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Abstract

This paper presents a multiscale method to detect neovascularization in the

optic disc (NVD) using fundus images. Our method is applied to a manually

selected region of interest (ROI) containing the optic disc. All the vessels

in the ROI are segmented by adaptively combining contrast enhancement

methods with a vessel segmentation technique. Textural features extracted

using multiscale amplitude-modulation frequency-modulation, morphological

granulometry, and fractal dimension are used. A linear SVM is used to per-

form the classification, which is tested by means of 10-fold cross-validation.

The performance is evaluated using 300 images achieving an AUC of 0.93

with maximum accuracy of 88%.
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1. Introduction

Diabetic retinopathy (DR) is one of the leading causes of blindness in

the world (Bhavsar et al., 2010). The disease is asymptomatic in its early

stages and can be best managed by the patient by maintaining tight blood

sugar and blood pressure control. However, as the disease progresses, it can

become sight threatening. Studies (Aiello et al., 2005; Klein et al., 1989) have

demonstrated that 50% of type I diabetics and 20% of patients with type II

diabetes will progress to advanced stages of DR some time in their lives. One

of these advanced stages is proliferative diabetic retinopathy (PDR). PDR

is characterized by the appearance of new, abnormal vessels in the retina.

Depending on the location of these new vessels, they can be classified as

neovascularization on the optic disc (NVD), where new vessels grow on or

within 1 disc diameter (DD) of the optic disc, or neovascularization elsewhere

(NVE), where the new vessels are present anywhere outside this NVD region.

This paper focuses on the detection of NVD. In early stages, NVD appears

as loops or networks of fine vessels (Jelinek and Cree, 2009). As the disease

progresses, the vessels extend outside the optic disc margin and their caliber

increases. These new vessels are fragile and can grow into the vitreous gel.

Vitreous traction with normal eye movement may lead to the rupture of

the new vessels, causing hemorrhages and significant vision loss. Timely

treatment with laser photocoagulation can slow progression of the disease.

Therefore, detection of these new vessels is of critical clinical importance.

Most of the methodologies used to detect DR have been focused on finding

other pathologies such as microaneurysms, hemorrhages, and hard exudates,

as summarized in Winder et al. (2009), while a few have looked for vascu-
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lar abnormalities (Gregson et al., 1995; Gang et al., 2002). An approach to

detect NVD has been presented by Goatman et al. (2011). In their paper,

vessel segments were separated into abnormal and normal classes. Vessel-

like candidate segments on the optic papilla are detected by using watershed

lines and ridge strength measurements. Fifteen features, including shape,

position, brightness, contrast, and density, were extracted from each candi-

date. Gaussian-kernel support vector machines (SVM) was used to classify

data represented by those features. The results were validated using leave-

one-out cross-validation. Based on 38 NVD and 71 normal cases, the method

achieved an area under the receiver operator characteristic curve (AUC) of

0.79 for the detection of segments with NVD and an AUC of 0.91 for the

detection of optic discs with neovascularization.

Others papers in the literature are focused in the detection of neovas-

cularization in the images such as Hassan et al. (2012), in which they com-

bine morphology-based operations, Gaussian filtering, and thresholding tech-

niques. In their approach, 11 images that presented neovascularization were

analyzed, obtaining an average sensitivity/specificity of 89%/64%. Lee et al.

(2013) proposed a vessel detection method which includes statistical texture

analysis, high order spectrum analysis, and fractal analysis for the detection

of neovascularization. They obtained an accuracy of 98.5% but good quality

images were hand-picked from DR datasets and 27 out of 137 images present

neovascularization.

The fundamental advantages from the use of amplitude-modulation frequency-

modulation (AM-FM) features have been previously documented in Pattichis

(2009); Murray et al. (2012). In summary, AM-FM models: (i) provide a
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large number of non-stationary texture features that are meaningful (e.g.,

instantaneous frequency, instantaneous amplitude), (ii) allow image recon-

structions using multi-scale AM-FM decompositions, and (iii) enable the im-

plementation of robust methods (e.g., Murray et al. (2010)). A summary of

recent medical imaging applications is given in Murray et al. (2012). Beyond

DR applications, we note the recent application to MRI images in Loizou

et al. (2011), and tree image analysis in Ramachandran et al. (2011).

