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RESUMEN 
 

ENFOQUES NO PARAMÉTRICOS PARA EL 

ANÁLISIS DE ESTRUCTURA POBLACIONAL DE LA 

COLECCIÓN DE GERMOPLASMA DE PAPA 

SILVESTRE DEL CIP 
 

Las especies silvestres de papa poseen genes importantes relacionados a resistencia a 

enfermedades, tolerancia a estrés abiótico, y otras características de interés agrónomo; sin 

embargo, continúan siendo las menos exploradas. Esta investigación buscó desarrollar una 

metodología de análisis accesible y replicable en R para evaluar la diversidad genética y 

estructura poblacional de la colección de papas silvestres del Centro Internacional de la Papa 

(CIP) a través de enfoques no paramétricos. Se trabajó con datos de polimorfismo de 

nucleótido único (SNP) de 1248 accesiones de papa silvestre, de las cuales la mayoría no 

habían sido genotipadas previamente. Los parámetros de diversidad genética se calcularon 

antes del análisis de estructura. La estructura poblacional se analizó vía métodos 

paramétricos, como inferencia variacional Bayesiana, y métodos no paramétricos, como 

técnicas basadas en reducción de dimensionalidad y distancia genética. El análisis de 

distancias genéticas reveló agrupaciones según nivel de ploidía, clado taxonómico, y región 

de origen. Los resultados de estructura poblacional de los distintos métodos revelaron flujo 

génico significativo entre subpoblaciones, y confirmaron similitudes en la identidad genética 

de individuos de regiones geográficas similares y con características taxonómicas asociadas. 

El análisis se programó de manera que pudiera ser replicado y escalado de acuerdo con los 

requerimientos del investigador. Los métodos no paramétricos utilizados produjeron 

resultados comparables a los producidos por métodos paramétricos, demandando menor 

costo computacional, y estableciéndose como una alternativa práctica y efectiva para estudios 

de genética poblacional. Los resultados de este estudio dan nuevas perspectivas sobre la 



 
 

diversidad y arquitectura poblacional de la colección de papas silvestres del CIP, 

permitiéndole a otros investigadores entender las relaciones genéticas inter e intraespecíficas 

de las especies y ampliar la base genética de la papa. La metodología de análisis en R 

producida permitirá llevar a cabo estudios de genética poblacional con datos SNP en distintos 

cultivos de manera más rápida y eficiente, promoviendo su uso en distintos programas de 

mejoramiento genético.  

 

PALABRAS CLAVES:  

Papa silvestre; Diversidad genética; Estructura poblacional; Métodos paramétricos: Métodos 

no paramétricos; Genética poblacional 



 
 

ABSTRACT 

 

NONPARAMETRIC APPROACHES FOR 

POPULATION STRUCTURE ANALYSIS USING CIPs 

WILD POTATO GERMPLASM COLLECTION 
 

Wild potato species hold important genes related to disease resistance, tolerance to 

abiotic stress, and other traits of agronomic interest; however, they remain being the least 

explored. This study aimed to develop an accessible and replicable R analysis workflow to 

explore the genetic diversity and population structure of the International Potato Center’s 

(CIP) wild potato germplasm collection through nonparametric approaches. We worked with 

single nucleotide polymorphism (SNP) data from 1248 wild potato accessions, most of which 

had been genotyped for the first time. Genetic diversity parameters were calculated prior to 

structure analysis. Population structure was analyzed through parametric methods such as 

variational Bayesian inference, and nonparametric methods, such as dimensionality-

reduction and distance-based techniques. Distance-based analysis revealed clustering based 

on ploidy level, taxonomic clade, and region of origin. Population structure results from 

different methods revealed significant gene flow between subpopulations, and confirmed 

similarities in the genetic makeup of individuals from similar geographical regions and with 

associated taxonomic characteristics. The analysis was programmed such that it can be 

replicated and scaled according to the researcher’s requirements. Nonparametric methods 

produced comparable results to those produced through parametric methods, requiring a 

lower computational cost, and establishing themselves as a practical alternative for 

population genetics studies. The results of this study provide new insights into the diversity 

and population architecture of CIPs wild potato collection, allowing researchers to 

understand the inter and intraspecific genetic relationships between species and broaden the 

genetic base of potato germplasm. The produced R analysis workflow will allow other crop 



 
 

population genetics studies using SNP data to be carried out in a quicker and more efficient 

manner, promoting their use in genetic improvement programs. 

 

KEYWORDS: 

Wild potato; Genetic diversity; Population structure; Parametric methods; Nonparametric 

methods; Population genetics 

 



 
 

INTRODUCTION 

 

Genebanks, or germplasm banks, are biorepositories that aim to preserve crop 

biodiversity and ensure its availability for use today and in the future [1]. Global food security 

is being threatened by climate change, environmental shocks, and rising population numbers 

[1]. Crop wild relatives are a critical asset for addressing food security needs, given their rich 

genetic diversity can be used to enhance plant performance. They have been used in 

numerous crop improvement programs to produce more nutritious and resilient crop 

varieties, and have contributed greatly to the livelihoods of farming communities [2]. 

However, in the past few decades we have witnessed a decline in crop biodiversity driven by 

contemporary food and agricultural systems, more specifically by the destruction of natural 

ecosystems through intensive crop production, urbanization and land use changes [3]. In this 

context, genebanks play a fundamental role in safeguarding the diversity of important crops 

and their wild relatives.  

The International Potato Center’s (CIP) genebank holds the largest potato, sweet 

potato, and Andean roots and tubers (ARTC) germplasm collection in the world [1]. Given 

genebanks are mainly concerned with the long-term preservation of crops, most resources 

are focused on maintaining the viability and integrity of the accessions, to ensure users can 

access the material they require. CIP has yet to develop comprehensive strategies for 

understanding their genetic makeup, population structure and traits [4], [5]. Increased access 

to bioinformatic and genotyping tools give us the opportunity to utilize “big data to optimize 

the use of biodiversity in breeding” [1]; however, handling and analyzing these large genetic 

datasets requires the implementation of novel approaches. More efforts should be focused on 

genotypic characterization, diversity and population structure studies, and on producing 

standardized workflows that provide researchers with the tools they need to carry out these 

type of investigations [6].  
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Description of the research problem 

Despite the large amount of genetic material available, little is known regarding the 

population genetics of the potato collection, which refers to the study of the genetic identity, 

genetic diversity, and population structure of a population. Increased access to genotyping 

technologies allows us to produce larger and larger genetic datasets; however, there are 

certain difficulties related to the analysis of this big data, such as computational cost, lack of 

standardized analysis pipelines, and limitations pertaining to the standard parametric 

methods used in the field. Currently, CIP does not have a standardized analysis pipeline, 

meaning individual researchers need to develop their code from scratch for each project. The 

wild relative accessions continue being the least explored, despite their characterization being 

essential to identifying genes associated to disease resistance, tolerance to abiotic stress, and 

tuber quality [7], [8], [9]. These are all traits of agronomic interest. Very few studies on 

genetic diversity and population structure have been done using CIPs germplasm collection, 

and none have focused on the wild potato varieties [10], [5].  

Most difficulties pertaining to the analysis of these large genetic datasets relate to the 

methods used to analyze population structure. These can be grouped into parametric and 

nonparametric machine learning approaches [11]. There are several open access programs 

that allow researchers to utilize parametric or model-based clustering approaches, making 

them the standard in the crop science field. Nonetheless, these suffer from several drawbacks 

due to high computational costs, genetic assumptions of the clustering model and sensitivity 

to sample size [11]. A persistent challenge when utilizing these programs is that they are 

frequently used without considering whether the underlying models align with the study [12].  

For example, STRUCTURE is a widely used population analysis tool in the plant 

breeding community; however, it can be impractical due to the intensive computational cost 

and the biological assumptions the clustering model follows, given these are rarely met in 

nature [13]. This results in limited applicability for studies where samples present polyploidy, 

overlapping generations, or nonrandom mating [14], or studies that use genetic markers 

without selective neutrality, without low mutation rates or with linkage disequilibrium (LD) 

[15]. Nonparametric approaches are seen as an effective alternative to address these 
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drawbacks, given they have the advantage of a more efficient computational cost and no prior 

model assumptions [11]. Moreover, many nonparametric methods have been found to 

perform similarly or better to standard model-based clustering methods when applied to real 

and simulated data [16], [17].  

 

Justification and motivation 

As aforementioned, no previous population genetics studies have been carried out 

using CIPs wild potato germplasm collection. There is insufficient information regarding the 

genetic identity, diversity, and population structure of these cultivars, which limits their use 

in research and breeding programs. Characterizing the genetic identity of the accessions 

through genotyping will increase the efficiency of germplasm conservation, promote the use 

of genebank data, and allow users to strategically select accessions. It has been reported that 

misidentification, contamination, admixing and deterioration are common problems in any 

project that handles large amounts of genetic material [18], [19]. Errors in identification can 

occur due to human error, such as mishandling, mislabeling and admixing; however, these 

discrepancies can also be due to unrecognized genetic variants in the stock and accidental 

crosspollination during seed multiplication, causing undesired geneflow [20]. Defining the 

genetic identity of accessions by their SNP profiles will allow these errors to be identified, 

reducing costs related to the long-term maintenance of the collection [5].   

On the one hand, genetic diversity studies are the basis for any plant breeding and 

conservation program [21]. Modern crop breeding relies on genetic diversity to introduce 

genes or alleles of agronomic value to breeding populations. These studies allow us to 

characterize genetic diversity in terms of key parameters, and facilitate its use in developing 

new cultivars and in accelerated breeding approaches [22]. Biodiversity studies allow for the 

efficient use of genetic information for breeding programs, evaluation of adaptability to 

different environments, understanding of evolution of different varieties, and furthering 

current understanding of their nutritional and quality properties [23].  

On the other hand, population structure analysis allows for the grouping of individuals 

into subpopulations based on common gene pools, characteristics, and evolutionary 



21 
 

relationships, which then determines their capacity to be improved by genetic selection [24]. 

These serve as a basis for genome wide association studies (GWAS) and admixture analysis 

(AM) [11] studies, which allow researchers to identify genetic loci associated with specific 

traits and serve as the foundation for marker-assisted selection (MAS) in breeding [25]. 

Furthermore, understanding the population structure of the collection makes germplasm 

conservation more efficient and can encourage the use of wild species in breeding programs 

[22]. Regional and geographical clustering within a population also allows for the application 

of focused identification of germplasm strategies (FIGS) to identify species carrying specific 

adaptative traits, which could facilitate their dissemination to parts of the world with similar 

characteristics  [26]. Additionally, they allow collection curators to identify if there is genetic 

or geographical bias within the genebank and to understand if diversity in nature is properly 

represented, allowing them to then correct this bias. 

Moreover, the workflow utilized in this study aims to be scalable and replicable for 

large datasets or genomic ‘big data’ without the need of a high-performance computing 

(HPC) environment. The R code is written in a way such that only the initial variables need 

to be defined. Some of the analysis methods have already been implemented and optimized 

as part of R packages; however, some had to be implemented from scratch. Having the code 

already implemented and ready for execution will encourage more of these studies to be 

carried out, which will further broaden the genetic base of potato crops. Regarding the 

population structure analysis techniques, several of the nonparametric methods chosen had 

not been tested previously with such a large amount of data, meaning the obtained results can 

be used to evaluate their performance when applied to high-dimensional data. The objectives 

of this project align with CIPs “Biodiversity for the future” program’s mission [1].  

 

Definition of the research problem 

The current investigation aims to address the gap in knowledge regarding wild potato 

species, explore nonparametric alternatives for population structure analysis that tackle the 

limitations of parametric techniques, and attend to the absence of a standardized analysis 

pipeline to carry out population genetics studies in CIP. There currently exists a gap in 
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knowledge regarding the genetic diversity and population structure of wild potato species in 

CIPs genebank. No genetic assays have been carried out with CIPs wild potato collection, 

meaning there is little information on the genetic identity, diversity, and population structure 

of these accessions. Moreover, no previous studies have covered such a large number of wild 

potato accessions. Additionally, novel population structure analysis approaches, such as 

nonparametric methods, should be implemented for analyzing large and high-dimensional 

datasets, given the most popular techniques in the crop science field have drawbacks 

regarding functionality, result quality, and computational cost. The latter makes some of them 

unusable for high dimensional datasets without an HPC environment, limiting the capacity 

of researchers to produce knowledge without expensive equipment. Moreover, no analysis 

pipeline has been defined to carry out population genetics analyses at CIP, meaning 

researchers need to develop their own code from scratch.  

 

Objectives 

The general objective of the investigation is to develop an accessible and replicable 

analysis pipeline in R to explore the genetic diversity and population structure of CIPs wild 

potato germplasm collection through nonparametric approaches using SNP data. The specific 

objectives of the investigation are:  

i) Establish the genetic identity of each accession by retaining the most 

informative SNP data to allow the identification of duplicates and mislabeled 

samples. 

ii) Determine the genetic diversity within the accessions through the estimation 

of key parameters to facilitate their use in plant breeding programs. 

iii) Explore the population structure of the collection through nonparametric and 

parametric approaches to identify associations between genetic profiles and 

relevant passport data, such as ploidy, taxonomy, and region of origin. 

iv) Compare parametric and nonparametric machine learning methods for 

population structure analysis in terms of clustering results and computational 

cost. 
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v) Design a versatile, scalable, and replicable analysis script in R for crop 

population genetics studies using SNP data. 

This investigation followed a non-experimental descriptive research design, given the 

independent variables of the data utilized were not manipulated. The objectives are focused 

on describing quantitative characteristics and associations within the already collected data, 

following a biostatistics and bioinformatics approach.  

To achieve this, single nucleotide polymorphism (SNP) data from 1248 wild potato 

accessions, which accounts for about 50% of the wild potato collection, was analyzed. This 

data was preprocessed and filtered to allow the genetic identity of each accession to be 

defined through the most informative SNP data. Genetic diversity quantitative parameters 

were calculated through the ‘snpReady’ R package and a custom script. Parametric and 

nonparametric methods were used for population structure analysis to obtain membership 

probabilities of each individual into each inferred subpopulation. The parametric, or model-

based clustering, analysis were carried out using fastSTRUCTURE. The nonparametric 

methods can be divided into dimensionality reduction and distance-based methods. The 

dimensionality reduction-based approaches used were discriminant analysis of principal 

components (DAPC), single value decomposition (SVD) with discriminant analysis (DA), 

and sparse nonnegative matrix factorization (sNMF) with alternating nonnegative least 

squares (ANLS) optimization. These were compared in terms of the optimal number of 

subpopulations identified, cluster characteristics and the computational cost as execution 

time. The distance-based approaches involved calculating the Nei distance matrix of the 

accessions and constructing a bootstrapped dendrogram through neighbor-joining (NJ) and 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering algorithms. The 

analyses were mainly carried out in R and were programmed such that only the initial 

variables need to be defined for the rest of the code to run, allowing it to be replicated and 

scaled according to the requirements of the researcher. The entire code can be run in a 

standard 8GB RAM computer.  
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Limitations 

Due to economic constraints related to sample preparation and sending the samples 

abroad for genotyping, only 50% of CIPs wild potato collection was included in this 

investigation.  This means we were not able to get an image of the diversity in the entire wild 

potato collection. However, the selected samples were chosen in a representative manner, 

meaning the data still represents about 90% of the available species in the collection and their 

respective regional distribution. Moreover, the analysis workflow produced in this study will 

be used to analyze the remaining 50% of accessions once they are genotyped, making the 

entire process much quicker and easier.  



