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Abstract—We present a first approach to a new method
to compute the motion estimation in digital videos using
the two-dimensional instantaneous frequency information com-
puted using amplitude-modulation frequency-modulation (AM-
FM) methods. The optical flow vectors are computed using an
iteratively reweighted norm for total variation (IRN-TV) algo-
rithm. We compare the proposed method using synthetic videos
versus a previous three-dimensional AM-FM based method and
available motion estimation methods such as a phase-based,
Horn-Schunck and the Lucas-Kanade methods. The results are
promising producing a full density estimation with more accurate
results than the other methods.

Index Terms—motion estimation, optical flow, amplitude-
modulation frequency-modulation

I. I NTRODUCTION

There is strong interest in the development of perception-
based motion estimation methods that are based on multi-
scale amplitude-modulation frequency-modulation (AM-FM)
methods [1]. The standard use of perception-based methods for
motion estimation methods rely on the use of 3D Gabor filter
banks that require a large number of video frames as discussed
in [1]. In this paper, we present a new approach that uses a
multi-scale AM-FM method to estimate optical flow motion
using the instantaneous frequency information from two video
frames only.

Our motivation for the new perception-based approach
comes from the need to maintain compatibility with the
majority of optical flow motion methods that are based on
a small number of video frames [2]. Recent work on the use
of AM-FM methods in biomedical imaging was motivated by
the research described in [3] that led to improved methods
described in [4], [5]. Earlier research on phase-based methods
was reported in [6]. However, as shown in [7], these methods
require smooth variations that have a very difficult time with
ultrasound videos that are dominated by speckle noise. For
speckled ultrasound videos, there are no perception-based
methods that can produce motion estimation estimates with
a 100% density [8]. A large number of non AM-FM based
methods is recently reported in [9], [10], [11], [12], [13],[14],
[15], [16], [17], [18], [19], [20], [21], [22].

In this paper, we propose a first approach to a motion
estimation based on AM-FM that goes beyond the 3D AM-
FM methodology described in [5], [23], [1]. This method only
requires two video frames:I(x, y, t) and I(x, y, t + 1). We

use the term local method to refer to the fact that there is no
requirement to have a collection of video frames for estimating
time-derivatives or requiring 3D convolutions. Furthermore, to
allow computations from sparse estimates that are sensitive to
object boundaries, we use a total variation formulation of our
approach. In this first approach of our new method, we present
comparative results on synthetic examples where we show that
the proposed approach provides better estimates than many
other standard methods.

In the rest of the paper, we provide background on related
work in section II. Next, we present the methods proposed in
section III. We test the proposed method using synthetic videos
to present the first results of this new method in section IV.
Finally, we present the conclusions and future work in section
V.

II. BACKGROUND

We represent a digital videoI(z, t), wherez = (x, y), in
terms of a collection of AM-FM components as given by:

I(z, t) =
n=M
∑

n=1

an(z, t) cos(ϕn(z, t)), (1)

wheren = 1, 2, . . . ,M denotes the different AM-FM compo-
nents,an(z, t) cos(ϕn(z, t)) denotes then-th AM-FM com-
ponent, an denotes then-th instantaneous amplitude (IA)
component, andϕn denotes then-th instantaneous phase
(IP) component. The instantaneous frequency (IF) is defined
in terms of the gradient of the instantaneous phase:∇ϕn.
Example applications of the use of AM-FM models in medical
imaging are described in [24], [25], [26], [27], [28].

