	30	3.78	37.8
904	397180.907	8948816.18	Chinchavito	CHI	15	12	35	5.7	57.0
905	397180.907	8948816.18	Chinchavito	CHI	15	12	50	10.54	105.4
906	397180.907	8948816.18	Chinchavito	CHI	15	12	65	13.15	131.5
907	397180.907	8948816.18	Chinchavito	CHI	15	12	84	19.55	195.5
908	397180.907	8948816.18	Chinchavito	CHI	15	12	90	22.75	227.5
909	397180.907	8948816.18	Chinchavito	CHI	15	12	95	26.03	260.3
910	397180.907	8948816.18	Chinchavito	CHI	15	12	98	29.45	294.5
911	397180.907	8948816.18	Chinchavito	CHI	15	12	99	33.42	334.2
912	397180.907	8948816.18	Chinchavito	CHI	15	13	10	0.18	1.8
913	397180.907	8948816.18	Chinchavito	CHI	15	13	16	0.45	4.5
914	397180.907	8948816.18	Chinchavito	CHI	15	13	30	3.42	34.2
915	397180.907	8948816.18	Chinchavito	CHI	15	13	35	4.94	49.4
916	397180.907	8948816.18	Chinchavito	CHI	15	13	50	9.27	92.7
917	397180.907	8948816.18	Chinchavito	CHI	15	13	65	11.93	119.3
918	397180.907	8948816.18	Chinchavito	CHI	15	13	84	16.59	165.9
919	397180.907	8948816.18	Chinchavito	CHI	15	13	90	20.04	200.4
920	397180.907	8948816.18	Chinchavito	CHI	15	13	95	24.23	242.3
921	397180.907	8948816.18	Chinchavito	CHI	15	13	98	29.1	291.0
922	397180.907	8948816.18	Chinchavito	CHI	15	13	99	33.52	335.2

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
923	397180.907	8948816.18	Chinchavito	CHI	15	14	10	0.2	2.0
924	397180.907	8948816.18	Chinchavito	CHI	15	14	16	0.52	5.2
925	397180.907	8948816.18	Chinchavito	CHI	15	14	30	3.12	31.2
926	397180.907	8948816.18	Chinchavito	CHI	15	14	35	4.71	47.1
927	397180.907	8948816.18	Chinchavito	CHI	15	14	50	9.21	92.1
928	397180.907	8948816.18	Chinchavito	CHI	15	14	65	11.88	118.8
929	397180.907	8948816.18	Chinchavito	CHI	15	14	84	16.81	168.1
930	397180.907	8948816.18	Chinchavito	CHI	15	14	90	21.25	212.5
931	397180.907	8948816.18	Chinchavito	CHI	15	14	95	24.95	249.5
932	397180.907	8948816.18	Chinchavito	CHI	15	14	98	34.28	342.8
933	397180.907	8948816.18	Chinchavito	CHI	15	14	99	37.14	371.4
934	397180.907	8948816.18	Chinchavito	CHI	15	15	10	0.31	3.1
935	397180.907	8948816.18	Chinchavito	CHI	15	15	16	0.78	7.8
936	397180.907	8948816.18	Chinchavito	CHI	15	15	30	4.25	42.5
937	397180.907	8948816.18	Chinchavito	CHI	15	15	35	6.11	61.1
938	397180.907	8948816.18	Chinchavito	CHI	15	15	50	10.85	108.5
939	397180.907	8948816.18	Chinchavito	CHI	15	15	65	15.07	150.7
940	397180.907	8948816.18	Chinchavito	CHI	15	15	84	24.14	241.4
941	397180.907	8948816.18	Chinchavito	CHI	15	15	90	28.97	289.7
942	397180.907	8948816.18	Chinchavito	CHI	15	15	95	41.78	417.8
943	397180.907	8948816.18	Chinchavito	CHI	15	15	98	48.27	482.7

