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Abstract—We present a first approach to a new method use the term local method to refer to the fact that there is no
to compute the motion estimation in digital videos using requirement to have a collection of video frames for estingat
the two-dimensional instantaneous frequency information Com- ime_derivatives or requiring 3D convolutions. Furthersdo
puted using amplitude-modulation frequency-modulation (AM- I tati f timates that &l
FM) methods. The optical flow vectors are computed using an a (_)W computa !ons rom sparse €s 'm_a _es al are see‘ v
iteratively reweighted norm for total variation (IRN-TV) algo-  Object boundaries, we use a total variation formulationwf o
rithm. We compare the proposed method using synthetic videos approach. In this first approach of our new method, we present
versus a previous three-dimensional AM-FM based method and comparative results on synthetic examples where we shaw tha

available motion estimation methods such as a phase-based ; ;
Horn-Schunck and the Lucas-Kanade methods. The results are the proposed approach provides better estimates than many
other standard methods.

promising producing a full density estimation with more accurate

results than the other methods. In the rest of the paper, we provide background on related
Index Terms—motion estimation, optical flow, amplitude- work in section II. Next, we present the methods proposed in
modulation frequency-modulation section llI. We test the proposed method using synthetieasd

to present the first results of this new method in section IV.
Finally, we present the conclusions and future work in secti
There is strong interest in the development of perceptiow-
based motion estimation methods that are based on multi-
scale amplitude-modulation frequency-modulation (AMFM
methods [1]. The standard use of perception-based metbods f We represent a digital vided(z,¢), wherez = (x,y), in
motion estimation methods rely on the use of 3D Gabor filtéerms of a collection of AM-FM components as given by:
banks that require a large number of video frames as disgusse .y
in [1]. In this paper, we present a new approach that uses a I(z,t) = Z an(2,1) cos(on(2,1)), 1)
multi-scale AM-FM method to estimate optical flow motion
using the instantaneous frequency information from twewid

frames only.
Our motivation for the new perception-based approa&eztsr’]?”(z’é) Crfst(sp”(tzh’ t))ﬂ? ei';of[eitﬂ:]m'th A'\r/:Flli\':l ((j:om; A
comes from the need to maintain compatibility with th&ONent, an denotes then- stantaneous ampitude (1A)
jomponent, andp,, denotes then-th instantaneous phase

majority of optical flow motion methods that are based o ) : i
a small number of video frames [2]. Recent work on the u ep) component. The instantaneous frequency (IF) is defined

of AM-FM methods in biomedical imaging was motivated b% termls of tlhe tgrad|efntthof the ;n::\:jngzla\\/lneouds lphﬁ%a. |
the research described in [3] that led to improved metho gample appiications ol the use o ~FIVI MOdEls In medica

described in [4], [5]. Earlier research on phase-based adsth imaging are described in [2_4]’ [25].’ [26.5]’ [27], [28].

was reported in [6]. However, as shown in [7], these methodsFo.r the 3D. AM-FM ‘motion estimation method [23], we
require smooth variations that have a very difficult timeh/vitconSIder a‘ single AM-FM compongnt given bM.Z’t) -
ultrasound videos that are dominated by speckle noise. Ff: 1) exP(i¢(2.1)). Next, we consider the Optical Flow
speckled ultrasound videos, there are no perception-ba ayrstraint Equation (OFCE, [29]) given by

I. INTRODUCTION

II. BACKGROUND

n=1

wheren = 1,2, ..., M denotes the different AM-FM compo-

methods that can produce motion estimation estimates with 9

a 100% density [8]. A large number of non AM-FM based (VI ¢) + 2. 1=0, )
methods is recently reported in [9], [10], [11], [12], [1814], B :

[15], [16], [17], [18], [19], [20], [21], [22]. where¢ = (u,v), {.) represents inner product, and we apply