For the 3D AM-FM motion estimation method [23], we
consider a single AM-FM component given byI(z, t) =
a(z, t) exp(jϕ(z, t)). Next, we consider the Optical Flow
Constraint Equation (OFCE, [29]) given by

〈∇I, ζ〉+ ∂

∂t
I = 0, (2)

whereζ = (u, v), 〈.〉 represents inner product, and we apply
it to I(z, t). Then, by inspecting the real part of the equation,
we obtain the AM constraint given by

〈∇a, ζ〉+ ∂

∂t
a = 0, (3)



and similarly, by examining the imaginary part only, we obtain
the FM constraint given by

〈∇ϕ, ζ〉+ ∂

∂t
ϕ = 0. (4)

The advantage of (3)-(4) is the use of two equations per
voxel. The final motion estimation vectorsu(x, y) andv(x, y)
are computed using an iterative method based on finite differ-
ence approximations [30]. In the next section, we present our
first approach to a new method for motion estimation using 2D
AM-FM methods to computed the features of two consecutive
frames by the time. Also, the solution is computed using total
variation methods.

III. M ETHODS

We will first develop a method for motion estimation based
on a single AM-FM component as described in subsection
III-A. Our goal is to compute the motion estimation vectors by
processing only two consecutive frames at a time using a 2D
AM-FM demodulation method. Next, in subsection III-B, we
extend our approach by defining a penalty function that can be
used with smooth video pairs with a small number of feature
points. In subsection III-C, we propose a total variation method
that is used for solving the optimization problem associated
with motion estimation.

A. Basic Model for a Single AM-FM Component

We want to solve the motion estimation problem using two
consecutive frames from a digital videoI(z, t). Let I1(z) =
I(z, t) denote the image intensity function at timet. Then, let
I2(z) = I(z, t+△t) denote the image intensity at timet+△t.
We formulate the optical flow motion estimation problem for
each pixelz = (x, y) as one of determining the optical flow
functions ζ(z) = (u(z), v(z)) = (u(x, y), v(x, y)) from I1
andI2.

We assume constancy in image intensity as given byI(z, t)
to I(z, t + 1). Furthermore, we consider the basic model for
a single AM-FM component given by:

I(z, t) = a(z, t) exp[jϕ(z, t)]. (5)

Then, for two frames, we have:

I(z, t+ 1) = I(z+ ζ, t)

= a(z+ ζ, t) exp[jϕ(z+ ζ, t)].

Based on (2) and given thatIk(z) = ak(z) cosϕk(z), with
k ∈ {1, 2}, we have that:

I2(z) = a2(z) cosϕ2(z)

= I1(z+ ζ)

= a1(z+ ζ) cosϕ1(z+ ζ). (6)

Then, similar to the derivation in [31], we extract the FM
image by dividing the image output by the IA as given by:
Ī(z, t) = (a(z, t) exp[jϕ1(z, t)])/a(z, t) = exp[jϕ1(z, t)].
We next consider the simplest case given byϕ(z) = 〈ω, z〉+

c, where c is a phase constant,ω = (ω1(z), ω2(z)) =
(ω1(x, y), ω2(x, y)), 〈.〉 represents inner product, andϕ1(z) =
ϕ(z). In this case, we get:

Ī2(z)

Ī1(z)
=

I(z, t+△t)

I(z, t)

= exp[j(ϕ(z+ ζ, t)− ϕ(z, t))]

= exp[j〈ω, ζ〉]. (7)

More generally, by applying (7) to (2) we have the basic
linear-phase model approximation given by:

γ(z) = 〈φ, ζ〉 = Arg

(

Ī2(z)

Ī1(z)

)

, (8)

where φ = ∇ϕ(z) = (ϕx(z), ϕy(z)) are the x and y
components of the instantaneous frequency (IF) vectors. Over
the entire image, we form the error in solving for (8) using
an energy function given by

EFM =
∑

z

[〈φ, ζ〉 − γ(z)]
2
. (9)

B. Penalty function

Since (9) provides a single equation in two variables, we
have an aperture-like problem in that we cannot estimate
motions that are orthogonal to the IF. Assuming smooth
motions, we follow [32] by introducing a penalty function
that requires small first-order derivatives of the optical flow
[2]. Thus, based on this prior assumption, we introduce the
following penalty function based on theℓ-2 norm:

Epriori =
∑

z

|∇u(z)|2 + |∇v(z)|2 = ‖ζ‖22. (10)

Then, the overall optimization problem is to com-
pute the optical flow functions that minimizeEGlobal =
∫

E(u(z), v(z), z,∇u(z),∇v(z))dz with (9) and (10) given
by

E(u(z), v(z), z,∇u(z),∇v(z)) = Epriori + λEFM , (11)

whereλ is a regularization parameter.