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
944	397180.907	8948816.18	Chinchavito	CHI	15	15	99	54.19	541.9
945	397180.907	8948816.18	Chinchavito	CHI	15	16	10	0.34	3.4
946	397180.907	8948816.18	Chinchavito	CHI	15	16	16	0.86	8.6
947	397180.907	8948816.18	Chinchavito	CHI	15	16	30	5.76	57.6
948	397180.907	8948816.18	Chinchavito	CHI	15	16	35	8.31	83.1
949	397180.907	8948816.18	Chinchavito	CHI	15	16	50	14.67	146.7
950	397180.907	8948816.18	Chinchavito	CHI	15	16	65	21.01	210.1
951	397180.907	8948816.18	Chinchavito	CHI	15	16	84	31.37	313.7
952	397180.907	8948816.18	Chinchavito	CHI	15	16	90	38.99	389.9
953	397180.907	8948816.18	Chinchavito	CHI	15	16	95	46.55	465.5
954	397180.907	8948816.18	Chinchavito	CHI	15	16	98	57.03	570.3
955	397180.907	8948816.18	Chinchavito	CHI	15	16	99	66.02	660.2
956	397180.907	8948816.18	Chinchavito	CHI	15	17	10	0.26	2.6
957	397180.907	8948816.18	Chinchavito	CHI	15	17	16	0.66	6.6
958	397180.907	8948816.18	Chinchavito	CHI	15	17	30	3.92	39.2
959	397180.907	8948816.18	Chinchavito	CHI	15	17	35	5.47	54.7
960	397180.907	8948816.18	Chinchavito	CHI	15	17	50	10.42	104.2
961	397180.907	8948816.18	Chinchavito	CHI	15	17	65	14.46	144.6
962	397180.907	8948816.18	Chinchavito	CHI	15	17	84	20.34	203.4
963	397180.907	8948816.18	Chinchavito	CHI	15	17	90	23.8	238.0
964	397180.907	8948816.18	Chinchavito	CHI	15	17	95	30.91	309.1

Tabla D.2 Continuación de página previa

ID	X	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
965	397180.907	8948816.18	Chinchavito	CHI	15	17	98	38.2	382.0
966	397180.907	8948816.18	Chinchavito	CHI	15	17	99	42.05	420.5
967	397180.907	8948816.18	Chinchavito	CHI	15	18	10	0.24	2.4
968	397180.907	8948816.18	Chinchavito	CHI	15	18	16	0.6	6.0
969	397180.907	8948816.18	Chinchavito	CHI	15	18	30	3.43	34.3
970	397180.907	8948816.18	Chinchavito	CHI	15	18	35	4.84	48.4
971	397180.907	8948816.18	Chinchavito	CHI	15	18	50	7.97	79.7
972	397180.907	8948816.18	Chinchavito	CHI	15	18	65	10.66	106.6
973	397180.907	8948816.18	Chinchavito	CHI	15	18	84	16.72	167.2
974	397180.907	8948816.18	Chinchavito	CHI	15	18	90	19.35	193.5
975	397180.907	8948816.18	Chinchavito	CHI	15	18	95	23.3	233.0
976	397180.907	8948816.18	Chinchavito	CHI	15	18	98	33.77	337.7
977	397180.907	8948816.18	Chinchavito	CHI	15	18	99	36.89	368.9
978	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	5	0.66	6.6
979	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	16	1.32	13.2
980	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	25	2.22	22.2
981	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	50	4.74	47.4
982	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	75	10.65	106.5
983	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	84	16.2	162.0
984	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	95	39.82	398.2
985	370659.67	8856587.754	San Rafael - Qbda. Santa Fe	SNR_QBDA_SNTFE	19	1	100	227.9	2279.0

Tabla D.2 Continuación de página previa

ID	Х	У	Estación	Abreviatura	ID_L	Zona	%	D(cm)	D(mm)
986	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	5	0.8	8.0
987	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	16	1.73	17.3
988	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	25	2.49	24.9
989	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	50	4.77	47.7
990	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	75	9.93	99.3
991	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	84	15.44	154.4
992	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	95	35.04	350.4
993	368115.011	8880775.769	Ambo - Qbda. Huamanpari	AMB_QBDA_HUAMANPARI	20	1	100	766.26	7662.6
994	364659.66	8903710.585	Huanuco - Qbda. Moras	HUAN_QBDA_MORAS	21	1	5	0.72	7.2
995	364659.66	8903710.585	Huanuco - Qbda. Moras	HUAN_QBDA_MORAS	21	1	16	1.72	17.2
996	364659.66	8903710.585	Huanuco - Qbda. Moras	HUAN_QBDA_MORAS	21	1	25	2.58	25.8
997	364659.66	8903710.585	Huanuco - Qbda. Moras	HUAN_QBDA_MORAS	21	1	50	5.12	51.2
998	364659.66	8903710.585	Huanuco - Qbda. Moras	HUAN_QBDA_MORAS	21	1	75	10.18	101.8
999	364659.66	8903710.585	Huanuco - Qbda. Moras	HUAN_QBDA_MORAS	21	1	84	14.93	149.3

Tabla D.2 Continuación de página previa