'hto I(z,t). Then, by inspecting the real part of the equation,

In this paper, we propose a first approach to a moti : ; :
pap brop PP e obtain the AM constraint given by

estimation based on AM-FM that goes beyond the 3D AMY
FM methodology described in [5], [23], [1]. This method only b
requires two video framest(z,y,¢) and I(x,y,t + 1). We (Va, ¢) + 5,0 =0, )



and similarly, by examining the imaginary part only, we abta ¢, where ¢ is a phase constanty = (wi(z), wa(z)) =
the FM constraint given by (wi(z,y), wa(zx,y)), (.) represents inner product, apd(z) =
(). In this case, we get:

0
(Vep, O + 5,9 =0. (4) )
. . I5(z) I(z,t + At)
The advantage of (3)-(4) is the use of two equations per = =
. . . . Il (Z) I(Z, t)

voxel. The final motion estimation vectougz, y) andv(x, y) B _

are computed using an iterative method based on finite differ = explj(p(z + 1) — (2, 1))]

ence approximations [30]. In the next section, we present ou = exp[j(w, )] (7)

first approach to a new method for motion estimation using 2D More generally, by applying (7) to (2) we have the basic
AM-FM methods to computed the features of two consecuti Rear-phase model approximation given by:

frames by the time. Also, the solution is computed usingl tota

variation methods. I5(z
) = (6. ¢) = e (715, @

l1l. METHODS 1(2)
We will first develop a method for motion estimation baseWhere ¢ = Vo(z) = (¢.(z),¢y(2)) are thex and y

on a single AM-FM component as described in subsectiG@MpPonents of the instantaneous frequency (IF) vectorsr Ov
IlI-A. Our goal is to compute the motion estimation vectoys bthe entire image, we form the error in solving for (8) using
processing only two consecutive frames at a time using a &9 energy function given by
AM-FM demodulation method. Next, in subsection IlI-B, we 5
extend our approach by defining a penalty function that can be Ern = Z (&, ¢) —(2)]". 9)
used with smooth video pairs with a small number of feature z
points. In subsection I1I-C, we propose a total variatiorthme  B. Penalty function
that is used for solving the optimization problem assodiate Since (9) provides a single equation in two variables, we
with motion estimation. have an aperture-like problem in that we cannot estimate
motions that are orthogonal to the IF. Assuming smooth
i o . motions, we follow [32] by introducing a penalty function
We want to solve the motion estimation problem using Wat requires small first-order derivatives of the opticalufl
consecutive frames from a digital vidddz, ¢). Let I,(z) = [2]. Thus, based on this prior assumption, we introduce the
I(z,t) denote the image intensity function at timeThen, let 5| 10wing penalty function based on the2 norm:
I,(z) = I(z, t+At) denote the image intensity at time- At.
We formulate the optical flow motion estimation problem for Epriori = Z Vu(z)? + |Vo@)|2 = ¢, (10)
each pixelz = (z,y) as one of determining the optical flow
functions (z) = (u(z),v(z)) = (u(z,y),v(z,y)) from I,
and I,.
We assume constancy in image intensity as gived (zyt)
to I(z,t + 1). Furthermore, we consider the basic model f
a single AM-FM component given by:

A. Basic Model for a Single AM-FM Component

z

Then, the overall optimization problem is to com-
pute the optical flow functions that minimiz&gop =
Qi’E(u(z),v(z),z,Vu(z),Vv(z))dz with (9) and (10) given

y

I(z,t) = a(z,t) exp[jo(z,t)]. (5) E(u(z),v(z),2,Vu(z), Vu(z)) = Epriori + AEpar,  (11)
Then, for two frames, we have:

I(z,t+1) = I(z+C.1)

where \ is a regularization parameter.