C. Solution using Total Variation

The main result of the previous sections are similar to the
general energy penalty given in [32] for a two-dimensional
flow field. However, here the flow field comes from the FM
part of the AM-FM model (described in subsection III-A).

As it has been noticed before [2], it is convenient to replace
the quadratic penalties in (10) with a robust version, e.g.
Epriori =

∑

z
|∇u(z)|+|∇v(z)| = ‖ζ‖1, which is known [13]

to better preserve discontinuities. Then, the problem described
by (11) is equivalent to the vector-valuedℓ2 Total Variation
(TV) optimization:

T (ζ) =
1

2
‖A · ζ − γ(z)‖22 + λ‖∇ζ‖1, (12)



whereA = diag(∇ϕ(z)). We note that there is a long list
of numerical algorithms (for instance, see [33]) that can solve
(12). Here we choose to use the Iteratively Reweighted Norm
for total variation (IRN-TV) algorithm [34], [35] due to its
simplicity and good computational performance.

Given T (ξ) = 1
2‖Aξ − b‖22 + λR(ξ), whereξ, the dataset

to be restored, represents a vector-valued dataset withL

elements per entry,R(ξ) = ‖
√

∑L
1 (Dxξn)2 + (Dyξn)2‖1 is

the discrete version of‖∇ξ‖1, with Dx andDy representing
the horizontal and vertical discrete derivative operatorsrespec-
tively, A is the forward operator,b is the observed noisy data
andλ is a weighting factor controlling the relative importance
of the data fidelity and regularization terms.

The key idea [34] is to express the regularization term

by the quadratic approximationQ(k)
R (ξ) = 1

2‖W
(k)
R

1/2
Dξ‖22,

where W
(k)
R = I2L ⊗ Ω

(k)
R , D = [DT

xD
T
y ]

T , Ω
(k)
R =

diag

(

(

∑L
1 (Dxξ

(k))2 + (Dyξ
(k))2

)

−0.5
)

, IN is a N × N

identity matrix, and⊗ is the Kronecker product. The result-
ing iterations can be expressed in the form of the standard
iteratively reweighted least squares (IRLS) problem:

T (k)(u) =
1

2

∥

∥

∥

∥

∥

[

1 0

0 W
(k)
R

]1/2[
A√
λD

]

ξ −
[

b

0

]

∥

∥

∥

∥

∥

2

2

.(13)

For a given current solutionξ(k), the weighting matrix
W

(k)
R can be easily computed, and the thresholdτ may be

automatically adapted to the input image to avoid numerical
instability [34]. Finally, the resulting IRN algorithm hasto
iteratively solve the linear system

(

ATA+ λDTW
(k)
R D

)

ξ(k+1) = AT
b. (14)

IV. RESULTS AND DISCUSSION

We present results on a synthetic video example using 50
video frames with512 × 512 pixels in each frame. We first
define the reference image using

I(z) = cosϕ(z),

where

ϕ(z) = ϕ(x, y) = 2π

[

α1x+ β1
x2

2
+ α2y + β2

y2

2

]

,

∇ϕ(z) = ∇ϕ(x, y) = 2π (α1 + β1x, α2 + β2y) ,

with the parametersα1, β1, α2 and β2 set to produce the
instantaneous frequencies values in the range ofϕx ∈
[0.10, 0.15] and ϕy ∈ [0.15,−0.13] in the normalized fre-
quency range[0, 1]. The relatively low frequency values give
smoothness to the video and make it more difficult to produce
motion vector estimates from higher-frequency channel filters.

We consider three cases:

• (u, v) = (2,−0.5),
• (u, v) = (1, 0), and
• (u, v) = (0, 0.7).