In what follows, we present a summary of our prior research and list the

new contributions of the current paper. In Agurto et al. (2010), we pre-

sented an early study of the use of AM-FM methods for DR. The focus of

this paper was on the use of AM-FM features for image classification. The

results included a summary of classification of retinal images from different

risk levels. The statistics for different AM-FM features were compared over

regions with different types of lesions. In Yu et al. (2012a), we presented a

robust method for the detection of the optic disc in DR images. The ap-

proach did not use AM-FM features. In Agurto et al. (2014), we presented

a multi-scale approach for detecting exudate regions in DR images. In an

earlier conference publication in Agurto et al. (2012), we presented prelimi-

nary results over a limited dataset, a reduced set of AM-FM features, and a

different classification approach.

The current paper makes the following contribution over our prior re-

search:

• Adaptive vessel segmentation method: A new approach for adap-

tive vessel segmentation is developed that uses feedback to determine

jointly-optimal parameters for image enhancement and segmentation.
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This new approach allows the use of different levels of enhancement.

The new approach is described in subsection 3.1.

• Extended texture feature set extraction and comparison: we

focus on the development of a multiscale image processing approach to

better capture NVD vessel properties such as narrow vessel caliber and

tortuosity levels. The paper provides a comparative study that inves-

tigates the use of AM-FM features, granulometries, fractal dimension,

as well as the combination of all of them together. The paper estab-

lishes the performance of each set of texture features independently

and shows that the combined use of all of the features yields the best

results.

• Analysis of the vasculature: We focus in the characterization of

the entire vasculature in the optic disc to determine the presence of

neovascularization without the need to analyze each vessel segment

independently. By doing so, we obtain high accuracy in the detection

of NVD, which is the ultimate goal of this research.

• Large dataset validation: The approach is tested on a larger database

than those used in other papers and it is shown to perform better than

current techniques for NVD segmentation and detection.

The organization of this paper is as follows. Section 2 describes the

database used to test the proposed approach. The methodology is described

in section 3. Results and discussion based on 300 images are presented in

section 4. Conclusions are presented in section 5.
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2. Data Description

The images used to test this approach were acquired at the Retina Insti-

tute of South Texas (RIST, San Antonio, TX) and the University of Texas

Health Science Center in San Antonio (UTHSC SA). The images were ac-

quired at RIST with a TRC 50EX camera with 50 and 35 degrees of field of

view (FOV) and at UTHSC SA with a Canon CF-60uv with 60 and 40 de-

grees of FOV. The size of the RIST images is 2224× 1888 pixels and the size

of the UTHSC SA images is 2392×2048 pixels. Although images centered on

the optic disc (field 1) were preferred for this study, images centered on the

macula (field 2) that included the optic disc were allowed. Since we wanted

to evaluate the performance of this algorithm as an independent block which

can be added to a DR screenign system, we manually selected the optic disc

from the retinal images. However, our group previously developed an algo-

rithm for the detection of the optic disc with high accuracy Yu et al. (2012a).

The dataset consists of 19 NVD and 45 normal cases from RIST and 81 NVD

and 155 normal cases from UTHSC SA. Because of the differences in FOV

and the variation of disc size diameter between individuals, which is in the

range of 0.96 to 2.91 mm for the vertical axis and 0.91 to 2.61 mm for the

horizontal axis Sing et al. (2000), the images were resized so each had an

optic disc with a DD = 400 pixels. Fig. 1 shows four examples of normal and

NVD cases from the images used in this paper.

3. Methodology

Since the green channel provides excellent contrast for vessel segmentation

Soares et al. (2005); Ricci and Perfetti (2007); Niemeijer et al. (2004), we
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Figure 1: Sample images for this paper. a) Field 2 normal optic disc in RIST, b) Field 2

normal optic disc in UTHSC SA, c) Field 1 optic disc with neovascularization in RIST, d)

Field 1 optic disc with neovascularization in UTHSC SA.
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Figure 2: Block diagram of the methodology used to detect neovascularization in the optic

disc.

restrict our approach to working with the green image. To avoid possible

boundary artifacts, a margin of 60 pixels was added to our region of interest

(ROI) of 800 × 800 pixels. However, features were extracted from the ROI

only.