C. Solution using Total Variation

= a(z + ¢, t)exp[jp(z + ¢, 1)]. The main result of the previous sections are similar to the
Based on (2) and given thdt(z) = ax(z) cos ¢ (z), With general energy penalty given in [32] for a two-dimensional
k € {1, 2}, we have that: flow field. However, here the flow field comes from the FM

part of the AM-FM model (described in subsection IlI-A).
As it has been noticed before [2], it is convenient to replace

Ir(z) = a2(z)cospa(z) the quadratic penalties in (10) with a robust version, e.qg.
= IL(z+¢) Epriori =y, |Vu(z)|+|Vo(z)| = |[{]|1, which is known [13]
= ai(z+¢)cos i (z+ C). (6) 1o better preserve discontinuities. Then, the problem rifeed

by (11) is equivalent to the vector-valugd Total Variation
Then, similar to the derivation in [31], we extract the FMTV) optimization:
image by dividing the image output by the IA as given by:

I(z,t) = (a(z,t)expljpi(z,t)])/a(z,t) = expljpi(zt)]. 1
We next consider the sirr11plest case giventy) = (clu, z)+ T¢) = 5lA4-¢=r@)Iz+AIVEh,  (12)



where A = diag(V(z)). We note that there is a long list In Fig. 1, we show the frames 1, 25 and 50 for each of
of numerical algorithms (for instance, see [33]) that caneso the three videos. In Table I, we summarize the results after
(12). Here we choose to use the Iteratively Reweighted Nomomputing the optical flow vector@:, v) using the proposed
for total variation (IRN-TV) algorithm [34], [35] due to its method versus the 3D AM-FM based [31], the phase-based
simplicity and good computational performance. approach by [36], Horn-Schunck (H-S, [32]) and the Lucas-
GivenT'(¢) = 1(|A¢ — b||3 + AR(&), whereg, the dataset Kanade (L-K, [37]) methods The results are presented in
to be restored, represents a vector-valued dataset Withterms of the mean-squared error (MSE) for the vectors)
elements per entny2(¢) = || ZlL(stn)Q + (Dy&,)21 is for the 50 frames of the video and the density of the estimatio
(e.g., the percentage of the pixels per frame where the rdetho

the horizontal and vertical discrete derivative operatespec- Was able to computed the optical flow vectors). For pixels
tively, A is the forward operatol is the observed noisy data'Where the motion produceg:, v) = (0,0) or not a number,
and ) is a weighting factor controlling the relative importancg\’e consider that thg mgthod has fal_led. o

of the data fidelity and regularization terms. We can observe in Fig. 1 the difficulty for finding feature

The key idea [34] is to express the regularization terfpPints to compute the optical flow methods. From Table I, we
, e () ey _ 1y ()2 e CaN see that only the proposed method and Horn-Schunck (H-
by the quadratic approximatioz”(§) = 3IIWx DE|z, S, [32]) are able to compute a full density motion estimation

(k) _ (k) — k)
where Wy~ = I ® Qp", D = E[DEDJ]T’ Q%" =  The 3D AM-FM based method produced the re<alto) for
diag (Ef(Dmé(k))z + (Dyg(k))2) "), Iy isaN x N some voxels, reducing the percentage of motion estimation

. : . . vectores computed. Note that [36] was not able to compute
identity matrix, and® is the Kronecker product. The result-th

o : . optical flow for these videos.
ing iterations can be expressed in the form of the standardTn terms of accuracy. the pronosed method produced bet-
iteratively reweighted least squares (IRLS) problem: Y, prop P

ter results than the 3D AM-FM based method for all the
1 0 V2 g b 2 videos except for the case af = 0 in video 3 (MSE=0.24
[ 0wk } [ /D }5 — [ 0 } (A3) versus MSE=0.07). Compared to the Horn-Schunck method,
R 2 the proposed approach gave better results with much lower
For a given current solutio®, the weighting matrix MSE in most cases, except In two cases, where the Horn-
’ Schunck method produced slightly better results. The Lucas

(k) ;