 
 

CHAPTER I 

STATE OF THE ART 

 

This chapter explores existing literature and studies on wild and cultivated potato 

population genetics, diversity and population studies carried out using CIPs germplasm 

collection, and the most popular tools and methods used for these types of analyses.  

Most potato population genetics studies focus on cultivated varieties or a mixture of 

cultivated and wild varieties. In 2011, Jacobs et al. carried out a study applying a populations 

genetics approach to evaluate the taxonomic and systematic relationships among wild potato 

species, referred to as Solanum section Petota species [27]. They used amplified fragment 

length polymorphism (AFLP) data from 566 South American wild potato accessions and the 

analysis was carried out using STRUCTURE. The results did not allow them to identify clear 

species and subspecies groups; however, it did clearly support certain taxa and taxa 

combinations while leaving others unsupported.  

In 2015, a study was carried out by Hardigan et al. where they analyzed taxonomy 

and genetic diversity among wild and cultivated varieties [22]. The panel consisted of 74 

wild potato accessions belonging to 25 species, and 213 cultivated potato accessions. The 

phylogenetic trees generated through SNP-based genetic distances revealed a general 

agreement with the existing taxonomic groups for Solanum section Petota. There was greater 

diversity among the wild and landrace accessions than among the cultivated accessions. 

Researchers were also able to identify loci with extreme genetic divergence between the wild 

and cultivated accessions. This research was able to offer a glimpse into potential allele 

markers to differentiate wild from cultivated species and loci associated to key agronomic 

traits.  

Aside from marker-based genetic diversity analysis, a few diversity investigations 

focused on genome sequencing have been found. In 2019, Huang et al. analyzed the “full 

plastid DNA sequence data of 202 wild and cultivated diploid potatoes” in order to explore 
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their phylogenetic relationships and compare to findings from previous studies using marker 

based data [28]. The study identified the same major taxonomic clades as reported in previous 

investigations, with differences mostly related to topology. Subclades in clade 4 were linked 

to geographic characteristics, and whether the accessions belonged to a cultivated species. 

In 2022, Tang et al. assembled 44 diploid potato genomes, using 20 accessions from 

indigenous cultivated diploid groups, 4 accessions from Solanum candolleanum and 20 wild 

potato species [29]. This investigation aimed to characterize the diversity within diploid wild 

and landrace potato species, explore mechanisms of tuberization, and identify disease 

resistance genes. The phylogenetic analysis carried out identified complex interspecies 

relationships, with admixture between Petota and Etuberosum, existence of incomplete 

lineage sorting, and frequent gene flow among the wild potato species. Additionally, they 

found that the potato genome has a larger repertoire of disease-resistance genes in 

comparison to other seed-propagated solanaceous crops. Although the present study does not 

focus on gene association, Tang’s study offers important insight into the characterization of 

wild potato species. 

Other genome sequencing studies on wild and cultivated potatoes have focused on 

assessing diversity through SNP identification after sequencing. On one hand is a study by 

Hardigan et al. in 2017, that sequenced a panel of 67 genotypes, which included 20 wild 

diploid species, 20 South American landraces, 23 North American cultivars from the 

Tuberosum group. They identified 68.9 million SNPs, suggesting the genetic diversity in 

potatoes is much greater than in any major crops [30]. On the other hand is a study by Y Li 

et al. in 2018, that sequenced 201 accessions of wild potato accessions (Solanum section 

Petota) and identified 6,487,006 high-quality SNPs [31]. Li’s team later questioned the 

conclusion of Hardigan’s study due to their own findings and the estimated of genomic SNPs 

in other crops such as soybean, pigeon pea, cotton and tomato maxing out at 15 million SNPs 

[32]. They reanalyzed the data from Hardigan’s study and used stricter SNP filtration 

methods, given they considered Hardigan’s filtration procedures to be too relaxed, yielding 

false SNPs. This reanalysis decreased the number of SNPs obtained to approximately 12 

million. For context, popular potato genome-wide genotyping (GGP) array kits interrogate 
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approximately 12,000 SNPs [33]. All things considered, both studies still found increased 

genetic diversity in wild potatoes when compared to cultivated varieties. 

Regarding population genetics studies carried out using CIP germplasm material, in 

2018, a study was carried out using 250 cultivated potato accessions from the collection at 

CIP to evaluate the functionality of the Infinium 12K V2 Potato Array, determine genetic 

differences between in vitro and original plants, and analyze genetic diversity and population 

structure of the cultivated taxa through SNP data [10]. The study provided the SNP genetic 

fingerprint of the accessions, which is now available through CIPs open access database. 

Phylogenetic analysis showed that the accessions tended to form clusters according to taxa 

and ploidy level. Additionally, results suggested the triploids included in the study are 

genetically similar. The population structure analysis through STRUCTURE was able to 

identify six populations with considerable gene flow between them. This study was more so 

focused on proving the viability of the array than on the diversity of the accessions they used; 

however, it was able to display its successful application for solving misidentification errors, 

facilitate understanding of genetic diversity, relatedness, and population structure.   

In 2020, another study was carried out using the CIP’s germplasm collection, 

although this time sweet potato I. batatas accessions were used, covering 45% of the species’ 

collection. This study aimed to evaluate the genetic identity and diversity of the accessions 

using SSR markers, evaluate the phylogenetic relationships and population structure, identify 

duplicates and mismatches, and compare the collection with a small group of accessions from 

the United States Department of Agriculture (USDA) genebanks [5]. Phylogenetic analysis 

showed redundancy in accessions from Peru and Latin America, which coincided with the 

similarities in morphological data. The population structure analysis suggested the presence 

of four ancestral populations with low levels of gene flow between them. The comparison 

with USDA accessions allowed 65 unique accessions to be identified.  

There are many examples of population genetics studies with SNP data for a variety 

of crops. These usually start with data preprocessing and cleaning, such as eliminating low 

quality SNPs, loci with ≥ 10% missing data and monomorphic SNPs [9], [9], [34]. For genetic 

diversity analysis, parameters such as genetic diversity (GD) or expected heterozygosity, 



28 
 

observed heterozygosity, allelic distributions, pairwise similarity, polymorphic information 

content (PIC), inbreeding coefficient and more are estimated from the SNP data [9], [10], 

[34]. Calculations are carried out in R through packages like ‘snpReady’ [34], and also 

through software packages like JMP [10] or Genalex [9]. 

Most population structure analyses are carried out through model-based clustering 

approaches such as STRUCTURE, which uses a Bayesian approach to assign individuals to 

populations based on diploid SNP genotypes, Hardy–Weinberg equilibrium and linkage 

equilibrium (LE) [9], [10], [35], [36]. This is the most popular method used in the plant 

breeding community. Additional model-based clustering approaches can be found on Table 

1. 1.  

 

Software Description Reference 

STRUCTURE  

Bayesian clustering approach 

applying the Markov Chain 

Monte Carlo (MCMC) 

estimation. 

Pritchard et al. [14] 

ADMIXTURE 
Maximum likelihood (ML) 

estimation  
Alexander et al. [37] 

BAPS2 
Bayesian clustering approach 

applying parallel MCMC chains 
Corander et al. [38] 

FRAPPE 
ML approach that estimates 

individual admixture fractions 
Tang et al. [39] 

LPOP 
ML approach based on latent 

class analysis (LCA) 
Purcell et al. [40] 

fastSTRUCTURE 
Variational Bayesian clustering 

approach 
Raj et al. [41] 

Table 1. 1. Parametric approaches for population structure analysis 



29 
 

Due to the high computational cost of parametric approaches and the underlying 

assumptions the models rely on, nonparametric alternatives are starting to gain popularity. 

Most of these alternatives rely on dimensionality reduction techniques as the first step, 

followed by a clustering approach on the reduced data as the second step. PCA is a widely 

used dimensionality reduction technique where variation among individuals is captured in 

the eigenvalues and eigenvectors [42]. PCA summarizes overall variability to include both 

divergence between groups and variation within groups without differentiating. For this 

reason, approaches such as DAPC, a multivariate method for the clustering of individuals in 

a population, can be used to preserve the between-group and within-group components of 

variation [43]. When groups are unknown, K-means clustering is used to identify them from 

the transformed data. The Bayesian Information Criterion (BIC) can be used to assess the 

model in terms of the number and nature of clusters [43].  

Although PCA is the most common dimensionality reduction technique used, there 

are other approaches which rely on other data transformation methods. For example, Liu and 

Zhao [17] proposed a two-step approach in 2006 that consists of SVD as the dimension 

reduction method, followed by different clustering techniques: K-means, mixture model or 

density-based mean clustering (DBMC). SVD tends to be more computationally efficient 

when the data sets are composed of a much greater number of variables compared to the 

number of individuals. SVD has also been paired with DA to infer structure in large data sets 

[44], although it has not yet been used in population genetics. Moreover, in 2014, Frichot and 

François [45] proposed a method based on sNMF and least-squares (LS) optimization, which 

is available in their ‘LEA’ R package. Additional dimension reduction-based methods for 

population structure analysis can be found on Table 1. 2, elaborated from Alhusain’s 2018 

review on nonparametric approaches [11]. Several of these two-step methods have performed 

similarly or better to STRUCTURE when applied to real and simulated data [17], [43].  
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Reference Dimension 

reduction 

Distance 

Matrix 

Clustering Package/s 

Patterson et al. [16] PCA - - EIGENSOFT, 

SMARTPCA [46] 

Jombart et al. [43] PCA & DA - - Adegnet [47] 

Liu et al. [17] SVD Cosine 

similarity 

K-means / 

Mixture model 

/ DBMC 

- 

Lee et al. [48, p.] PCA - Spectral 

clustering (K-

means, mixture 

model) 

- 

Intarapanich et al. 

[49] 

PCA Euclidean 

distance 

Fuzzy C-

means 

TW-ipPCA 

Limpiti et al. [42] PCA Euclidean 

distance 

Fuzzy C-

means 

EigenDev-ipPCA 

Amornbunchornvej 

et al. [50] 

PCA Allele 

sharing 

distance 

(ASD) 

Ward’s 

clustering 

- 

François et al. [51] NMF - Least-squares 

optimization 

LEA 

Table 1. 2. Nonparametric approaches for population structure analysis 
Note. Adapted from [11]. 

  



 
 

CHAPTER II 

THEORETICAL FRAMEWORK 
 

The present chapter covers the most important concepts required for the 

understanding of this thesis. The first section explores the current situation regarding the 

importance of potato and the use of wild potato biodiversity in plant breeding programs. The 

second section covers general aspects of how crop genebanks work and the requirements for 

their correct functioning. The third section describes the basic concepts behind population 

genetics, including the type of data utilized and how it is obtained. Genetic diversity and 

population structure are areas of investigation within population genetics; therefore, the final 

sections of this chapter focus on these two subareas and their respective bioinformatic and 

biostatistical approaches. The parametric and nonparametric approaches used for population 

structure analysis have been divided in separate sections for organization purposes.  

 

2.1. Potato diversity 

Potato is the world’s third most important crop after rice and wheat. It feeds more 

than one billion people worldwide and sustains the livelihoods of millions [52]. Its global 

total crop production exceeds 350 million metric tons per year [53]. There are over 4,000 

varieties of potatoes native to Peru, Bolivia, and Ecuador, with different characteristics 

adapted to the harsh conditions they grow in. Additionally, there are between 100 to 180 

known wild potato species belonging to regions spanning across the United Stated and Chile 

[52]. Considering this, it is an essential crop in terms of agriculture and food security.  

Potatoes belong to the genus Solanum, with over 1,500 species, making it the largest 

genus within the Solanaceae family [54]. Tuber-bearing Solanum species are grouped into 

Solanum section Petota, which can then be subdivided into the Potatoe and Estolonifera 

subsections [55].  The Potatoe subsection includes the common cultivated potato as the 

species Solanum tuberosum L.  
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2.1.1. Wild potato diversity 

Potato wild species belong to Solanum section Petota [56]. There have been various 

attempts to produce a consistent system for taxonomic classification. John Hawkes published 

a taxonomic treatment in 1990, in which he recognized 235 wild potato species [57]; 

however, this taxonomy was updated to 196 species by Spooner and Hijmans [58] in 2001, 

and to 107 species by Spooner et al. in 2014 [56]. Some of these classifications include 

taxonomic series and some of them partition them into clades instead, such as Spooner’s 

2014 conspectus. CIPs genebank currently uses a classification based on Hawkes [55] and 

Ochoa’s [59] descriptions [60]. Of these, approximately 70% are diploid species (2n = 2x = 

24), while the rest are mostly tetraploid (2n = 4x = 48) and hexaploid (2n= 6x = 72) [61]. A 

variety of biological factors such as interspecific hybridization, auto or allopolyploidy, varied 

types of sexual reproduction and the fact that most previous taxonomists have used 

morphology to define species is what has brought about such different taxonomic 

classifications [56].  

Wild potatoes species are distributed along the entire American continent and grow 

in a wide range of habitats, soil types, weathers and temperatures [62]. Wild potato varieties 

tend to have greater resistance to extreme climates and to a broader range of diseases and 

pests than their cultivated counterparts [63]. Additionally, they have different morphological 

and physiochemical characteristics due to the different conditions they come from [64], [65]. 

 

2.1.2. Potato reproduction 

Potato can be propagated either sexually through botanical seeds, or asexually 

through tubers. Species formation during evolution and domestication has relied mainly on 

sexual propagation [66]. On one hand, diploid potatoes encompass most Solanum species 

and are out-crossing due to gametic self-incompatibility [67]. This “prevents inbreeding and 

thereby promotes intraspecific genetic variation” [68]. On the other hand, tetraploid potatoes 

are self-compatible. In this regard, self-fertilization results in severe inbreeding depression, 

which is defined as the “reduced survival and fertility of offspring of related individuals” and 

results in a reduction of seedling germination [69]. Asexual reproduction of potatoes, also 
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called vegetative or clonal reproduction, relies on potato tubers [70]. Potatoes are herbaceous 

plants that accumulate starch in the ends of their underground stems as a nutrient store. These 

thicken enough to form tubers close to the soil surface and once the leaves and stems die, the 

tubers detach from their stolons. The tubers have multiple buds from which new plants grow 

[70].   

 

2.1.3. Potato breeding programs 

Potato breeding programs focus on the development of new varieties through 

“conventional breeding and/or biotechnological approaches” to increase agricultural 

productivity, quality, and resistance to changing climate conditions [71].  CIP breeders focus 

specifically on developing “early-maturing, stress-tolerant, and disease-resistant potato 

varieties with characteristics desired by consumers and processors” [72]. Having broad and 

dynamic characterized gene pools increases the probability of having certain traits and helps 

assure future unanticipated demands can be met [68]. In this context, wild potato species 

have contributed to disease resistance, abiotic stress tolerance, enhanced yield and increased 

quality in plant breeding programs for over 150 years [4], [73], [74], [75].  