The method is summarized in Fig. 2. First, the vessels are segmented

using an adaptive vessel segmentation approach. AM-FM features are then

extracted from the segmented vessels areas. Next, we compute the fractal

dimension and morphological granulometry from the segmented vessels. The

extracted features are classified using an SVM with a linear kernel. We

provide further details on the approach in the remaining subsections.

3.1. Adaptive Vessel Segmentation

In Fig. 3, we present a block diagram that shows the components of the

adaptive vessel segmentation. Our vessel segmentation technique is based on
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the methodology presented in Yu et al. (2012b). In Yu et al. (2012b), the

retinal vasculature was segmented after applying a multiscale enhancement

with Frangi filters Frangi et al. (1998) and second order local entropy for

thresholding Pal and Pal (1989). The same procedure presented in Yu et al.

(2012b) cannot be used to detect the very fine vessels characteristic of NVD.

Over-segmenting the retinal vasculature can help to detect small vessels, but

it also introduces a high amount of segmented pixels in the avasculature zone

(false positives per image). In addition, images taken at different alignment

positions, such as those in our dataset, vary in contrast. The optic disc is

directly illuminated by the light of the camera in disc-centered images; in

macula-centered images, the nasal area receives less light intensity. For these

images, different parts of the retina require different levels of enhancement.

In this paper, we introduce an adaptive approach that uses multiple levels

to enhance vessel boundaries.

The first step is to analyze overlapping windows of 200× 200 pixels that

constitute the entire optic disc image (920 × 920 pixels). The remaining

steps of the procedure are applied to these windows to generate our final

segmentation.

We reduce non-uniform illumination using shade correction, as described

in Yu et al. (2012b); Mendoça and Campilho (2006), in order to minimize

its effects on the segmentation. The background is estimated by creating an

over-smoothed version of the image using an average filter. The size of the

window is usually set to the width of the largest structure in the retina. In

these images, the largest vessels width is 60 pixels. The original image is

divided by the filtered image. By using this technique, the non-uniformities
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Figure 3: Block diagram of the adaptive vessel segmentation procedure.

in the fundus images are significantly reduced.

Following non-uniform illumination correction, we use our adaptive image

enhancement method. The adaptive approach is iterative as depicted in Fig.

3. It consists of contrast limited adaptive histogram equalization (CLAHE,

with clip limit of 0.01, Pizer et al. (1987)) followed by anisotropic diffusion

Perona and Malik (1990) (12 iterations), and a feedback loop that is used to

decide the number of times that we need to repeat the operation. In what

follows, we describe all the components of the approach and then use an

example to demonstrate how it works.

Let IS(x, y) be the subimage of I(x, y) located in region S. Let T be the

pre-processing operator. A region S being pre-processed i consecutive times

is said to have undergone an i-th level of enhancement and is represented as

T (i)[IS(x, y)]; where i = 1, 2, . . . The correct level of enhancement for each

region is based on the comparison of the segmentation of two consecutive

levels of enhancement, as represented by the enhancement control block in

Fig. 3.
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The comparison of the segmentation of two consecutive levels of enhance-

ment is estimated as follows. Let U be the segmentation operator and | · |

denote the cardinality operator, that is, the function that counts the num-

ber of positive values of the input argument. Then the difference of the

segmentation of two consecutive levels of enhancement of IS(x, y) is given by

gS(x, y) = U
[
T (i+1)[IS(x, y)]

]
− U

[
T (i)[IS(x, y)]

]
(1)

and the number of nonzero pixels on region S is defined by |gS(x, y)|.

Two assumptions were made in order to estimate the best enhancement

level based on gS(x, y). If the number of newly segmented pixels in the

analyzed region obtained by the segmentation of the last level (i+ 1) is high

and these pixels are spatially distributed in the window, then we assume

that the enhancement achieved on this last level has only added non-vessel

pixels. On the other hand, if few newly segmented pixels are detected by

the segmentation of the last level, it can be concluded that this level has

not provided new significant information. By taking into account these two

assumptions, three parameters that quantitatively define the aforementioned

concepts were set for the adaptive vessel segmentation algorithm as follows.