In Fig. 1, we show the frames 1, 25 and 50 for each of
the three videos. In Table I, we summarize the results after
computing the optical flow vectors(u, v) using the proposed
method versus the 3D AM-FM based [31], the phase-based
approach by [36], Horn-Schunck (H-S, [32]) and the Lucas-
Kanade (L-K, [37]) methods1. The results are presented in
terms of the mean-squared error (MSE) for the vectors(u, v)
for the 50 frames of the video and the density of the estimation
(e.g., the percentage of the pixels per frame where the method
was able to computed the optical flow vectors). For pixels
where the motion produced(u, v) = (0, 0) or not a number,
we consider that the method has failed.

We can observe in Fig. 1 the difficulty for finding feature
points to compute the optical flow methods. From Table I, we
can see that only the proposed method and Horn-Schunck (H-
S, [32]) are able to compute a full density motion estimation.
The 3D AM-FM based method produced the result(0, 0) for
some voxels, reducing the percentage of motion estimation
vectores computed. Note that [36] was not able to compute
the optical flow for these videos.

In terms of accuracy, the proposed method produced bet-
ter results than the 3D AM-FM based method for all the
videos except for the case ofu = 0 in video 3 (MSE=0.24
versus MSE=0.07). Compared to the Horn-Schunck method,
the proposed approach gave better results with much lower
MSE in most cases, except in two cases, where the Horn-
Schunck method produced slightly better results. The Lucas
and Kanade method had an unacceptable density that never
exceeded 35% as opposed to the 100% density of the proposed
method. Within the 35% reduced density, Lucas and Kanade
would sometimes give slightly better results, but often gave
significantly worse results.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a perception-based motion estimation
method based on the use of the 2D instantaneous frequency
and two video frames. We also provided an optimized ap-
proach based on the use of total variation to allow for
robust solutions. We also provided comparative results to other
phase-based and standard methods. Overall, in our synthetic
examples, the proposed approach gave significantly better
estimates while estimating motion everywhere. Future research
will extend the method to the use of the 2D instantaneous
amplitude and will also be extended to combine estimates from
several scales. The approach will be tested on standard video
sequences as well as simulated ultrasound videos.
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1Computed using the Matlab OpticalFlow System objectTM .



Frame 1 Frame 25 Frame 50
I(z, 1) Zoom I(z, 25) Zoom I(z, 50) Zoom

(a)

(b)

(c)

Fig. 1. Synthetic videos used for the tests. Videos with(u, v) = (2,−0.5), (u, v) = (1, 0), and(u, v) = (0, 0.7) in rows (a), (b), and (c), respectively.
We show the frames 1, 25 and 25 for each video. Also, we zoom on the top left corner of each frame (rows and columns from 1 to 20) to show more details
about the changes in the pixels.

TABLE I
SUMMARY OF THE RESULTS IN TERMS OF THE MEAN-SQUARED ERROR(MSE) FOR THE VECTORS(u, v) AND THE DENSITY OF ESTIMATION BY VIDEO.
WE COMPARE THE PROPOSED METHOD VERSUS THE3D AM-FM BASED [31], THE PHASE-BASED APPROACH BY[36], HORN-SCHUNCK (H-S, [32])

AND THE LUCAS-KANADE (L-K, [37]) METHODS.

Method (u, v) = (2,−0.5) (u, v) = (1, 0) (u, v) = (0, 0.7)
MSE u v % u v % u v %

Proposed 2.29 1.29 1.00 0.17 0.20 1.00 0.24 0.30 1.00
3D AM-FM 10.95 8.37 0.85 2.58 1.29 0.85 0.07 1.01 0.85

Phase-based method from [36] - - 0.00 - - 0.00 - - 0.00
H-S 4.16 1.25 1.00 1.04 0.20 1.00 0.20 0.49 1.00
L-K 11.22 1.01 0.34 2.78 0.17 0.32 0.08 0.87 0.31
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