 

2.2. Genebanks  

Plant genebanks were created to preserve genetic material and to prevent biodiviersity 

loses in face of current and future changes in environmental conditions or societal needs [76]. 

CIPs genebank is one out of eleven genebanks created by the CGIAR, or the Consultative 

Group for International Agricultural Research. These collections are available as 

international public goods under the International Treaty on Plant Genetic Resources for 

Food and Agriculture (ITPGRFA) and all materials are subject to the Standard Material 

Transfer Agreement (SMTA) for distribution and use [2], [77].   

The genebank at CIP keeps clonal and seed collections of potato, sweet potato, and 

Andean roots and tubers. Most accessions are kept as in vitro plants and through 

cryopreservation. CIP holds the largest in vitro plant collection in the world [78]. As of 2022, 
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CIP holds 7,490 potato accessions in total, with 4,193 currently available for distribution. Of 

those accessions, 2,596 are potato wild relatives [79], [78].   

 

2.2.1. Maintenance  

Genebanks conserve the genetic material through highly controlled and standardized 

procedures, which vary according to the type of preservation. Wild potatoes are managed as 

botanic seeds, while cultivated varieties are kept both in vitro and in field. These are initiated 

from mother plants and maintained as identical clones. Part of the preservation procedures 

involve transferring to maintain optimal viability and preventing the introduction of plant 

pests into the material [77]. This process is called phytosanitation. Current potato germplasm 

conservation methods using low temperatures and sorbitol as an osmotic agent have allowed 

the time needed for fresh transferring to be extended from 6 – 8 weeks to two years. In vitro 

accessions are the main type of material used for characterization, genetic identity and 

distribution to breeders, farmers, and researchers [77]. 

Figure 2. 1. In vitro collection [77] 
 

Validating the identity of genetic stocks in germplasm collections is essential to their 

use in research and plant breeding programs. Internal CIP reports and studies have identified 

identity errors in the in vitro collection when comparing these samples to their field clones. 

Accessions may not be what they are supposed to be, meaning they carry alleles or mutations 
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that do not match the information in the data base, or that they are a different accession all 

together. This can be due to mislabeling, unintentional seeding of soil, mix-ups, or accidental 

crosspollination during seed multiplication [20]. Standard approaches for managing genetic 

identity in genebank materials aim to reduce identity errors to 1% per generation; however, 

frequent validation of genetic identity is necessary to avoid the accumulation of errors in the 

long term [20].  

 

2.2.2. Data management 

CIP genebank data is currently available through the Germplasm Resource 

Information Network (GRIN) and Genesys platforms [1]. The GRIN data base platform is 

currently being or going to be implemented in more than 20 institutions around the world 

[80]. Each accession has a unique identifier, institution code, accession number within the 

specific genebank, collecting number and collecting institute code [81].  

CIP is currently working to develop more responsive and user-oriented collection 

management strategies that allow users to search collections by specific traits, 

ecogeographical characteristics and more. This would allow the creation of core, mini-core, 

and composite collections [82], as well as carrying out focused identification germplasm 

strategy (FIGS) approaches to identify trait-specific genetic resources. The latter uses 

collection site environmental data from accessions to provide information about which 

germplasm has the highest probability of carrying certain adaptive traits [83].  

 

2.3. Population genetics and genomics 

In its broadest sense, population genetics is a field in biology that studies how allele 

frequencies at several genes or loci change over time, within and among populations, as a 

response to evolutionary processes [84], [85].  Common genetic differences within a specific 

population are referred to as genetic polymorphisms, while genetic differences that 

accumulate between species form the basis of genetic divergence [86]. In this context, Daniel 

L. Hartl, renowned researcher in the field, refers to population genetics as “the study of 

polymorphism and divergence” [86].  
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2.3.1. Genetic and molecular background 

Most genetic and biological principles involved in this field are relatively simple; 

however, some basic definitions are presented in this section. Genotype refers to the specific 

set of genes that are present in an individual [86], while phenotype refers to the observable 

physical characteristics of an individual [87]. Allele refers to alternative forms of a gene at a 

given position or locus of the DNA molecule [86], [88]. In diploid organisms, or organisms 

with two complete sets of chromosomes [89], each cell will contain two alleles of each gene 

at corresponding loci [86].  Alternative forms of an allele tend to be portrayed in uppercase 

and lowercase letters such as AA, Aa and aa. If the individual inherited identical versions of 

a gene, the same allele, it is said to be homozygous at that locus, while if the individual 

inherited different versions of a gene, it is said to be heterozygous at that locus. This brings 

us to the principle of segregation, which states that each gamete carries only one allele of a 

gene [86]. This is the essence of Mendelian genetics; nevertheless, it is important to mention 

polygenic traits do not follow the patterns of Mendelian inheritance [90].  

 

2.3.2. DNA polymorphisms 

Modern biotechnological methods and next-generation sequencing (NGS) make 

genotyping more accessible, facilitating the study of genetic variation at the molecular level 

[91]. Single nucleotide polymorphisms or SNPs refer to the variation of a single nucleotide 

base pair at a specific DNA position [86]. A nonsynonymous SNP is a polymorphism that 

results in an amino acid replacement by altering a codon, this is called amino acid 

polymorphism. A synonymous SNP is then a polymorphism that does not result in an amino 

acid replacement given it produces a synonymous codon [86]. Prior to data analysis using 

SNP arrays, the SNPs that cannot be called or are monomorphic are discarded. Further 

filtering is done according to SNP call rate, which is “the proportion of genotypes per marker 

with non-missing data” [11] and minor allele frequency (MAF), which refers to the frequency 

of the second most common allele in a diploid population [9].  

Aside from SNP, there are other types of polymorphisms such as simple tandem 

repeats (STR), microsatellites and minisatellites. STRs occur when there is a variation in a 
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pattern of nucleotides repeated collectively along the DNA. Microsatellites are STRs in 

which the repeating unit is 2-9 base pairs long, while minisatellites are STRs in which the 

repeating unit is 10-60 base pairs long [86].  

 

2.4. Genetic diversity 

2.4.1. Hardy-Weinberg principle 

The Hardy-Weinberg equilibrium (HWE) is one of the most important concepts in 

population genetics. It states that “the genetic variation in a population will remain constant 

from one generation to the next in absence of disturbing factors”, this concept is also referred 

to as Mendelian inheritance [92]. The main assumptions of this model are sexual 

reproduction, nonoverlapping generations, large populations, equal allele frequencies in the 

sexes, diploidy, random mating, no migration and no mutation [93]. Given the polyploid 

nature of potatoes and their complicated reproduction mechanisms, which are further 

explained in section 2.1.2, many assumptions of HWE are not met. In general, mating 

patterns in nature rarely exhibit the random mating assumed by HWE [13].  Different types 

of non-random mating, also referred to as assortative mating, will affect the expected 

genotype frequencies within a population. In the case of tetraploid potatoes, these are self-

fertilizing, which is an example of consanguineous mating [13]. Nonetheless, HWE are still 

significant in broad terms and commonly used to describe genetic diversity characteristics. 

Considering genotypes AA, Aa and aa, under HWE, the allele frequencies at a single 

locus are given by [94]: 

 𝐴𝐴: 𝑝!						𝐴𝑎: 2𝑝𝑞						𝑎𝑎: 𝑞! (2. 1) 

 𝑝 + 𝑞 = 1							𝑝! + 2𝑝𝑞 + 𝑞! = 1 (2. 2) 

In this case, 𝑝!, 2𝑝𝑞 and 𝑞! represent the frequencies of each genotype in zygotes of 

any generation, while 𝑝 and 𝑞 represent the allele frequencies of A and a in the gametes of 

the previous generation. In the case that we have a population size of 𝑛 individuals and the 

copies of each allele are 𝑛"", 𝑛"#, and 𝑛##, we can estimate the allele frequency 𝑝 in the 

population as [86]: 
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 𝑝 =
2𝑛"" + 𝑛"#

2𝑛 		 (2. 3) 

This brings us to the concepts of expected and observed heterozygosity. These can be 

estimated for a specific locus or individual. For a specific locus, the expected heterozygosity 

𝐻$ is estimated from the allele frequencies of 𝐴 and 𝑎 following the Hardy-Weinberg model, 

through equation 2.1. The observed heterozygosity 𝐻% is estimated from individual 

genotypes [95], [96]: 

 𝐻$ = 2𝑝𝑞 = 1 − 𝑝! − 𝑞!					𝐻% =
𝑛&
𝑛  (2. 4) 

In this case, 𝑛& represents the number of heterozygous genotypes at that locus. 

Heterozygosity values can also be calculated for any individual as [96]: 

 𝐻%' =
𝑛&'
𝑚  (2. 5) 

Where 𝑛&' represents the number of heterozygous genotypes in the individual and 𝑚 

represents the number of markers, or sometimes the total SNP calls for that specific 

individual without including SNPs with no calls [10].  

Considering this, the polymorphic information content (PIC) of a marker can be 

calculated as [96]: 

 𝑃𝐼𝐶 = 1 − 2𝑝(! + 𝑞(!3 − (2𝑝(!𝑞(!) (2. 6) 

The overall genetic diversity index is estimated as the average expected 

heterozygosity at 𝑛 number of loci [97].   

 
𝐻) = 1 −6𝑝'!

*

'+,

 
(2. 7) 

It can be thought of as “the average proportion of heterozygotes per locus in a 

randomly mating population” or “the expected proportion of heterozygous loci in a randomly 

chosen individual” [98]. 
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2.5. Population structure 

Population structure can be defined as “the organization of genetic variation […] 

driven by the combined effects of evolutionary processes that include recombination, 

mutation, genetic drift, demographic history, and natural selection” [99]. Randomly mating 

or panmictic populations are expected to have similar allele frequencies between groups; 

nevertheless, as mentioned previously, random-mating patterns are rarely exhibited in nature, 

which causes population structures to arise [13]. Biological phenomena involved in mating 

and reproduction will contribute to population structures; however, geographical factors play 

a big role in the formation of subpopulations [13].  

The main goal of population structure analysis is to assign a number of individuals 

using a number of genetic markers into a number of subpopulations [11]. Consequently, 

research in this field focuses on how to assign individuals into subpopulations, how to 

determine the best number of subpopulations, and how to make sure the population structure 

inferred is an accurate reflection of reality. This type of analysis relies on parametric 

approaches, such as model-based clustering, and nonparametric approaches, such as 

dimensionality reduction and distance-based techniques [100].   

Figure 2. 2. General workflow for population structure analysis [11]  
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2.5.1. Gene flow 

Gene flow refers to the rate of genetic mixing. Low levels of gene flow between 

subpopulations means they have allele and genotype frequencies that tend to be independent 

over time [13]. Factors such as geographical separation, ecological adaptation and the 

accumulation of genetic differences interfere with gene flow and ultimately lead to the 

distinct organism lineages we have now [101].  

Matthew Hamilton, doctor in population genetics and mathematical biology, presents 

a useful example to explain this concept [13].  If we start with a hypothetical random-mating 

population divided by a river, such as the one shown in figure 3, genotype frequencies will 

initially follow HWE and the allele frequencies will be equal on both sides. As the river 

grows larger, the gene flow between subpopulations on each side will decrease. Over time, 

the subpopulations will have significantly different allele frequencies due to genetic drift and 

they will deviate from HWE. The concept of having reduced chances of mating in outcrossing 

individuals due to increasing distance between them is called isolation by distance [102].  

Figure 2. 3. Population structure produced by limited geneflow [13] 
 

2.5.2. Linkage disequilibrium 

Linkage disequilibrium (LD) “quantifies the non-random (statistical) association 

between alleles at distinct loci” [103].  LD between markers and QTL serve as the basis for 

advanced breeding tools such as marker-assisted selection [103]. Linkage disequilibrium is 

inferred when alleles are found together more often than expected through independent 

inheritance [104], [105].  
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2.6. Parametric approaches for population structure analysis 

Parametric approaches for population structure analysis use model-based clustering 

to assign individuals into subpopulations. Ancestral proportions are inferred for each 

individual and these are then grouped according to similar patterns of inferred ancestry [42]. 

Many of the existing parametric methods apply Bayesian inference to model the probability 

of the observed genotypes according to individual ancestry proportions and allele frequencies 

[11]. These methods rely on the use of statistical inference models to estimate the allele 

frequencies in each population. Certain parameters, such as the number of subpopulations, 

must be set before carrying out the analysis.  

 

2.6.1. Bayesian clustering 

In a Bayesian clustering approach, “the partition of items into subsets becomes a 

parameter of a probability model for the data”, which is subject to predetermined assumptions 

[106]. For the sake of this investigation, we will focus on the clustering method developed 

by Pritchard, Stephens, and Donnelly in 2000, a Bayesian clustering approach applying the 

Markov Chain Monte Carlo (MCMC) estimation [14]. This is the framework behind the 

STRUCTURE program [107]. It uses multilocus genotype data to assign individuals into 

source populations, while also allowing them to have “proportional assignment of their 

ancestry to multiple populations” [12]. It is deemed as an admixture model that follows the 

HWE and LE assumptions. In this context, admixture refers to individuals from two or more 

previously distinct or isolated populations interbreeding, which results in new genetic 

lineages [108]. This approach allows prior information about study samples, such as location 

or traits, to be included in the analysis [15]. 

This method assumes a model with 𝐾 number of populations, each characterized by 

a specific set of allele frequencies at each locus. The user will have to define the optimal 

number of subpopulations 𝐾 through procedures such as the Evanno method [109]. The 

individuals are probabilistically assigned to one or more populations according to admixture 

levels. Assuming there are 𝑁 individuals genotyped at 𝐿 loci, 𝑋 is the vector of observed 

genotypes, 𝑍 as the unknown populations of origin of the individuals, 𝑃 as the unknown 
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allele frequencies in the populations and 𝑄 as the admixture proportions for each individual, 

the model with admixture can be described through the following expressions [14]: 

 =𝑥-
(',,), 𝑥-

(',!)@ = 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑖	𝑎𝑡	𝑡ℎ𝑒	𝑙𝑜𝑐𝑢𝑠	𝑙 (2. 8) 

 𝑧-
(',#) = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑜𝑟𝑖𝑔𝑖𝑛	𝑜𝑓	𝑎𝑙𝑙𝑒𝑙𝑒	𝑐𝑜𝑝𝑦	𝑥-

(',#) (2. 9) 

 𝑝1-( = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓	𝑎𝑙𝑙𝑒𝑙𝑒	𝑗	𝑎𝑡	𝑙𝑜𝑐𝑢𝑠	𝑙	𝑖𝑛	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑘 (2. 10) 

 𝑞1
(') = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑖2𝑠𝑔𝑒𝑛𝑜𝑚𝑒	𝑡ℎ𝑎𝑡	 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑	𝑓𝑟𝑜𝑚	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑘 

(2. 11) 

Where 𝑖 = 1, 2, . . . , 𝑁; 𝑙 = 1, 2, … , 𝐿, 𝑘 = 1, 2, … , 𝐾, 𝑗 = 1, 2, … , 𝐽3 and 𝐽3	is the 

number of distinct alleles at locus 𝑙. Modeling vectors 𝑃 and 𝑄 using the Dirichlet 

distribution, the probability model is then: 

 Pr=𝑥-
(',#) = 𝑗X𝑍, 𝑃, 𝑄@ = 𝑝4-

(',#)
-1

 (2. 12) 

 Pr=𝑧-
(',#) = 𝑘X𝑃, 𝑄@ = 𝑞1

(') (2. 13) 

 𝑝1-~𝐷𝑖𝑟(𝜆,, 𝜆!, … , 𝜆5,) (2. 14) 

 𝑞(')~𝐷𝑖𝑟(𝛼, 𝛼, … , 𝛼) (2. 15) 

The MCMC algorithm with admixture is used to sample from Pr(𝑍, 𝑃, 𝑄	| 𝑋)	through 

an iterative process. It starts by “randomly assigning individuals to a pre-determined number 

of groups, then variant frequencies are estimated in each group and individuals re-assigned 

based on those frequency estimates” [15]. The algorithm comprises many iterations to allow 

the burn-in process to converge into “reliable allele frequency estimates in each population 

and membership probabilities of individuals to a population” while accounting for the 

conditional independence relationships between model parameters and latent variables [15]. 