Let N be the number of pixels on a window. If |gS(x, y)| is in the range

[N × fraclo, N × fracup] and it has at least one connected component com-

posed of fracmin×N pixels, level i+1 is preserved and the window undergoes

another enhancement level. Otherwise, level i is selected as the optimal en-

hancement level for the analyzed region.

The parameters fraclo and fracup represent fractions of the total number

of pixels that define the lower and upper bounds of the number of pixels that

should be added by the segmentation of level i+ 1 for it not to be discarded,
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while fracmin quantifies the spread criterion by establishing a lower bound

to the number of pixels needed for a connected component to be considered

significant. If one or more connected components are found, then the pixels

added by the segmentation of level i+ 1 are not considered to be too spread.

In our study, since we use 200× 200-pixel windows, N = 40000.

In order to find the optimal values of the fracup, fraclo and fracmin

parameters, we selected 10 additional images with NVD from our current

database. The vessels and new vessels were marked by an experienced tech-

nologist. Since we are interested in getting better detection of new vessels,

we divided images into regions with new vessels and regions with no vascula-

ture. Thus, normal vessels were not considered in this optimization approach

since they did not include new vasculature regions. In addition, instead of

using the accuracy metric, we use 2×sensitivity+specificity in order to

put more weight on the detection of new vessels without disregarding the

false positives per image generated in the process. Here, we note that our

segmentation metric performs a more proper parameter validation by also

penalizing over-segmentation. To find the optimal values, we applied a grid

search of 10 values for each of the parameters, as given by: fraclo = [0 0.1],

fracup = [0 0.15], and fracmin =[0 0.02]. An additional constraint for these

parameters was that: fracmin < fraclo < fracup.

The adaptive approach is demonstrated with segmentation corresponding

to three different levels of enhancement of a given region shown in Fig. 4. The

first enhancement level does not produce complete segmentation of vessels.

By applying the second enhancement level, an adequate segmentation with

less false positives per image is achieved. The third level introduces more
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Figure 4: Segmentation of vessels for the ROI in (a) at 3 consecutive levels of enhancement:

b) level 1 c) level 2, and d) level 3. Color code: correctly segmented vessels in blue,

incorrect segmentation in red.

noise than relevant vessel segmentation.

The procedure is repeated for all the windows that cover the image. These

regions are overlapped by shifting 50 pixels on both the vertical and horizon-

tal axes.

3.2. Amplitude-Modulation Frequency-Modulation (AM-FM)

This technique decomposes an image in terms of a unique sum of ampli-

tude and frequency components given by

I(x, y) =
M∑
n=1

an(x, y) cosϕn(x, y) (2)

where M is the number of AM-FM components, an(x, y) denote instanta-

neous amplitude functions (IA), and ϕn(x, y) denote the instantaneous phase
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Figure 5: a) Synthetic vessels: (left) straight line, (middle) Level 1 tortuous curve, (right)

Level 2 tortuous curve. b) IA response of (a). c) IFangle of (a) constrained to high IA

values for better visualization. d) Masked response of the IF angle in the synthetic vessels.

functions Havlicek (1996). For each AM-FM component, the instantaneous

frequency (IF) is defined in terms of the gradient of the phase ϕn:

IF(x, y) = ∇ϕn(x, y) =

(
∂ϕn(x, y)

∂x
,
∂ϕn(x, y)

∂y

)
. (3)

Further details on the use of AM-FM decomposition have been presented

in Murray et al. (2010). In this paper, our focus will be on the extraction of

AM-FM textural features.

In terms of extracting textural features from each component, we are
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interested in using the instantaneous amplitude (IA) and the magnitude and

angle of instantaneous frequency (IF). The IF angle is defined using:

IF angle = arctan

(
IFy

IFx

)
. (4)

The IA measures local image smooth variations, while the IF measures

local frequency content. The magnitude of IF is rotation invariant and also

measures the geometry of the texture. For example, the most appropriate

scale to detect a pattern of vessels is the one that captures frequencies with

a period that is proportional to their width.