Zslt%om(;%?:akl)ls z:;g)t/egogrilﬁf?ﬁpir:dinzgzeﬂl(r)ezcglign% n?((:ric%td Kanade method had an unacceptable density that never
ded 35% d to the 100% density of th d

instability [34]. Finally, the resulting IRN algorithm ha® ceede 0 8s opposec fo the o densily of he propose

iterativel ve the i ; method. Within the 35% reduced density, Lucas and Kanade
lieratively solve the linear system would sometimes give slightly better results, but oftenegav

the discrete version ofV¢||;, with D, and D, representing

1
T(k) (u) = 5

(ATA i )\DTWI(%k)D> gt — gTy (14) significantly worse results.
IV. "RESULTS AND DISCUSSION V. CONCLUSIONS ANDFUTURE WORK

We present results on a synthetic video example using 50 ) . o
video frames with512 x 512 pixels in each frame. We first We have presented a perception-based motion estimation
define the reference image using method based on the use of the 2D instantaneous frequency

and two video frames. We also provided an optimized ap-
proach based on the use of total variation to allow for

1(z) = cos p(z), i ; :
(@) »(2) robust solutions. We also provided comparative resultshero

where phase-based and standard methods. Overall, in our symtheti
22 Y2 examples, the proposed approach gave significantly better
p(z) = p(w,y) =2 lane + b1 +azy + Fa | estimates while estimating motion everywhere. Futurearese
will extend the method to the use of the 2D instantaneous
V() = Vo(z,y) = 2 (a1 + frz, az + Fay), amplitude and will also be extended to combine estimates fro

with the parametersy;, 81, a2 and B, set to produce the Seéveral scales. The approach will be tested on standard vide

instantaneous frequencies values in the rangepef ¢ Sequences as well as simulated ultrasound videos.
[0.10,0.15] and ¢, € [0.15,—0.13] in the normalized fre-
quency range0, 1]. The relatively low frequency values give ACKNOWLEDGEMENT
smoothness to the video and make it more difficult to produce
motion vector estimates from higher-frequency chann@rflt  This work was supported by tHendos para la Innovacin,
We consider three cases: Ciencia y Tecnolo@g (FINCyT), Peru, under the grant 148-
o (u,v)=(2,-0.5), FINCyT-1B-2013.
e (u,v) =(1,0), and
e (u,v) =1(0,0.7). 1Computed using the Matlab OpticalFlow System obj¥ct



Fig. 1.
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Synthetic videos used for the tests. Videos withv) = (2, —0.5), (u,

v) = (1,0), and (u,v) = (0,0.7) in rows (a), (b), and (c), respectively.

We show the frames 1, 25 and 25 for each video. Also, we zoom e)mﬂn Ieft corner of each frame (rows and columns from 1 to 20htawsmore details
about the changes in the pixels.

TABLE |

SUMMARY OF THE RESULTS IN TERMS OF THE MEANSQUARED ERROR(MSE) FOR THE VECTORS(u, v) AND THE DENSITY OF ESTIMATION BY VIDEO.
WE COMPARE THE PROPOSED METHOD VERSUS THED AM-FM BASED [31], THE PHASE-BASED APPROACH BY[36], HORN-SCHUNCK (H-S, [32])
AND THE LUCAS-KANADE (L-K, [37]) METHODS.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

Method (u,v) = (2,-0.5) (u,v) = (1,0) (u,v) = (0,0.7)
MSE u [ v [ % u [ v | % u [ v [ %
Proposed 2.29 1.29 1.00 0.1y 020 100 O0{24 030 1.00
3D AM-FM 1095 | 8.37| 0.85] 258 1.29 0.8 0.07 1.01 0.85
Phase-based method from [36] - - 0.00 1 b 0.00 b b 0Jo0
H-S 4.16 1.25] 1.000 1.04 0.2 1.00 0.20 049 1)00
L-K 11.22 | 1.01| 0.34| 2.78 0.17 0.32 0.08 0.87 0.31
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