The output obtained from the MCMC algorithm can be used to perform inference on 𝑍, 𝑃 

and 𝑄.  

 

2.6.2. Variational Bayesian inference 
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Given inferring population structure in large genetic datasets presents several 

computational challenges, alternative clustering algorithms have been developed. In 2014, 

Raj et al proposed a variation of Pritchard, Stephens and Donelly’s method, named 

fastSTRUCTURE [41]. The variational Bayesian (VB) inference approach is “almost two 

orders of magnitude faster than STRUCTURE” and is able to achieve population structure 

results comparable to those obtained through STRUCTURE or ADMIXTURE [41]; 

however, it still relies on HWE assumptions. 

VB inference approaches population structure analysis as an optimization problem. 

VB works under most of the same parameters defined in the previous section; however, it is 

described assuming diploid individuals, thus Z is defined as 𝑍# and 𝑍6 for each copy of the 

locus. Considering this, instead of sampling from the posterior distributions over 𝑍#, 	𝑍6, 𝑃 

and 𝑄 to compute the moments of each variable, VB inference “approximates the log-

marginal likelihood of the data by proposing a family of tractable parametric posterior 

distributions (variational distribution) over hidden variables in the model” [41]. This can be 

done using the Kullback-Leiber (KL) divergence as the statistic distance on the probability 

distribution. For probability distributions 𝑞(𝑥) and 𝑝(𝑥), KL divergence is defined as [41]: 

 
𝐷1-2𝑞(𝑥)‖𝑝(𝑥)3 = _𝑞(𝑥)𝑙𝑜𝑔

𝑞(𝑥)
𝑝(𝑥) 𝑑𝑥 

(2. 16) 

 In this case, 𝑝(𝑥) is the intractable posterior and 𝑞(𝑥) is the variational distribution. 

To simplify the optimization problem, independence is assumed for the latent variables 𝑍# 

and	 𝑍6 , and parameters 𝑃 and 𝑄. Maximizing the log-marginal likelihood lower bound 

(LLBO) can be done by minimizing the KL divergence. LLBO is used as a heuristic to select 

the most suitable K values for the model [41]. The results of this approach consist of 

“approximate analytical forms for the posterior distributions over unknown variables” and 

“an approximate estimate of the intractable marginal likelihood”, which can be used to 

compare different models with different numbers of populations [41].  

Such as in the original Pritchard model, a Dirichlet prior is chosen to model the 

admixture proportions 𝑄. The choice of prior for allele frequencies 𝑃 will depend on the 

characteristics of the data and complexity of the structure within. On the one hand, choosing 
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a flat-beta prior allows for higher computational speed but does not perform as well when 

data has subtle and heavily admixed population structure. On the other hand, choosing a 

hierarchical prior, referred to as logistic prior given it models population-specific allele 

frequencies using a logistic normal distribution, takes a much longer time but has shown to 

return more accurate ancestry estimates when populations are difficult to resolve [41].  

 

2.7. Nonparametric approaches for population structure analysis 

Due to increased access to genotyping technologies and the ability to produce larger 

genetic datasets, nonparametric approaches are increasingly being used for population 

structure studies, given they have the benefit of requiring less computational time and no 

modeling assumption requirements [42]. These can be carried out on a standard 8 GB RAM 

computer. The type of nonparametric methods we will focus on are dimensionality reduction 

techniques and distance-based methods.  

 

2.7.1. Data storage and handling 

HPC environments are commonly used to carry out the analyses of large data, given 

they are “clusters of powerful processors that work in parallel to process massive multi-

dimensional data sets […] and solve complex problems at extremely high speeds” [110].  

However, many researchers do not have access to HPC services due to the high cost of 

hosting an HPC cluster. Depending on the amount of data used for analysis, alternative data 

representation methods may have to be used to reduce random access memory (RAM) 

requirements and facilitate data storage and handling with regular computers. The ‘adegenet’ 

R package provides us with two object classes created exactly for this purpose: SNPbin and 

genlight [111], [112]. These are both S4 formal classes and aim to represent biallelic SNP 

data as bits instead of integers, making the storage much more compact and allowing 

operations to be carried out in standard computers. R is only able to handle sets of 8 bits (a 

byte), but this is handled through “sub-routines in C language” [112]. The efficiency of using 

these object types for computations is achieved by converting the bit data to numeric data 

one or two genomes at a time, while optimizing for speed using C language code, using 
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parallel cores, and handling smaller objects [112]. The SNPbin object allows for the storage 

of single genomes while the genlight object allows for the storage of SNPbin objects for 

multiple individuals [111].  

 

2.7.2. Dimensionality-reduction based methods 

Dimensionality reduction-based methods map high-dimensional genetic data into a 

low-dimensional space to then perform the clustering method on the reduced dimensions 

[11]. 

 

2.7.2.1.    Principal component analysis 

PCA is a dimensionality reduction technique used to increase interpretability of large 

datasets while minimizing information loss [113]. By creating a set of new uncorrelated 

variables with maximized variance, the analysis is reduced to an eigenvalue and eigenvector 

problem. PCA is considered an adaptative data analysis technique given the new variables 

are defined by the data used and not by any previous models or assumptions [113]. It can be 

defined as an orthogonal linear transformation where the new variables, called principal 

components (PC), are obtained as linear transformations of the original variables [114]. The 

values of these new variables are called factor scores. The projection of these factor scores 

can then be interpreted as the geometrical projection of the observation onto the principal 

components [114].  

PCA starts with a data matrix of 𝑝 numerical variables, or relative allele frequencies 

in the case of SNP data, for 𝑛 individuals. These data values will define the matrix 𝑋 of 

dimensions  𝑛	 × 	𝑝, in which column represents a vector of observations 𝑥 for allele 𝑗. The 

goal is to find a linear combination of the columns in matrix 𝑋 such that we can achieve 

maximum variance [113].  

 
6𝑎(𝑥( = 𝑋𝑎
7

(+,

 
(2. 17) 
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In this expression, 𝑎 is a vector of constants and therefore, the variance of any linear 

combination is 𝑣𝑎𝑟(𝑋𝑎) = 𝑎′𝑆𝑎, where 𝑆 is a sample covariance matrix associated with the 

dataset. Linear combinations 𝑋𝑎 are the principal components of the dataset.  

Considering this, finding the linear combination with maximum variance can be done 

by obtaining a p-dimensional vector 𝑎 that maximizes the quadratic form 𝑎′𝑆𝑎. Unit-norm 

vectors are used such that the problem is equivalent to maximizing 𝑎2𝑆𝑎 − 𝜆(𝑎2𝑎 − 1), 

where 𝜆 is a Lagrange multiplier. If we differentiate with respect to vector 𝑎, and equate the 

expression to the corresponding null vector, we obtain 𝑆𝑎 − 𝜆𝑎 = 0. This means that vector 

𝑎 must be an eigenvector and 𝜆, the corresponding eigenvalue of covariance matrix 𝑆. The 

eigenvalues represent the variance of the linear combinations. The number of components 

one wishes to retain can be decided according to the eigenvalues obtained, given these will 

show the variance captured by each [113]. Different clustering techniques can then be applied 

on the transformed data matrix, such as will be explained next.    

 

2.7.2.2.  Singular value decomposition 

Such as PCA, SVD is an eigenvalue dimensionality reduction method that aims to 

reduce the number of input variables while retaining the most important information. It is a 

matrix decomposition technique that states any matrix 𝑋 can be represented as the product 

of three matrices 𝑈, 𝑆	𝑎𝑛𝑑	𝑉8  [17]. 

In this case, 𝑈 and 𝑉 are column orthonormal with eigenvectors chosen from 𝑋𝑋8 

and 𝑋8𝑋 respectively. 𝑆 is a diagonal matrix of singular values equal to the root positive 

eigenvalues of 𝑋𝑋8 and 𝑋8𝑋. The eigenvectors of 𝑈 and 𝑉 are arranged such that vectors 

with higher eigenvalues come first [17]. The number of singular values to retain can be 

chosen according to the explained variance, which can be calculated by squaring the singular 

values and dividing by the total sum of squares to obtain a percentage. This can be visualized 

through a scree plot of the principal components. One can then construct a reduced version 

of the original data 𝑋f by multiplying the reduced versions of	𝑈, 𝑆 and 𝑉 such that 𝑋f =

 𝑋 = 𝑈𝑆𝑉8 (2. 18) 
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𝑈9𝑆9𝑉98. This will produce a matrix of the same dimensions of the original data but with a 

reduced rank. Nonetheless, one can limit the dimensions of this reduced data by multiplying 

only the reduced versions of 𝑈 and 𝑆, or 𝑆 and 𝑉. This choice will depend on the objectives 

of the dimensionality reduction [115].  

 

2.7.2.3. Discriminant analysis 

DA is a classification multivariate technique used to assign individuals into 

previously defined groups, based on the variables measured on each sample [116]. It also 

aims to find the contribution of each variable in the group separation [116]. Considering a 

data matrix 𝑋, DA aims to find a combination of variables such that 𝑋𝑎 has maximum 

variance. The linear combinations 𝑋𝑎 are called discriminant functions in DA, and can be 

found by the eigenanalysis of the D-symmetric matrix [43]: 

In this case, matrices 𝐷 and 𝑃 come from the classical ANOVA model, where 𝐷 

represents a diagonal matrix containing uniform weights for the observations and 𝑃 is defined 

as a projector onto the dummy vectors of matrix 𝐻, which codes the group membership for 

each observation. 𝑊 is the matrix of covariances within groups [43]:  

Solving this equation requires 𝑊 to be invertible, which is not the case when the 

number of variables is greater than the number of individuals. Also, the inverse of 𝑊 is 

numeric unstable when the variables are correlated, which is the case with allele frequencies 

from SNP data. A way to solve this issue is to perform DA on a reduced version of the 

original data matrix 𝑋, using PCA or SVD. 

DAPC is a two-step method with PCA as a first step and linear DA as a second step. 

Instead of performing DA directly on 𝑋, DA is performed on the matrix of principal 

components 𝑋𝑈 to solve issues related to the number of variables and correlation [43].  

DAPC is able to assign individuals to groups, provide a visual assessment of between-

population differentiation and the contribution of individual alleles in the population 

 𝑃𝑋(𝑊):,𝑋8𝑃8𝐷 (2. 19) 

 𝑊 = 𝑋8(𝐼 − 𝑃)8𝐷(𝐼 − 𝑃)𝑋 (2. 20) 
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structure [43]. When tested with real and simulated data, it has been shown to perform much 

faster than STRUCTURE while providing comparable results [43].  

Another alternative is using SVD as the data reduction strategy. Elhadji Ille Gado et 

al. [44] presented a two-step approach using SVD as the first step, and linear DA as the 

second step. In this case the SVD is used to construct a low-rank approximation of the 

original data, and then applying DA on this reduced data. This method has not been used for 

population structure analysis; however, given it was proposed for high dimensionality data, 

it allows us to solve the issues mentioned previously regarding the number of variables and 

correlation. It is important to mention that the application of DA requires groups to be 

previously defined. This can be done through different clustering algorithms, such as K-

means clustering. The number of discriminant functions one wishes to retain can then be 

decided according to the eigenvalues obtained, given these explain the amount of variance.  

 

2.7.2.4.  Nonnegative matrix factorization 

NMF is a dimensionality reduction technique that aims to provide a low rank matrix 

approximation for a nonnegative matrix 𝑋 with dimensions 𝑚 × 𝑛 such that 𝑋 ≈ 𝑊𝐻. 

Considering 𝑊 and 𝐻 are also composed of nonnegative values, each data point in 𝑋 can 

then be explained by an additive linear combination of meaningful components [117].  The 

most common way to measure the best approximation is by solving the following 

optimization problem, which uses the Frobenius norm [117]: 

In this case, 𝑊 is a basis matrix with dimensions 𝑚 × 𝑘, 𝐻 is a coefficient matrix 

with dimensions 𝑘 × 𝑛, and ‖. ‖;2 is the Frobenius norm. A problem with some of the 

algorithms developed for solving this problem is that some do not converge as they should. 

The alternating nonnegative least squares (ANLS) algorithm has shown to have good 

performance given it possessed a good convergence property. Several of this framework have 

been introduced for greater efficiency and speed.  

 min
<=>,			&=>

𝑓(𝑊,𝐻) =
1
2
‖𝑋 −𝑊𝐻‖;2!  (2. 21) 
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Frichot et al. [51] introduced a least-squares optimization algorithm specialized for 

estimating ancestry coefficients from genotypic frequency data.  The process involves 

performing sparse NMF on the data matrix 𝑋, and then applying their variation of the ANLS 

algorithm to estimate 𝑊 and 𝐻. This algorithm starts by initializing 𝑊 entries with 

nonnegative values and iterating until convergence. Matrix 𝐻 is then computed such that 

𝐿𝑆,(𝐻) is minimized [51]: 

The matrix 𝐻 is obtained by solving linear regression equations and setting all 

negative values to zero. Matrix 𝑊 is then computed such that 𝐿𝑆!(𝑊) is minimized [45].  

In this equation 𝑒,×1 represents a unit row vector, 0,×* represents a zero vector of 

length n, and 𝛼 is a nonnegative regularization parameter. This equation is solved by applying 

Kim and Park’s 2011 [117] block principal pivoting method. Karush-Kuhn-Tucker 

conditions with a tolerance threshold of 10:A	 [117] were chosen as the stopping criterion 

for the iterations. 

 

2.7.2.5.  K-means clustering 

K-means clustering is a type of unsupervised algorithm used to discover the 

underlying structure of data distribution by grouping data with similar characteristics 

together. K-means partitions the data according to its “geometric closeness in the feature 

space” [118]. The starting point of the algorithm is the initial dataset which we aim to 

partition into a predefined K number of clusters. The data points are portioned, randomly or 

by applying a certain heuristic, into K initial clusters. The centroid of each cluster 𝑐1 can be 

calculated as [119]: 

 𝐿𝑆,(𝐻) = ‖𝑋 −𝑊𝐻‖;2!  (2. 22) 
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(2. 23) 
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𝑁B! refers to the number of points in cluster k and 𝑥B!
(() refers to the points in that 

cluster. The data is then repartitioned by assigning each data point to the next closest centroid 

according to their Euclidean distance. The centroids are recalculated for each new cluster and 

the process is repeated until convergence, which occurs when the data points are no longer 

regrouped into a different cluster [119]. This method is commonly known as Hartigan-

Wong’s K-means clustering [120]. 