In what follows, we will show that the IF angle can be associated with

the level of tortuosity of the segmented vessels. Given the ambiguity in

the estimation of the phase, cosϕn(x, y) = cos(−ϕn(x, y)), our estimation

is restricted to angles from 0 to 180. Fig. 5a shows synthetic curves with

different levels of tortuosity. In this synthetic experiment, we use the AM-

FM features from a frequency scale that captures the information of the three

curves shown in Fig. 5b. The cumulative distribution function (CDF) of the

masked IF angle content of the three curves (Fig. 5d) is shown in Fig. 6.

Theoretically, most of the pixels of the straight line will have angles near 0

and 180; this can be seen in the abrupt slope of the CDF for angles close to

zero. A higher level of tortuosity implies more variability in the pixels angle

values. In Fig. 6, it can be seen that the CDF of the Level 1 tortuous curve

rises more slowly than the CDF of the straight line. Even slower is the rise

of the CDF of the Level 2 tortuous curve, due to the presence of more angle

values in its IF angle pixels. These observations support the use of the IF

angle in tortuosity detection.

AM-FM components are extracted from different frequency scales using
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Figure 6: CDF distribution of the IFangle in the segmented curves for the three different

types of curves shown in Fig. 5a.

the information of the green channel of the image. We consider the use of

30 bandpass channel filters associated with five frequency scales (6 filters per

scale). These correspond to the following bands of frequencies: High (H),

Medium (M), Low (L), Very Low (VL), Ultra Low (U). In addition, we also

extract the information after applying a Lowpass Filter (LPF) to the image.

We merged the frequency bands into 12 different Combinations of Scales

(CoS), as shown in Table I. We estimate a 3 AM-FM components for each

CoS using Dominant Component Analysis Murray et al. (2010). A total of

36 different AM-FM representations (3 estimates × 12 CoS) are obtained for

each image.

Once the 36 AM-FM representations are estimated, these are masked

by the map of segmented vessels. For each masked image, a normalized

histogram of 32 bins is calculated. The values associated with these bins

represent the features extracted from AM-FM.
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Table I: Combinations of scales for the multiscale AM-FM analysis.

Combination number Frequency Bands Range in mm

1 All LPF 0.006 to 0.356

2 LPF 0.192 to inf.

3 VL 0.048 to 0.128

4 L 0.024 to 0.064

5 M 0.012 to 0.032

6 All 0.006 to inf.

7 LPF + U 0.096 to inf.

8 VL + U 0.048 to 0.356

9 L + VL 0.024 to 0.128

10 M + L 0.012 to 0.064

11 H + M 0.006 to 0.032

12 H 0.006 to 0.016

3.3. Granulometry

The size distribution of the segmented vessels and NVD can be described

using a morphological granulometry Gonzales et al. (2002), which provides

a multiscale approach that can be used to describe vessels of different sizes.

Granulometry is computed using a series of morphological opening operations

(γ) with a structuring element (B) of different sizes (controlled by r). An

opening is defined in terms of an erosion (ε) followed by dilation (δ) as given

by

γrB(X) = δrBbεrB(X)c. (5)

When the size of the structural element is increased, objects of corre-
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sponding size and smaller in the binary image are eliminated. By subtract-

ing the result of the opening from the original image, which is represented

by DwO in (6), we can obtain only the objects that were removed by the

opening. In this way, we can construct a distribution G by changing the r

as specified below.

DwO(r) = X − γrB(X). (6)

G(r) =
|DwO|
|X|

, (7)

where | · | is the cardinality operator defined in section 3.1. By using a disk-

shaped structural element of radii ranging consecutively from 1 to 32 pixels,

we compute the granulometry for the segmented vasculature.

3.4. Grayscale Morphology

Following the same concept of granulometry for binary images, openings

with the same radii and shape of the structure element were applied to the

negative of the green channel (as shown in Fig. 7a). By using openings,

objects with high intensity values are removed according to the size of the

structural element. Contrary to binary images, the pixels of grayscale images

will have different intensities. Therefore, instead of counting the number of

pixels as it is explained in the the previous section, the mean value of the

subtraction of the inverse of the green channel with each of its 32 openings

is calculated for the segmented area. Fig. 7 shows three examples of the

difference of the inverse of the green channel and its openings, which are
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Figure 7: Examples of the difference between the inverse green channel image in (a) and its

openings with r = 20 in (b), r = 5 in (c), and r = 2 in (d). These images show how vessels

of different calibers are extracted by changing the radius. This provides information that

is independent from the vasculature binary map.

extracted after using different sizes of structural elements. The example

demonstrates the multiscale properties of morphological openings.