 

2.7.2.6.  Inferring the number of clusters 

When population groups are not known in advance, the number of clusters or 

subpopulations must be selected. When using K-means clustering, this can be done by using 

the BIC as the model selection criterion [121]. Such as DA, K-means clustering also relies 

on a classical ANOVA model to separate the total variance into between-group and a within-

group components. We can then choose the K number of groups which allow us to minimize 

this within-group variation. This technique has shown to perform better than likelihood 

methods when predicting the number of subpopulations in genotype data [17], [43], [48].  

Equation 2.25 represents the K-means model applied to a PCA matrix XU. The BIC 

can be used to choose the best clustering model and is described in equation 2.28. In this case 

W(X) represents the residual variance or variance within groups g. The best runs from the K-

means model can be inferred from the lowest BIC value or the inflection point.   

Regarding nonnegative matrix factorization, the number of clusters is chosen 

according to the cross-entropy criterion results. This criterion is based on the prediction error 

of the ancestry estimation algorithms by comparing the predicted and obtained distribution 

 𝑉𝑎𝑟(𝑋𝑈) = 𝐵(𝑋𝑈) +𝑊(𝑋𝑈) (2. 25) 

 𝐵(𝑋𝑈) = 𝑡𝑟(𝑈8𝑋8𝑃8𝐷𝑃𝑋𝑈) (2. 26) 

 𝑊(𝑋𝑈) = 𝑡𝑟(𝑈8𝑊𝑈) (2. 27) 

 𝐵𝐼𝐶 = 𝑛𝑙𝑜𝑔2𝑊(𝑋)3 + 𝑔𝑙𝑜𝑔(𝑛) (2. 28) 
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on a fraction of masked genotypes. Smaller cross-entropy criterion values indicate better 

outputs and ancestry estimates [51]. 

 

2.7.3. Distance-based methods 

Distance-based methods are another type of nonparametric analysis approach that 

involves calculating the genetic distances between individuals and then applying a clustering 

algorithm [11]. The genetic distance matrix can be calculated in a variety of ways and the 

clustering results are commonly shown as a dendrogram. Distance-based methods are also 

commonly used in phylogenetics, which focuses on the evolutionary relationships among 

species; however, not all genetic data types are fit to explore phylogenetic patterns [122]. 

  

2.7.3.1.   Nei’s genetic distance 

Nei’s genetic distance [123] can be used to estimate pairwise similarities between 

individuals or populations. This distance matrix can then be used to construct dendograms or 

phylogenetic trees. Considering 𝑥' and 𝑦' represent the frequencies of allele 𝑖 in populations 

𝑋 and 𝑌, the probability of identity of two randomly chosen genes is 𝑗D = ∑𝑥'! in population 

𝑋, and 𝑗E = ∑𝑦'! in population 𝑌. The probability of identity of a gene from each of the 

populations 𝑋 and 𝑌 is 𝑗DE = ∑𝑥'𝑦'. Therefore, the normalized identity of genes between 

both populations with respect to a specific locus is [123]: 

The normalized identity of genes between both populations considering all loci is 

then: 

Where 𝐽DE, 𝐽D and 𝐽E represent the means of 𝑗DF, 𝑗D and 𝑗F over all the loci. 

Considering this, Nei’s genetic distance is defined as [123]: 

 

 𝐼( =	 𝑗DE s𝑗D𝑗E⁄  (2. 29) 

 𝐼 = 	 𝐽DE s𝐽D𝐽E⁄  (2. 30) 

 𝐷 =	−ln 𝐼 (2. 31) 
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2.7.3.2. Neighbor joining 

Neighbor joining (NJ) is a clustering method for constructing unrooted dendrograms, 

created by Saitou and Nei in 1987 [124] and improved by Studies and Kepler in 1988 [125]. 

It is a clustering method that does not require all lineages to diverge by equal amounts and is 

suited for datasets that represent species with varying rates of evolution [126]. The idea is to 

find pairs of operational taxonomic units (OTUs) or neighbors, from a distance matrix, that 

can minimize the total branch length at each stage of clustering starting with an unresolved 

tree [124].   

It starts with a star-formed tree and “iteratively picks two nodes adjacent to the root 

and joins them by inserting a new node between the root and the two selected nodes” [127]. 

A way to do this is by selecting the pair of nodes 𝑖 and 𝑗 that minimize a matrix 𝑄, where 𝑑'( 

is the distance between both nodes, 𝑅1 is the row sum ∑ 𝑑'1'  of row 𝑘 in the distance matrix, 

and 𝑟 is the number of nodes remaining [127]: 

When a pair of nodes is joined, it is replaced by a new node 𝐴. The distance to the 

remaining node 𝑘 is given by: 

 

Figure 2. 4. Neighbor joining algorithm [128] 
 
 

 𝑄'( = (𝑟 − 2)𝑑'( − (𝑅' + 𝑅() (2. 32) 

 𝑑"1 = (𝑑'1 + 𝑑(1 − 𝑑'()/2 (2. 33) 
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2.7.3.3.   Unweighted pair group method with arithmetic mean 

Unweighted pair group method with arithmetic mean (UPGMA) is a clustering 

method attributed to Sokal and Michener [129]. In contrast to NJ, it assumes a constant rate 

of evolution. It starts by clustering together two nodes with the smallest genetic distance, 𝑖 

and 𝑗, to form a new OTU named 𝐴. A new smaller distance matrix is calculated including 

this new node 𝐴. Distances between an individual 𝑘 and node 𝐴 is calculated by [130]: 

An expression for the unweighted mean between clusters can then be expressed as 

[130]: 

Where 𝑑('()1 refers to the distance between clusters 𝑖𝑗 and 𝑘 with internal sizes 𝑛', 𝑛( 

and 𝑛1. 

 

2.7.3.4.   Bootstrapping 

Bootstrapping is a method used to obtain confidence limits on phylogenetics by 

determining the robustness of a model [131]. In population genetics, it is applied by sampling 

individuals from the data matrix being used and adding replacements to produce bootstrap 

datasets. Each of these are then analyzed through the chosen clustering method and a 

consensus tree is constructed according to the results of all replicates [131]. 

The proportion of replicate trees in which a specific clade is identified is shown as a 

percentage. This percentage is commonly called the bootstrap value [131]. For example, if 

100 bootstrap replicates were done, the bootstrap value would indicate how many times out 

of the 100 the same branch was observed. Considering this, bootstrap values under 50% are 

not considered for the final tree construction [132, p. 5].  

 

 𝑑"1 = (𝑑'1 + 𝑑(1)/2 (2. 34) 

 𝑑('()1 =	
𝑛'

𝑛' + 𝑛(
𝑑'1 +

𝑛'
𝑛' + 𝑛(

𝑑(1 (2. 35) 



 
 

CHAPTER III 

METHODOLOGY 

 

The present investigation can be defined as applied fundamental research given 

knowledge was generated in the form of data analysis methods and results. The knowledge 

obtained and workflow followed can then be applied in plant conservation and breeding 

programs, and other research projects in the area. Moreover, this investigation has a 

quantitative focus given it relied on the processing and analysis of numerical data, such as 

allele frequencies, to explore the diversity within and between species, and infer the 

population structure of the collection. Lastly, this investigation followed a non-experimental 

descriptive research design, given the data was already collected at a specific instance in time 

and independent variables were not manipulated. This investigation aimed to evaluate novel 

and user-friendly bioinformatics and biostatistics methods to describe diversity 

characteristics of the collection and discover associations between allele frequency data and 

population structure.  

The summary of the methods and techniques followed to address each of the 

objectives of the investigation are shown in figure 3.1. The data preprocessing step allowed 

the genetic identity of each accession to be defined through the filtered SNP data. The genetic 

diversity step allowed the diversity within the whole data set to be analyzed. The population 

structure step focused on exploring the population structure of the collection, and the results 

obtained through the different analysis techniques allowed parametric and nonparametric 

methods to be compared. Altogether, the code used to carry out the analyses constituted an 

accessible, replicable, and scalable R workflow for crop population genetics. The 

methodology was mostly carried out in R as an R Project environment through two Rmd 

files: one for data formatting and preprocessing, and one for the analysis. The libraries and 

functions used only had to be loaded once due to working in an R project environment. These 

are available in ANNEX 2 and ANNEX 3 respectively. The fastStructure parametric analysis 

step was the only step not carried out in R, as the program is written for Python.  
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Figure 3. 1. Methodology pipeline 
 
3.1.      Dataset characteristics 

The dataset utilized was generated by CIP and will be publicly available once the 

entirety of the collection is genotyped. The samples were genotyped in four batches; 

therefore, the raw data was composed of four separate datasets. These consisted of SNP data 

belonging to 1248 wild potato samples and 528 cultivated potato samples from CIPs 
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germplasm collection. The cultivated potato accessions were not used in this investigation 

given the results would not align with the objectives of this investigation, which focused on 

wild potato species, and including them would limit the ability to identify subpopulations 

within the wild potato species. This is due to the homogeneity of their diversity when 

compared to wild potatoes [22], [28]. For most samples, the material was genotyped in bulk 

format, using 10 genotypes for each accession. The data covered a total of 31,190 SNP 

markers [33]. The genotype for each SNP was shown in tetraploid format as 

AAAA/AAAB/AABB/ABBB/BBBB regardless of ploidy. If the SNP was not able to be 

called, it was shown as NC. Each potato accession had its corresponding ID, CIP genebank 

number, species (if known), sample type, type of crossing, date of regeneration, ploidy and 

georeferencing data. The script used to plot data set characteristics is available in ANNEX 

4. 

 

3.2.      Data preprocessing and genetic identity 

Prior to carrying out the data analysis, the data set was filtered to remove low quality 

data. This allowed the high-quality SNP fingerprint of each accession to be defined. The 

thresholds chosen to filter the data were a call rate of 0.95 and 0.5 missing data for each 

sample as suggested by Ellis et al and Diaz et al [10], [35]. This means that only markers 

with less than 5% of missing data and samples with less than 50% of missing data were used. 

MAF was not chosen as a filtering criterion given the allele frequencies were extremely 

varied due to the increased genetic diversity of wild potato species, and the different ploidy 

levels amongst the accessions [22]. Given this thesis aims to offer a broad understanding of 

wild potato accessions it was decided to relax the filtering criteria to prevent the loss of 

important marker information. The script used for data filtering is available in ANNEX 5. 

To confirm the representativity of the filtered data, a mantel test was performed on 

the Euclidean distance matrices of the raw and filtered data. To do this, each data set was 

first converted into matrix form and then to a genlight object with the ‘adegenet’ v2.1.10 

package in R [47], [111]. The Euclidean distance matrix for each was calculated through a 

custom script and the mantel test from these matrices was performed using the mantel.test 
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function with 500 repetitions and alpha of 0.05 from the R package ‘ade4’ v1.7-22 [133]. 

Once the representativity of the filtered data was confirmed, the data was saved as a csv file 

for faster import into the analysis code. The script is available in ANNEX 6. 

 

3.3.      Genetic diversity 

The main parameters considered for genetic diversity analysis of the entire data set 

population were observed heterozygosity, expected heterozygosity, PIC and chi squared test 

for HWE. For this purpose, the data set was transformed into a matrix and the tetraploid 

genotype calls were modified into diploid numeric form in the following way: AAAA = 0, 

BBBB = 2, and AAAB, AABB, ABBB = 1 [134]. Once this was done, the parameters were 

calculated through the popgen function in the R package ‘snpReady’ v0.9.6 [96]. The data 

import script is available in ANNEX 7. The data frame to matrix conversion script is 

available in ANNEX 8. The genetic diversity analysis script is available in ANNEX 9. 

Moreover, given the samples were genotyped in bulk format, some were genotyped 

along with some individuals of the same accession to validate this genotyping method. These 

were compared through a simple pairwise matrix using the dist.gene function from the ‘ape’ 

v5.7-1 R package [135] in order to evaluate dissimilarity, which would ideally be below 5%. 

The script used for this validation procedure is available in ANNEX 10. 

 

3.4.       Population structure 

Population structure analysis was evaluated through parametric and nonparametric 

approaches. The parametric approach used was variational Bayesian inference through the 

fastSTRUCTURE Python2.x program [41]. This method was chosen given it’s based on 

Pritchard, Stephens and Donelly’s Bayesian clustering model STRUCTURE [14], which is 

the most common approach used in population structure studies [12], [15]. Due to time 

constraints, fastSTRUCTURE was chosen for the analysis given it has shown to obtain 

results compared to the original program while having much greater computational speed 

[41]. The regular STRUCTURE algorithm requires the entirety of a processor’s computing 

power to complete a single run, meaning complete analyses tend to require several days or 
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weeks [136]. The nonparametric approaches used can be divided into dimensionality 

reduction-based and distance-based approaches. The dimensionality reduction-based 

approaches used were DAPC, SVD with DA, and sNMF with ANLS. The distance-based 

approaches used were UPGMA and NJ clustering from the Nei distance matrix. These 

dimensionality reduction-based methods were chosen given they have been shown to obtain 

results comparable to those obtained through STRUCTURE analysis [11], [43], [48], and 

have been previously used on datasets with similar characteristics as the one used in this 

study, such as mixed reproduction, overlapping populations, and nonrandom mating [9], [34], 

[35], [134]. SVD with DA is the only method not previously used in crop population genetics 

studies. The distance-based analyses were performed prior to the other methods in order to 

observe preliminary grouping based on ploidy, species and country of origin, and to decide 

which samples would be used for the remaining structure analyses.  

 

3.4.1. Input data 

Most of the population structure analyses were carried out using the tetraploid matrix 

data. This matrix was constructed from the original filtered data set by modifying the 

tetraploid calls into numeric form in the following way: AAAA = 0, AAAB =1, AABB = 2, 

ABBB = 3, BBBB = 4. This data frame to matrix conversion step is available in ANNEX 8 

and the object creation step is available in ANNEX 11. 

 

3.4.2. NJ dendrogram 

The bootstrapped NJ dendrogram was constructed from the tetraploid allele frequency 

data using the aboot function from the R package ‘poppr’ v2.9.4 [137]. The function was set 

to NJ and 500 bootstrap repetitions. The distance method was set as a custom function to 

calculate the Nei distance between individuals according to equations (2. 29), (2. 30) and (2. 

31). The resulting tree was exported as a Newick file using the write.tree function from the 

R package ‘ape’ v5.7-1 [135]. The tree was then imported into iTOL for visualization [138]. 

Tree annotations regarding ploidy, country of origin, species and taxonomic clade were 
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generated using the create_unit function from the ‘itol.toolkit’ v1.1.5 R package. The script 

used is available in ANNEX 12. 

 

3.4.3. UPGMA dendrogram 

The bootstrapped UPGMA dendrogram was constructed from the tetraploid allele 

frequency data object using the aboot function from the R package ‘poppr’ v2.9.4 [137]. The 

function was set to UPGMA and 500 bootstrap repetitions. The distance method was set as a 

custom function to calculate the Nei distance between individuals according to equations (2. 

29), (2. 30) and (2. 31). The resulting tree was exported as a Newick file using the write.tree 

function from the R package ‘ape’ v5.7-1  [135]. The tree was then imported into iTOL for 

visualization [138]. Tree annotations regarding ploidy, country of origin and species were 

generated using the create_unit function from the ‘itol.toolkit’ v1.1.5 R package. The script 

used is available in ANNEX 13. 

 

3.4.4. Secondary data filtration 

The dendrograms were evaluated according to the consistency of the obtained 

clustering and the expected clustering, considering species, ploidy, and region of origin of 

the individuals. The ‘best’ dendrogram was then used to remove certain individuals from the 

data matrix used in the structure analysis. Most accessions were genotyped in bulk; however, 

some were genotyped alongside individuals of the same accession to validate the bulk method 

genotyping. After confirming these were clustered in the same group, the individual 

accessions were removed from this filtered data matrix, as to not overrepresent population 

groups. Moreover, accessions considered to be mislabeled, duplicated accessions and hybrids 

were not included. All the posterior population structure analyses were carried out with this 

newly filtered data. 

 

3.4.5. fastSTRUCTURE 

The population structure of the data was estimated parametrically using the program 

fastSTRUCTURE [41]. The installation and execution code for the program was done with 
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guidance from the fastSTRUCTURE GitHub repository [139] and the code is available on 

ANNEX 15. The data had to be converted into a STRUCTURE file format before analysis. 

This was done by first modifying the tetraploid calls into diploid calls through the method 

shown in section 3.3, given fastSTRUCTURE only works assuming diploid individuals. 

Then, the diploid data matrix was converted into a STRUCTURE file format through a 

custom script based on the numeric2structure function from the ‘R-Genetics-Conv’ GitHub 

repository [140], available in ANNEX 3. The full file conversion script using this function 

is available in ANNEX 14. Using this file as input, the fastSTRUCTURE algorithm was 

carried out for subpopulation numbers K from 1 to 15, both with logistic and simple priors. 

The optimal number of subpopulations was established using the chooseK.py function from 

the fastSTRUCTURE program, which reports the model components used to explain 

structure in the data and the model complexity that maximizes the marginal likelihood [41]. 

The clusters assignment results were visualized using the plotQ function from the 

POPHELPER v2.3.1 R package [141] and a custom script. The result plotting script is 

available in ANNEX 16 and ANNEX 17. 

 

3.4.6. DAPC 

Population structure analysis through DAPC was carried out using the ‘adegenet’ 

v2.1.10 package in R [47], [111]. The tetraploid data matrix was first converted into a 

genlight object using the script in ANNEX 11 to facilitate RAM requirements and data 

handling. A PCA was performed on this object through the glPca function with centering 

and mean imputation for missing values [43], using the ‘adegenet’ v2.1.10 package [47], 

[111]. K-means clustering was performed up to 20 maximum clusters to identify the optimum 

number of clusters within the data set population. This was done using the find.clusters 

function on the genlight object with its respective PCA. For this part, the choose.n.clust 

parameter was set to FALSE so that the function could run successive K-means with an 

increasing number of clusters. The number of principal components retained was chosen to 

ensure 80% of the variance was represented. The best number of subpopulations was defined 

by the lowest associated BIC or point of inflection [43]. After choosing an optimum range of 

K subpopulations, K-means clustering was again performed with the find.clusters function 
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but now setting the n.clust parameter to the desired number of K subpopulations. DA was 

then performed on the PCA for each K, using the inferred groups from the find.clusters 

results. This was done using the dapc function. The number of discriminant functions 

retained was chosen to ensure 80% of the variance was represented. The results were plotted 

as a composition plot to observe membership probabilities to each cluster. The full procedure 

is available in ANNEX 18. 

 

3.4.7. SVD with DA 

The SVD was carried out on the tetraploid data matrix after centering and mean 

imputation for missing values using the svd function from base R. The number of singular 

values to retain was chosen in order to maintain 80% of the variance in the data. A reduced 

data matrix was then computed by multiplying reduced versions of the 𝑈 and 𝑆 obtained 

matrices. K means clustering up to 20 maximum clusters was then performed on this reduced 

data matrix using the kmeans function from the ‘stats’ R package. The BIC was calculated 

for each clustering result through a custom function available in ANNEX 3, and the best 

number of subpopulations was defined by the lowest associated BIC or point of inflection 

[43]. After choosing an optimum range of K subpopulations, DA was performed on the 

corresponding K clustering results using the lda function from the ‘MASS’ v7.3-60 R 

package [142]. The posterior membership probabilities were calculated using the predict 

function from the same package. The number of discriminant functions retained was chosen 

to ensure 80% of the variance was represented. The results were plotted as a composition 

plot to observe membership probabilities to each cluster. The full procedure is available in 

ANNEX 19. 

 

3.4.8. sNMF with ANLS 

The sNMF with ANLS approach was carried out using the ‘LEA’ v3.12.2 package in 

R [45]. The data was first converted into a geno type file with a modified version of the 

write.geno function to allow for tetraploid formatted data. The population structure was 

evaluated with the snmf function for 1 to 20 K subpopulations. The ploidy was set to 
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tetraploid given this is the format the data is formatted in. The number of clusters was chosen 

according to the point the cross-entropy curved exhibited a plateau [143]. The script is 

available in ANNEX 20. 

 

3.4.9. Approach comparison 

The results obtained through each population structure analysis approach were 

compared by evaluating the number of subpopulations chosen (optimal K values), the 

assignment results for a single K value in terms of membership probabilities, the 

characteristics of the clusters obtained by each method, and the computational cost in terms 

of execution time. The evaluated cluster characteristics were the number of individuals with 

probabilities > 0.9 to belong to a single cluster, and the interquartile range, median and mean 

probability values for each cluster excluding individuals with probability values below 0.01.  

This comparison was done for a single K value for simplicity purposes. The script is available 

in ANNEX 21. 

 

3.5.      Considerations 

The present investigation was carried out through a signed collaboration agreement 

with CIP available in ANNEX 22, given they own the intellectual rights over the data used. 

The raw data will eventually be available through CIPs open access platform on Dataverse 

[144]; however, until then, nor the raw data or preliminary results are to be shared without 

prior authorization by CIP. Only the analysis code was included as annexes in this document, 

given the full project files include data that cannot be shared for the time being. The results 

of this investigation were shared with CIP and will be used in upcoming publications and 

additional studies. The respective authorship information will be included.  

The raw data analyzed has not been manipulated or distorted in any way, shape, or 

form. The analysis was carried out directly on the raw data provided by CIP.  All data analysis 

techniques and R packages have been appropriately referenced and linked back to their 

original creators.  



 
 

CHAPTER IV 

RESULTS AND DISCUSSION 

The graphs and tables presented in this chapter are results of own elaboration in 

response to the objectives of the thesis research. 

 

4.1.       Data set characteristics 

As mentioned in the previous chapter, the original raw data consisted of four separate 

data sets with SNP data of 1248 wild potato and 528 cultivated potato samples from CIPs 

germplasm collection. The cultivated potato samples were not included in this investigation. 

In all cases the data covered a total of 31,190 SNP markers. Regarding the SNP markers, 

these were mapped across 12 chromosomes of the potato genome, ranging from 3958 

markers on chromosome 01 and 1865 markers on chromosome 10. Moreover, 483 markers 

were mapped on unanchored scaffolds (chromosome 00) and 28 on chloroplasts. The marker 

distribution can be seen on Figure 4. 1. 

 Figure 4. 1. Density plot of the 31,190 SNP marker distribution across the potato genome  
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Regarding the potato accessions, only the wild potato accessions were included. 

Despite not all of them having updated taxonomy information, the genotyped samples were 

chosen to represent 166 species according to CIPs taxonomic classification. Most of the 

accessions belong to the Peru and Bolivia region. The overall geographical distribution of 

the accessions can be observed in Figure 4. 2. Most of the accessions were genotyped in 

batch format, using germplasm from 10 different individuals; however, 9 accessions where 

genotyped in batch along with a few of the individual genotypes from the same accession.  

Figure 4. 2. Schematic map of geographical distribution of 1248 wild potato samples 
 
4.2. Data preprocessing and genetic identity  

The filtered dataset was composed of 1248 samples and 18,485 SNP markers as the 

genetic fingerprint of each accession. Filtering according to 0.95 call rate removed 12706 

(40.7 %) markers. No accessions were removed due to missing data given they all met the 

filtering criteria of having less than 50% of missing data. In order to measure the 

representativity of the filtered data, a Mantel test with 500 replicates was performed on the 
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Euclidean distance matrices of the raw and filtered data. The test gave us an R value of 0.99 

and p-value of 0.002. The obtained R value suggests a strong positive relationship between 

the two matrices. Furthermore, the obtained p-value allows us to reject the null hypothesis, 

that the two matrices are unrelated, with an alpha of 0.05. These results confirm that our 

filtered dataset remains representative of the original data. 

 

4.3. Genetic diversity 

The mean PIC value, which denotes the informativeness of each marker, was 0.1267, 

with values ranging from 0 for monomorphic markers and 0.37. The overall PIC value 

distribution can be observed in Figure 4. 3. Despite accounting for a very small proportion 

of the markers, it is recommended to remove monomorphic markers as part of the data 

preprocessing. The mean expected heterozygosity of the SNP markers was 0.1505, while the 

mean observed heterozygosity was 0.106, which shows a reduction in the expected genetic 

variability. Moreover, a total of 5028 SNP markers diverged from HWE expectations 

according to the chi square test results with a p-value of 0.05. These results show a departure 

from HWE that can be attributed to forces such as inbreeding or gene flow between 

populations [101], [145].  

Figure 4. 3. Distribution of PIC values across 18,485 SNP markers 



66 
 

The mean observed heterozygosity of the accessions was 0.110, ranging from 0.01 to 

0.33. Observed heterozygosity values by species and ploidy can be observed in Figure 4. 4 

and Figure 4. 5. The results do not show any specific pattern between species and observed 

heterozygosity, or ploidy and observed heterozygosity. We initially expected to find a 

relationship between these variables such as was found in Ellis et al. 2018 study [10]; 

however, this discrepancy could potentially be attributed to the bulk genotyping method used 

for data collection in this investigation, which had not been used previously in CIP.  

Figure 4. 4. Observed heterozygosity of 1248 samples by recorded species. The y-axis and 
color represent each recorded species 
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Figure 4. 5. Observed heterozygosity of 1248 samples by ploidy. The y-axis and color 
represent ploidy level, the black points represent outliers 

 
In addition to calculating the genetic diversity parameters, the bulk genotyping 

method used was evaluated through pairwise distance matrices to measure dissimilarity 

between the bulk sample and the individual samples of the same accession. Of those 

accessions, accessions wp-1_761164, wp-201_760642, wp-9_760212 and wp1269_761143 

all had dissimilarity values less than 0.05 when comparing the bulk method data to the 

individual sample data. Accessions wp-237_765994, wp1281_761156 and wp-120_763923 

all had dissimilarity values less than 0.10 when comparing the bulk method data to the 

individual sample data. Accessions wp-174_762070 and wp-287_761748 showed the 

greatest dissimilarity values, ranging from 0.07 to 0.32. This suggests either an identity error 

between the samples, mislabeling or mix-up during data collection [18]. Further validations 

procedures should be implemented when utilizing this bulk genotyping method to ensure all 

germplasm material truly belongs to the same accession.  

This investigation provides a first insight into the diversity of a large number of wild 

potato accessions; however, it is important to mention not all obtained results, specifically 

concerning specific parameter values, are directly comparable to those obtained in other 
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studies. This is due to differences in the markers used for the calculation, differences in the 

utilized formulas, and differences in the genotyping method. The main difference in this case 

is the use of the bulk genotyping method, which has rarely been used for potato population 

genetics studies. It is possible that the diversity results would be different if individual 

genotyping had been carried out for all accessions. Further research into the impact of batch 

genotyping on diversity parameters such as heterozygosity is recommended to understand its 

true impact. Moreover, additional marker filtration criteria could have been implemented, 

such as filtering monomorphic and dimorphic markers, such that the resulting data matrix 

was smaller and remaining analyses were quicker.  

 

4.4. Population structure 

4.4.1. Dendrograms 

Dendrograms were produced out of the 1248 wild potato accessions using NJ and 

UPGMA clustering as shown in Figure 4. 6 and Figure 4. 7. Clusters with bootstrap values 

between 50% and 100% were colored from red to green. The accessions were annotated in 

terms of ploidy and country as can be seen in both figures. The labels were also edited to 

show the accession ID, the reported species, and the specific collection site.  

NJ and UPGMA trees are not usually the preferred clustering methods when carrying 

out phylogenetic analysis given maximum likelihood or maximum parsimony clustering tend 

to produce more robust phylogeny results [144], [145]. However, the aim of producing these 

dendrograms was not to study the evolutionary or phylogenetic relationships between 

individuals, but to explore general consistency in clustering based on ploidy, country, and 

species, before posterior population structure analyses on a reduced data set. NJ and UPGMA 

performed reasonably fast considering the amount of data and bootstrap repetitions used. NJ 

took 1.220277 minutes per bootstrap repetition, while UPGMA took 1.040829 minutes per 

bootstrap repetition.  

Regarding the obtained results, both trees show a general consistency between 

ploidies, country, and reported species. The dendrograms were evaluated along with CIPs 

genebank conservation expert and a total of 198 samples were removed from the dataset for 
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population structure analysis. The samples were eliminated in cases were mixture or 

mislabeling was suspected according to clustering results. Hybrid and duplicate accessions 

were also removed. Moreover, the individual samples included as part of the batch 

genotyping validation were also eliminated. The clustering of these samples also correlated 

to the pairwise distance results reported in section 4.3. The UPGMA tree seems to have 

higher bootstrap values overall than the NJ tree; nonetheless, the low bootstrap values in the 

smaller clusters were to be expected considering the complexity of the data. 

 

Figure 4. 6. NJ Dendrogram from the 1248 wild potato samples 
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Figure 4. 7. UPGMA dendrogam from the 1248 wild potato samples 
 

After confirming both dendrograms gave similar results, additional characteristics, 

such as Spooner’s taxonomic clades [56], were included as annotations to further explore the 

structure of the data. We were able to identify a total of 13 large groups considering 

Spooner’s taxonomic clades, ploidy, country, and the obtained clusters. Figure 4. 8 shows 

the NJ dendrogram annotated with Spooner’s taxonomic clades and the identified large 
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groups. These guided our optimal K subpopulation choice in the population structure 

analysis.   

 

 

Figure 4. 8. NJ dendrogram with large groups identified based on Spooner’s taxonomic 
clades annotations. Branch colors represent the identified large group based on clade, 

ploidy, country and cluster, while the external colors represent Spooner’s taxonomic clade 
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4.4.2. fastSTRUCTURE 

The model-based clustering was carried out using the Python program 

fastSTRUCTURE, with simple and logistic priors. When analyzing the simple prior results 

with the program’s chooseK function, the model components used to explain structure in the 

data was 11, while the model complexity that maximizes the marginal likelihood was 14. 