3.5. Fractal Dimension

Fractal dimensions are computed to measure vascular changes associated

with the multiscale, granulometric decomposition. For this approach, we

generate 32 binary images from the outputs of the difference in openings of

consecutive radii, as explained in the previous section. Each binary image is

skeletonized and used in computing the fractal dimension.

Our approach is motivated by the earlier use of fractal analysis in Avakian
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et al. (2002). To determine the fractal dimension, we use box counting on

the skeletonized vessels as described in MacGillivray and Patton (2006). Box

counting covers the skeleton image with boxes of increasing size (2n), where

the maximally sized boxes cover the whole analyzed area, which in this case

is composed of 1024 pixels. For each box size, the number of boxes (NB)

that contains at least one pixel of the skeleton images is counted. To obtain

the fractal dimension (Df ), we calculate the slope of the best fit line to the

plot of ln(NB) vs. n ln(2).

3.6. Classification

A total of 39 types of features were obtained with the methods described

in the previous sections. Thirty-six types of features come from the his-

tograms of the AM-FM features constrained to the segmented vessels. The

size distribution of the segmented vessels obtained with the granulometry

computation provided one more type of features. Another type of feature

was calculated using the grayscale information of the image with the method

described in 3.4. The last type of feature was calculated using the fractal

dimension approach. As it was explained in each section, each type of fea-

ture is composed of 32 elements. In the case of AM-FM, each type of feature

has 32 bins; for the other ones, each type of features has 32 elements since

r = 1, 2 . . . 32. Therefore, each ROI is represented by a feature vector of

1248 elements (39 types of features × 32). Features are standardized prior

to being input to the classifier to have zero mean and a standard deviation

of one (x̄ = 0, SD = 1).

In order to validate our results, we used stratified k-fold cross-validation

by maintaining the same ratio of NVD and normal cases on each fold. The
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choice of k depends upon the amount of available data. If the number of cases

is small, then leave-one-out cross-validation, where the number of folds equals

the number of cases, is the method of choice. This allows the classifier to

be trained on as much data as possible. However, the classification accuracy

estimate, although nearly unbiased, has high variance, since the training sets

are very similar to each other. When a relatively large number of cases are

available (which is the case in this study), the bias of the cross-validation

estimate is reduced, making it safe to reduce the number of folds. Generally,

it is advised to use 10-fold cross-validation in these scenarios Refaeilzadeh

et al. (2009).

The classifier used to predict the presence of NVD in the optic disc is

a support vector machine (SVM) with a linear kernel. A nested 10-fold

cross validation (CV) was used to evaluate the performance of the extracted

features in the detection of neovascularization as well as to find the optimal

parameters of the classifier. At each round of the main CV, which was used

to estimate the classification accuracy, the inner CV was used to select the

appropriate value of tradeoff parameter C (Burges, 1998). This value was

picked from 20 logarithmically spaced points in the range [0.1 100].

4. Results and Discussion

4.1. Adaptive Vessel Segmentation

We first discuss the results from parameter optimization for our pro-

posed segmentation method. Based on our validation procedure, we found

the performance to be high and stable in the range of fraclo =[0.04 0.06],

fracup=[0.07 0.15], fracmin=[0.005 0.01]. Therefore, we set the parameters
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Figure 8: Optimization of the fraclo, and fracup parameters with fracmin=0.01.

to be fraclo = 0.05, fracup=0.1, and fracmin = 0.01. Fig. 8 shows a plot of

the obtained values for fracmin fixed to 0.01.

As discussed earlier, our goal was not to provide accurate segmentation of

new vessels, but to detect most of the vasculature that includes new vessels.

In order to confirm that our adaptive vessel segmentation was able to capture

most of the neovascularization, a certified retinal reader also marked all the

new vessels in 25% of our cases with NVD (25 images). The results of our seg-

mentation cover 80% of all the new vessels. Fig. 9 shows a comparison with

the non-adaptive approach in an optic disc with neovascularization. This

assures that our features are going to be more accurate by using this adap-

tive segmentation approach since they are extracted from regions that cover

the vasculature including new vessels in the optic disc and avoid unwanted

information such as background.
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Figure 9: Comparison of the segmentation of vessels in (a) using the non-adaptive ap-

proach (b) and the adaptive approach (c). It can be seen that the NVD is captured more

accurately with the proposed segmentation approach.
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4.2. Amplitude-Modulation Frequency-Modulation (AM-FM)

In Fig. 10, we show the response of the IA using CoS 11 (see Table I) for an

image with NVD. In Fig 10c we can observe how the vessels with small caliber

(most of them being neovascularization) are characterized by high intensity.

In order to analyze the IA reponse for different structures, we masked the

content of three groups, background, normal vessels, and neovascularization,

by using the annotated image in Fig 10b. In the histograms presented in Fig

10d, the difference between the number of pixels of NVD and normal vessels

increases for high values of IA. Even though the background presents more

pixels than normal vessels in that range, there is a significant difference with

respect to the NVD histogram. And since we only analyzed the segmented

vessel regions by using the adaptive vessel segmentation, the contribution of

the background is significantly reduced.

Fig. 11 shows the average of the normalized histograms of one AM-FM

representation (the magnitude of the IF CoS 11) for NVD and normal cases

in our dataset. It can be seen that NVD cases have more pixels at higher

frequencies than the normal cases. This indicates that the magnitude of IF

is also an informative feature that can help differentiate between normal and

NVD cases.

4.3. Granulometry

Fig. 12 shows the differences between the distributions of the two groups

for the first eight different radii (r = 1 to 8). A two-sample t-test was

computed for each, and the largest p-value was 0.0092 for radius = 6, which

indicates that the means of the distributions for each radius of NVD and
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Figure 10: AM-FM representation of an image with NVD. a) Original image. b) Manually

segmented vessel map (NVD in green). c) IA of (a) using high+medium frequencies. d)

Normalized histogram of the content of (c) for background, normal vessels, and NVD.

These histograms show that a larger amount of pixels with NVD compared to normal

vessels will be located at high values of IA.
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Figure 11: Comparison of the mean of normalized histograms of the IFm of CoS 11 for

100 NVD and 100 normal cases. The instantaneous frequency magnitude is displayed in

radians (see Table I for correspondence to the physical dimensions).

normal cases are statistically different. This suggests that there are more

small objects (thin vessels) in NVD cases than on normal optic discs.

4.4. Grayscale Morphology

The same analysis described in 4.3 was performed for the 32 features

obtained with grayscale morphology. The p-values were found to be in the

range of [3.04 × 10−5 4.6 × 10−2], which indicates that the estimated fea-

ture is useful for the classification of NVD and normal cases as it provides

statistically significant difference between groups.

4.5. Fractal Dimension

In theory, as the retinal structure increases in complexity, the value of the

fractal dimension is higher. It has already been noted that NVD adds more

complexity to the vasculature, due to the convoluted spatial distribution and
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Figure 12: Size distribution of granulometry in the segmented vessels using a disk-shaped

structural element with a radius from 1 to 8 pixels.

tortuosity of the new vessels. For this reason, NVD should have a higher

fractal dimension than normal vasculature. This statement is supported by

the results shown in the boxplots in Fig. 13, where the first eight extracted

features for fractal dimension for NVD and normal cases are shown. We also

performed the two sample t-test for the distributions in each radius, as was

done for granulometry. The maximum obtained p-value was 1.791 × 10−5.

This suggests that there is a significant difference between the means of the

distributions of the two groups.

4.6. Classification

We tested our system using 300 images (100 NVD, 200 normal). After

following the validation procedure explained in section 3.6, we found out that

the classification was insensitive to the value of C. Therefore, we set C = 1

obtaining an AUC of 0.93. In addition, we also tested the SVM with Gaussian

kernels. To do so, we perform a grid search by setting 100 logarithmically

spaced points in the recommended ranges by Hsu et al. (2003) of [2−5, 215] for
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Figure 13: Boxplot of the values of fractal dimension for each class (NVD, normal) for

eight different levels of granulometry.