This suggests the optimal number of K subpopulations is between 11 and 14. This range 

corresponds to the 12-13 large groups identified in the NJ dendrogram results, which 

correspond to Spooner’s taxonomic clade classification [56]. The assignment plot for those 

K values can be seen in Figure 4. 9. Each bar represents an individual and the fill represents 

the membership probability for that cluster. The group names in the clustering process is 

arbitrary; however, it can be seen that there are certain individuals that are consistently 

grouped together in all K runs.  

Figure 4. 9. Membership probabilities of individuals using fastSTRUCTURE with a simple 
prior for K values 11-14 
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When analyzing the logistic prior results with the program’s chooseK function, the 

model components used to explain structure in the data was 1, while the model complexity 

that maximizes the marginal likelihood was 9. This suggests the optimal number of K 

subpopulations is between 1 and 9, which is not a particularly useful range given it is too 

large to be informative. The individual output files for each K run were evaluated and we 

found the marginal likelihood values for all runs from K = 9 onwards was “NaN”. This would 

explain why the chooseK function gave us such a large value range, given all marginal 

likelihood values for K = 9 to 15 were empty. It seems this is a common problem users 

experience when using fastSTRUCTURE with a logistic prior [146]. Given the obtained 

marginal likelihood results were not reliable to give us an optimal K value range, the 

assignment plot was plotted for K values 11 to 14 such as the simple prior results. This plot 

can be seen in Figure 4. 10. The results are quite similar to those obtained with the simple 

prior.  

Figure 4. 10. Membership probabilities of individuals using fastSTRUCTURE with a 
logistic prior for K values 11-14 
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The individuals with the most consistent clustering across all K runs with both simple 

and logistic priors belong to the S. acaule Bitter (acl) species, which are represented by 

cluster 3 in K=11, cluster 5 in K=12, cluster 11 in K=13 and cluster 8 in K=14 in Figure 4. 

9. A total of 126 individuals were assigned to this cluster with membership probabilities of 

above 0.9. Individuals from f. incuyo Ochoa. (inc) are also consistently clustered together 

into this group, which corresponds to the fact that this is a morphological variant of the acl 

species [59]. Another group of individuals clustered consistently across all K runs and with 

both priors are those belonging to S. sparsipilum Bitter Juz. et Buk. (spl), S. ugentii Hawkes 

& K. Okada (ugt), S. vidaurrei Cárdenas (vid), S. avilesii Hawkes & Hjerting (avl), S. 

boliviense Dunal (blv), S. brevicaule Bitter (brc), S. oplocense Hawkes (opl), S. 

infundibuliforme Philippi (ifd), S. xbruecheri Correll (lph) and S. bill-hookeri Ochoa ssp. 

astleyi Hawkes & Hjerting (ast). These are all species from Bolivia, Peru, and Argentina, and 

correspond to cluster 2 in K=11, cluster 12 in K=12, cluster 7 in K=13 and cluster 7 in K=14 

in Figure 4. 9. Another group of individuals that were consistently clustered together were 

those represented by cluster 7 in K=11, cluster 1 in K=12, cluster 13 in K=13 and cluster 5 

in K=14.  

 

4.4.3. DAPC 

The first step of DAPC was to carry out a PCA on the data. A scree plot was plotted 

to evaluate the explained variance by each principal component. This can be seen in Figure 

4. 11. There is no consensus on how to select the best number of interpretable principal 

components [147]. Therefore, we relied on retaining 80% of the genetic variance, for which 

we chose the first 50 principal components.  
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Figure 4. 11. Variance explained by each principal component 
 

The optimum number of clusters was chosen by evaluating BIC values obtained 

through successive K-means clustering. The BIC plot can be seen in Figure 4.12. The 

optimum number of clusters was chosen at the inflection point of the BIC values, which 

occurred at K = 12, which remains close to the identified large groups in the NJ dendrogram 

results. K-means is a rather simple way of measuring group differentiation and might not 

identify the correct clusters when analyzing highly complex data [17]. It is recommended to 

evaluate other clustering alternatives [148]; nonetheless, in this case K-means proved 

efficient for identifying the best number of subpopulations and assigning individuals to the 

genetic clusters. Moreover, it is consistent with the type of variance partition used in DA 

[43]. The posterior DA were carried out for an optimum K value range of 11 to 14. To 

represent 80% of the variation in the original data, 5 linear discriminants were retained for 

all K values. The variance explained by each linear discriminant for K = 13 can be seen in 

Figure 4. 13. 
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Figure 4. 12. Inference of number of clusters in DAPC according to BIC 
 

Figure 4. 13. Variance explained by linear discriminants in DAPC for K = 13 
 

The assignment plot for K values 11 to 14 can be seen in Figure 4. 14.  Such as in 

the fastSTRUCTURE clustering results, each bar represents an individual and the fill 

represents the membership probability for that cluster. There seems to be higher single cluster 

membership probabilities for all individuals, and much less admixture than in the 

fastSTRUCTURE results. Results for K = 13 and K = 14 show less admixture than results 

for K = 11 or K = 12.  
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Figure 4. 14. Membership probabilities of individuals using DAPC for K values 11-14 
 

Individuals belonging to cluster 3 in K=11, cluster 2 in K=12, cluster 13 in K=13 and 

cluster 14 in K=14 in Figure 4. 14 are consistently clustered together across all K values. 

Such as in the fastSTRUCTURE results, the individuals in this group belong to the acl and 

inc species; however, individuals from S. demissum Lindley (dms) and S. albicans Ochoa 

(alb) are also in this group. Another group of individuals consistently clustered together are 

those in cluster 10 in K=11, cluster 12 in K=12, cluster 4 in K=13 and cluster 4 in K=14 in 

Figure 4. 14. These belong to the spl, ugt, vid, avl, blv, brc, opl, ifd, lph and ast. Individuals 

from species S. tarijense Hawkes (tar), S. hoopesii Hawkes & K. Okada (hps) and S. 

incamayoense K. Okada & A. Clausen (inm) are also included in this group. Moreover, 

cluster 9 in K = 13 and K = 14 shows high levels of membership probabilities. This group 

contains individuals from 30 different species; however, most belong to S. bukasovii Juz. 

(buk). All of these individuals belong to Peru and Bolivia. Finally, it is interesting that 
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individuals from USA and Mexico are clustered together with membership probability values 

above 0.9 in cluster 9 in K = 13 and K = 14, and hints at shared climate tolerance 

characteristics.  The geographical distribution of these clusters can be seen in Figure 4. 15. 

Figure 4. 15. Geographical distribution of individuals from cluster 8 and cluster 4 obtained 
with DAPC for K = 13 

 

4.4.4. SVD with DA 

The first step of SVD with DA was to carry out a SVD of the data. The variance 

explained by each singular value was plotted to choose the number of singular values that 

represented 80% of the variation in the original data. Thus, the number of singular values 

chosen was 50. This can be seen in Figure 4. 16.  
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Figure 4. 16. Variance explained by each singular value 
 

The data matrix was reduced using only the U component of the SVD and the 50 

selected singular values. The optimum number of clusters was chosen by evaluating BIC 

values obtained through K-means clustering. The BIC plot can be seen in Figure 4.17. There 

seems to be an inflection point at around K = 9; however, considering the large groups 

identified in the dendrogram, the posterior DAs were carried out for an optimal K value range 

of 9 to 13. To represent 80% of the variation in the original data, 5 linear discriminants were 

retained for all K values. The variance explained by each linear discriminants for K = 13 can 

be seen in Figure 4. 18. 

Figure 4. 17. Inference of number of clusters in SVD + DA according to BIC 
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Figure 4. 18. Variance explained by linear discriminants in SVD + DA for K = 13 
 

The assignment plot for K values 9 to 13 can be seen in Figure 4.19. Each bar 

represents an individual and the fill represents the membership probability for that cluster. 

Such as with DAPC, there seems to be higher single cluster membership probabilities for all 

individuals and much less admixture than in the fastSTRUCTURE results. Results for K = 

13 and K = 14 show less admixture than results for K = 11 or K = 12.  
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Figure 4. 19. Membership probabilities of individuals using SVD + DA for K values 9-13 
 

For all K values there are certain individuals that tend to cluster together, such as 

those belonging to cluster 7 in K runs 9-12 and cluster 13 in K = 13. These belong to species 

acl, inc, dms and alb. In runs with K values 9-11 this cluster has around 164 individuals with 

a greater number of accessions from the alb species; however, in K = 13 this cluster has 135 

individuals and a group of these alb individuals is segmented into its own individual cluster 

(cluster 2 in this case). Another group of individuals consistently clustered together are those 

represented by cluster 4 in all K runs. These individuals belong to species spl, tar, ugt, vid, 

avl, blv, brc, opl, hps, ifd, inm, lph, ast and S. neorossii Hawkes & Hjerting (nrs). In general, 

SVD with DA produced very similar results to those obtained by DAPC. This is important 

considering SVD with DA had not previously been used for population genetics. These 

results can promote its use in other population structure studies. 
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4.4.5. sNMF with ANLS 

The sparse NMF was carried out on the formatted tetraploid data and the obtained 

cross-entropy results were plotted to define an optimal K value range. This plot can be seen 

in Figure 4. 20. There is not a particularly clear inflection point; however, the cross-entropy 

decreases by a negligible amount at K = 10 and the slope of the curve is the lowest at this 

point. Considering these results and the large groups found in the NJ dendrogram, the optimal 

K value range was chosen as 10 to 14.  

Figure 4. 20. Inference of number of clusters according to cross-entropy 
 

The assignment plot for K values 10 to 14 can be seen in Figure 4. 21.  Each bar 

represents an individual and the fill represents the membership probability for that cluster. 

The results show much more admixture than those obtained through any of the other methods.  
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Figure 4. 21. Membership probabilities of individuals using sNMF for K values 10-14 
 

Despite the high levels of admixture, once again there are certain individuals that tend 

to cluster together, such as those belonging to cluster 1 in K = 10, cluster 11 in K = 11, cluster 

9 in K = 12, cluster 11 in K = 13 and cluster 5 in K = 14. These belong to species acl and inc. 

Individuals belonging to cluster 3 in K = 10, cluster 6 in K = 11, cluster 6 in K = 12, cluster 

8 in K = 13 and cluster 4 in K = 14 are also consistently clustered together, although with 

lower membership probabilities in K = 13 and K = 14. These belong mostly to species S. 

chomatophilum Bitter (chm) and S. multiinterruptum Bitter (mtp), along with 20 other 

species from Peru. 
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4.4.6. Approach comparison for population structure analysis 

Parametric and nonparametric methods were used for population structure analysis. 

These were compared in terms of the optimal K values identified, the assignment results, the 

obtained cluster characteristics, and the computational cost.  

 

4.4.6.1.    Optimal K values 

The optimal K value range for each method was chosen according to the specific 

method’s criteria. It is important to mention that there is generally no true value of K, and 

the appropriate choice of K must be interpreted while considering prior data about the data 

and type of sampling. This is especially true for model-based clustering, given samples in 

real populations rarely satisfy all the assumptions of the model [41]. This is why the 

taxonomic and geographical information of the individuals, and the large groups identified 

in the NJ dendrogram with Spooner’s clades, were also considered to define this value range. 

The K value ranges for each method can be seen in Table 4. 1. 

Method Criteria K value(s) 
Chosen K value 

range 

fastSTRUCTURE 

(simple prior) 

Maximum likelihood 11 - 14 11 - 14 

fastSTRUCTURE 

(logistic prior) 

Maximum likelihood 1 - 9 11 - 14 

DAPC BIC 12 11 - 14 

SVD + DA BIC 9 9 - 13 

sNMF + LS Cross-entropy 10 10 - 14 

Table 4. 1. K value range chosen for each analysis method 
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4.4.6.2.   Assignment results 

The assignment plot for each different method with K = 13 can be seen in Figure 4. 

22. Despite the varying levels of admixture, especially when using NMF and 

fastSTRUCTURE, there are some individuals that are consistently clustered together across 

all methods with high membership probabilities of above 0.9. These also correspond to the 

individuals with highest membership probabilities across all K runs when evaluating each 

method’s results. Individuals in cluster 11 for fastSTRUCTURE with simple prior, cluster 4 

for fastSTRUCTURE with logistic prior, cluster 13 for DAPC and SVD with DA, and cluster 

11 for sNMF are consistently grouped together. These correspond to species acl and inc. 

DAPC and SVD with DA also include individuals from dms and alb in this group.  

Figure 4. 22. Membership probabilities of individual for K = 13 using different methods 
 

Another group of individuals consistently clustered together are those in cluster 7 for 

fastSTRUCTURE with simple and logistic priors, cluster 4 for DAPC and SVD with DA, 

and cluster 3 for sNMF. Membership probabilities for this group are considerably higher in 
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DAPC and SVD with DA and include individuals from more species; however, individuals 

from species spl, vid, brc, opl, ifd and lph are consistently assigned to this group. These 

individuals are all from Bolivia, Peru and Argentina and their geographical distribution can 

be observed in Figure 4. 15. 

Some individuals consistently cluster together in the nonparametric methods with 

membership probabilities of above 0.9, but show membership probabilities of only around 

0.5 in the parametric fastSTRUCTURE methods. One of these groups is composed by cluster 

5 in fastSTRUCTURE with simple prior, cluster 9 in fastSTRUCTURE with logistic prior, 

cluster 10 in DAPC and SVD with DA, and cluster 2 in sNMF. These individuals belong to 

a range of species, mostly S. colombianum Dunal (col). Another of these groups is composed 

by cluster 8 in fastSTRUCTURE with simple and logistic priors, cluster 8 in DAPC and SVD 

with DA, and cluster 12 in sNMF. All of these individuals belong to the USA and Mexico, 

most belonging to the S. stoloniferum Schlechtdal (sto) species. Their geographical 

distribution can be observed in Figure 4. 15. Another of these groups is composed by cluster 

11 in fastSTRUCTURE with simple prior, cluster 4 in fastSTRUCTURE with logistic prior, 

cluster 2 in DAPC and SVD with DA, and cluster 7 in sNMF. This group is mainly composed 

of individuals from S. albicans Ochoa (alb) species.  

There are some groups that are consistent in the fastSTRUCTURE methods and the 

DAPC and SVD with DA methods, but not in sNMF. This is the case with cluster 10 in 

fastSTRUCTURE with both simple and logistic priors, cluster 12 with DAPC and SVD with 

DA, and cluster 6 in sNMF. This group is composed of individuals mainly from S. medians 

var. autumnale Ochoa (aut) and S. raphanifolium Cárdenas & Hawkes (rap); however, sNMF 

only includes individuals from the aut species, and separates those from rap into cluster 5. 