C, and [0.5, 128] for σ. We found that the optimal values are in the interval

of [5.65 17.95] for C and [26.9 34.9] for σ. Table II presents the results for

both linear and Gaussian kernels.

We also applied the McNemar’s test to compare SVM classification (linear

kernel) results when using AM-FM features versus the combined use of all

of the features. A two-tailed comparison gave a p-value of 0.0218. Thus, the

combination of all of the features was found to be statistically significant.

Overall, we have found 19 out of 300 cases where the two feature sets gave

different classification results.

The classifier achieved a maximum accuracy of 88%. This point corre-

sponds to sensitivity equal to 78% and specificity of 94%. Other points in

the ROC curve gave us sens/spec = 92%/73%, and 95%/68%.

In Figs. 15 and 16 we analyze two misclassified cases, one false positive

(FP) and one false negative (FN). In Fig. 17 we present a challenging NVD
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Table II: Classification of different features that were extracted from the segmented blood

vessels. Note: Previous studies involving AM-FM features were extracted over the entire

region of interest.

Features Extracted from AUC AUC

Segmented Vessels SVM linear SVM Gaussian

AM-FM (36x32) features 0.9168 0.9028

Granulometry+morphology (2x32) features 0.8518 0.8398

Fractal Dimension (1x32) features 0.6862 0.7404

AM-FM + Granulometry +

Morphology + Fractal Dimension 0.9335 0.9231

case that was correctly detected.

The FP case in Fig. 15a presents thin vessels with some degree of tortu-

osity, which are usually characteristic of NVD. By analyzing the results of

the adaptive vessel segmentation shown in Fig. 15b, we confirm that we are

extracting features from these vessels. However, these are just normal vessels

that follow a pattern similar to NVD.

Fig. 16 shows the FN case. The highlighted regions of Fig. 15a show NVD

present on this image. It can be seen that the spatial extent of these vessels

is very small. In fact, only one of them is captured by our segmentation

procedure (Fig. 16b). This case demonstrates very subtle NVD which would

take a robust ophthalmic evaluation to detect. On the other hand, Fig. 17

presents a case with subtle NVD that was correctly classified. The main

difference with respect to the FN case is that there are more regions with

NVD. Therefore, the adaptive vessel segmentation approach has a greater
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Figure 14: ROC curve of the classification of NVD cases.

chance of capturing them.

5. Conclusions

This paper presents a novel methodology for the detection of neovascu-

larization in the optic disc. The focus of this method is not to characterize

segments of the vasculature as performed by Goatman et al. (2011). In-

stead, we characterize the vasculature as normal or abnormal. The proposed

adaptive vessel segmentation method adequately detects neovascularization,

allowing us to correctly extract features of these structures, thus minimizing

the inclusion of spurious information from other structures in the retina. By

combining an adaptive vessel segmentation approach with the features ex-

tracted using AM-FM, granulometry, and spatial information with fractal di-

mensionality, we have improved upon previous results presented in the auto-

matic classification of NVD Goatman et al. (2011). The significance of these

results is supported by the fact that we used a medium-scale database com-
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Figure 15: Example of a false positive. a) Original image. b) Zoom-in of the black

box in the optic disc image. c) Segmentation of (a) obtained with the adaptive vessel

segmentation algorithm.

Figure 16: Example of a false negative. a) Original image. b) Zoom-in of the black

box in the optic disc image. c) Segmentation of (a) obtained with the adaptive vessel

segmentation algorithm.
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Figure 17: Example of a true positive. a) Original image. b) Zoom-in of the black

box in the optic disc image. c) Segmentation of (a) obtained with the adaptive vessel

segmentation algorithm.

posed of 300 images, achieving a high generalization capacity. This method

can be further improved by optimizing empirically set parameters, the adap-

tive vessel segmentation iteration, and feature selection. This system can

be used in conjunction with an automatic DR screening algorithm to ensure

that no sight-threatening conditions due to neovascularization are missed.
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