There are other groups consistent in the fastSTRUCTURE methods and NMF, but 

different in DAPC and SVD with DA in terms of levels of admixture. This can be seen in 

cluster 9 in DAPC and SVD with DA, and the corresponding groups composed by both 

cluster 4 and 6 in fastSTRUCTURE with simple prior, cluster 1 and 12 in fastSTRUCTURE 

with logistic prior, and cluster 1 and 13 in sNMF. These belong to a range of species, mainly 

S. bukasovil Juzepzuck, which is present in both clusters in fastSTRUCTURE and sNMF. 



87 
 

The consistent division of this species group suggests it should be further explored in order 

to identify subspecies or varieties. 

sNMF produced the results with the highest levels of admixture, followed by the 

fastSTRUCTURE methods. This was to be expected given fastSTRUCTURE works under 

an admixed subpopulations model assumption [41], and sNMF was proposed specifically to 

model ancestry proportions in admixed subpopulations [51]. Both the DAPC and SVD with 

DA produced very high levels of membership probabilities and gave little information 

regarding admixture between different groups of individuals, which relates to the use of K-

means clustering for group assignment [43], [149]. All of these methods are exploratory and 

should be used in conjunction to explore the data, such that both the overall structure and 

admixture between subpopulations can be evaluated.  

 

4.4.6.3.   Cluster characteristics 

Besides the assignment results comparison, the methods were also compared in terms 

of cluster characteristics. Figure 4. 23 shows cluster characteristics for each method with K 

= 13, in terms of their composition and probability values. The boxplot shows the 

interquartile range, median and mean probability values for each cluster, excluding 

individuals with probability values below 0.01.   
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Figure 4. 23. Cluster characteristics for K = 13 in each analysis method 
 

DAPC and SVD with DA have the highest membership probability values among 

each cluster, particularly in clusters 2, 3, 5, 7, 8, 10, 11 and 13. This was to be expected 

considering that as opposed to fastSTRUCTURE and NMF, the K means clustering used in 

DAPC and SVD with DA focuses on cluster assignment and not in modeling probabilities 

[43]. The cluster composition results for sNMF validate it as the method with the highest 

levels of admixture, with all clusters having mean and median probability values below 0.75. 
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On the other hand, fastSTRUCTURE results present mean and median values between 0.3 

and 0.8 for all clusters, except for clusters 2, 11 and 12 when using the simple prior, and 

clusters 4 when using the logistic prior. Cluster 11 in fastSTRUCTURE with simple prior 

corresponds to cluster 4 in fastSTRUCTURE with logistic prior and cluster 11 in sNMF. The 

fact that these clusters have the highest mean and median cluster probability values for each 

method corresponds to the fact this is the most consistent group found across all methods and 

all K values, composed by individuals from acl and inc species.  

The methods were also compared in terms of the number of individuals with 

membership probability values above 0.9. Table 4.2 shows the results by each method. As 

expected, DAPC and SVD with DA have the highest number of individuals with such high 

membership probabilities, followed by fastSTRUCTURE with simple prior, 

fastSTRUCTURE with logistic prior, and sNMF. 

Method 
Number of individuals with membership 

probability > 0.9 

fastSTRUCTURE (simple prior) 647 

fastSTRUCTURE (logistic prior) 577 

DAPC 981 

SVD + DA 981 

sNMF + LS 559 

Table 4. 2. Number of individuals with membership probabilities > 0.9 for each method 
 

4.4.6.4.   Computational cost 

Finally, the methods were compared in terms of their computational cost as execution 

time, which is an important criterion related to the computer power available for research 

organizations, since not all research organizations have powerful computing infrastructures 

available. All analysis methods were tested using the same standard computer with 8 GB of 

RAM. Table 4. 3 shows the execution time for each method. 



90 
 

Method Step Time per step (s) Total time (s) 

fastSTRUCTURE 

(simple prior) 

K values 1-15 

K = 1 (10 iterations) 21.7802 

5526.2205 

K = 2 (20 iterations) 57.0727 

K = 3 (30 iterations) 80.5322 

K = 4 (50 iterations) 126.3130 

K = 5 (50 iterations) 167.9194 

K = 6 (60 iterations) 200.1893 

K = 7 (60 iterations) 250.5735 

K = 8 (110 iterations) 404.5261 

K = 9 (60 iterations) 318.0575 

K = 10 (60 iterations) 357.1579 

K = 11 (50 iterations) 477.2411 

K = 12 (100 iterations) 780.3237 

K = 13 (60 iterations) 686.7493 

K = 14 (80 iterations) 805.0135 

K = 15 (60 iterations) 792.7711 

fastSTRUCTURE 

(logistic prior) 

K values 1-14 

K = 1 (10 iterations) 69.2214 

2046066.41 

K = 2 (12060 iterations) 23088.0102 

K = 3 (8090 iterations) 23126.2106 

K = 4 (1700 iterations) 11113.9243 

K = 5 (2540 iterations) 21679.9817 

K = 6 (30 iterations) 35017.6918 

K = 7 (70 iterations) 70451.9279 

K = 8 (140 iterations) 156073.9790 

K = 9 (260 iterations) 277933.9986 

K = 10 (180 iterations) 234240.3034 

K = 11 (210 iterations) 306529.2953 
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K = 12 (100 iterations) 166476.9894 

K = 13 (40 iterations) 118100.6670 

K = 14 (360 iterations) 602164.2091 

DAPC 

PCA 2563.068 

2579.958779 K-means clustering 4.807419 

DA 12.08336 

SVD + DA 

SVD 324.04212 

325.4296251 K-means clustering 0.60584 

DA 0.7816651 

sNMF + LS sparse NMF 810.8184 810.8184 

Table 4. 3. Computational cost as execution time in seconds (s) for the parametric and 
nonparametric population structure analysis methods tested 

 
The results show fastSTRUCTURE with logistic prior took a considerably longer 

time to carry out all K runs, taking a total of 2046066.41 seconds or 23.68 days to run. Even 

more, K = 15 could not be run using this method due to time constraints, and the maximum 

likelihood results could not be used to select an optimal K value range. fastSTRUCTURE 

with a simple prior had the second longest execution time, taking a total of 5526.2205 

seconds or 1.54 hours to run. It was to be expected the two parametric methods had the 

longest execution times; nonetheless, the difference between prior choice is quite significant. 

Even though the logistic prior is recommended when populations are difficult to resolve, the 

assignment results did not show a particularly large difference when compared to the simple 

prior results. Focusing only on the parametric methods, fastSTRUCTURE with a simple prior 

produced the best results in a much more efficient and practical manner.  

Regarding the nonparametric results, on the one hand, DAPC had the longest 

execution time, taking a total of 2579.958779 seconds or 43 minutes. The PCA, 

dimensionality reduction step, took the longest time to run, while the K-means clustering and 

DA had running times of only a few seconds. On the other hand, SVD with DA had the 

shortest execution time out of all methods, taking a total of 325.4296251 seconds or 5.42 

minutes. The dimensionality reduction step, SVD in this case, was also the step that took the 
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longest to run; however, it took considerably less time than the PCA in DAPC. This makes 

sense given computing the covariance matrix in PCA and computing the eigenvalue 

decomposition of this matrix is a computationally intensive step [150], especially when 

applied on such a large data matrix. It is important to mention that the PCA allows us to retain 

the loading information of the variables, or the SNP markers in this case. SVD loses this 

information while reducing the original data matrix. sNMF had the second longest execution 

time out of the nonparametric methods, taking a total of 810.8184 seconds or 15.51 minutes. 

It produced results comparable, in terms of assignment and admixture estimates, to those 

obtained through fastSTRUCTURE. 

All population structure analysis methods were carried out on the same standard 8GB 

RAM computer. Execution times could have been considerably faster if carried out on an 

HPC environment; however, part of the objectives of this investigation was to produce a 

practical and accessible analysis pipeline, therefore it was decided not to use such expensive 

equipment. The workflow aimed to be replicable by other researchers without equipment 

limitations. Nonetheless, all analysis methods tested except for fastSTRUCTURE with 

logistic prior had much shorter execution times than the regular STRUCTURE program, even 

when the latter is run on a multicore HPC environment with less markers and individuals. In 

2017, Chhatre et al analyzed 30 replicates for a 11,533 SNP marker and 57 individuals dataset 

using STRUCTURE with 60 cores on an HPC environment, and it took them a total of 9 

days, without including the time required to define MCMC parameters [136].  

 

4.4.6.5.   Overall performance 

The different nonparametric techniques tested have proven to be versatile and 

efficient when analyzing large genetic data and produce comparable results to those obtained 

through the most popular parametric methods used for population structure analysis. The 

significant differences in computational cost are important considering the remaining 50% 

of the collection is yet to be analyzed. These methods do not rely on any population genetics 

model assumptions such as HWE, LE or consistent ploidy [17], [43], [44], [51]. Moreover, 

DAPC and SVD with DA can be used in conjunction with NMF to explore the different levels 
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of structure in the data and examine admixture between subpopulations. Low-rank 

approximations such as SVD and sNMF are preferred when the number of variables in the 

data is much larger than the number of observations, such as in this investigation, given PCA 

on high-dimensionality settings can be inconsistent [151]. Sparse PCA is usually proposed 

as a better alternative for these cases [151].  

Furthermore, the population structure analysis methods were implemented such as 

they were first described in their first publication; however, there are certain modifications 

that could be done to produce better results, especially when analyzing high-dimensional and 

complex datasets. For example, different clustering techniques could be used to produce a 

better assignment of individuals in DAPC or SVD with DA [17], [148]. Dimensionality 

reduction methods such as sparse PCA could have been a better alternative for this type of 

data [150].  

FastSTRUCTURE was chosen as the parametric method due to time constraints of 

the investigation. Nonetheless, STRUCTURE tends to be the preferred method in the field 

given it is the most robust parametric method of analysis of genetic structure, and despite 

also depending on model assumptions, allows for mixed ploidy populations [152]. Analyzing 

the data using STRUCTURE would allow the nonparametric techniques used to be further 

validated as comparable and efficient alternatives. Due to how computationally intensive 

STRUCTURE is, a core collection would first need to be defined in order to retain diversity 

representation while making the execution time more manageable. This would be done by 

choosing the markers with most distinguishing power, equivalent to approximately 10% of 

the total SNPs. The number of individuals would also be filtered considering clade, species 

and geographical region as important selection attributes. This can be done using core 

selector tools such as CoreSNP [153]. 

 

4.5.      R Workflow 

Part of the objectives of this thesis was to produce a scalable and replicable R 

workflow such that other researchers can use the code and carry out analyses on other sets of 

SNP data. The project was carried out as an R project and the distribution of directories can 
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be seen in Figure 4. 24. The main project file is “Thesis.Rmd” and includes all the code for 

the genetic diversity and population structure analyses. The data filtering was carried out in 

the “FullData.Rmd” file. The code for all steps is included as annexes in the present document 

and is linked to each part of the methodology in its corresponding section. The code is written 

such that only the initial variables have to be defined for the rest of the code to run. Each part 

is correctly annotated; therefore, any changes or adaptations can be easily made, particularly 

concerning parameter choice, data formatting, or visualization. The code for all plots is also 

included in the Rmd file.  

This thesis analyzed only 50% of the wild potato collection due to economic 

constraints. Nonetheless, due to the scalability and replicability of the workflow proposed, it 

can be used to analyze the remaining 50% of the collection, facilitating the analysis process. 

This remaining 50% will be genotyped and analyzed within the upcoming year. Additionally, 

the structure of smaller groups based on taxonomic clades or species can also be explored 

using the same methods used in this study. This would allow for more subtle differences to 

be identified and linked to the accessions’ unique characteristics. Finally, this work could 

serve as the basis for the development of deep learning methods for geographic location or 

taxonomic prediction of accessions of unknown origin. 

 

Figure 4. 24. Project directory distribution



 
 

CONCLUSIONS 

 

This study was able to develop a standardized R workflow of analysis for population 

genetics studies using SNP datasets to analyze the genetic identity, diversity, and population 

structure of CIP’s wild potato germplasm collection, which will be available for use in similar 

population genetics studies. 

 

1. The genetic identity of the genotyped accessions was defined by their most valuable SNP 

information according to the defined filtering criteria. Uninformative SNPs and poor-

quality data were filtered to optimize computational cost while retaining most of the 

genetic variation. This information will eventually be made available through CIPs open 

access database to improve the efficiency of germplasm conservation in the genebank, as 

it will allow duplicates, mislabeled samples, and unrecognized variants to be identified. 

The genetic characterization of these accessions will reduce costs related to germplasm 

maintenance in the long term and ensure researchers receive the material they require. 

 

2. The genetic diversity of this previously unexplored set of wild potato accessions was able 

to be determined through the estimation of key genetic diversity parameters such as 

heterozygosity. These parameters were also explored by ploidy and species 

characteristics. Having a better understanding of the genetic diversity of wild potato 

species will facilitate their use within plant breeding programs and other investigations 

such as genome wide association studies (GWAS), as these indices of diversity can be 

associated with phenotypic trait characteristics.  

 

3. The population structure of the wild potato collection was explored through different 

methods and linked to the ploidy, taxonomy, and geographic characteristics of the 

accessions. The data is inherently complex due to the high levels of diversity within wild 

potatoes; thus, we did not expect fully conclusive results regarding the structure of the 

collection. Nonetheless, this investigation offers a first insight into the population 
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structure of wild potatoes and provides a genetic backing to the previously reported 

taxonomic and geographical relationships between certain species. The distance based 

nonparametric approaches revealed overall similarities in the genetic profiles of 

individuals from similar geographical regions, ploidy levels and taxonomic clade. The 

dimensionality reduction based nonparametric approaches and parametric analysis 

method confirmed these relationships and allowed to further explore the population 

architecture and admixture levels. Further population structure classification and 

inference must be done by a specialized taxonomist to fully relate the different 

characteristics of the accessions with their genetic profiles. This will allow for the 

application of focused identification of germplasm strategies (FIGS) to identify species 

carrying specific adaptative traits, enabling the use of these species for marker-assisted 

selection (MAS). Additionally, the combination of genetic diversity and population 

structure characterization will allow collection curators to identify genetic or 

geographical bias present within the collection, allowing them to then correct this bias. 

 

4. Parametric and nonparametric population structure analysis methods were successfully 

implemented and compared in terms of clustering capabilities and computational cost. 

The distance based nonparametric techniques allowed the general distribution to be 

observed. Both the dimensionality reduction based nonparametric and parametric 

techniques were able to render clustering results consistent with the individuals’ ploidy 

levels, taxonomy, and geographical characteristics. The dimensionality reduction based 

nonparametric techniques showed promising results regarding their ability to identify 

population structure, infer appropriate numbers of subpopulations, and assign individuals 

to each. As opposed to their parametric counterpart, these methods do not depend on any 

genetic assumptions or models. The parametric method used, fastSTRUCTURE, was 

evaluated using both simple and logistic prior distributions. The logistic distribution had 

been previously recommended for populations with complex structures; however, the 

results using both priors were very similar and the execution time for the logistic prior 

was over 370 times greater than that of the simple prior, making it impractical for research 

organizations without HPC facilities. Overall, the nonparametric methods tested required 
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considerably less computational cost and execution time than the parametric methods. 

The SVD with DA method, which had not been previously used for population genetics 

studies, produced very similar results to those obtained through DAPC, requiring 

considerably less execution time than any other method and only 17% of the time 

required by fastSTRUCTURE with a simple prior. sNMF produced comparable 

admixture results to those obtained through fastSTRUCTURE. sNMF presented mean 

and median cluster probability values below 0.75, very similar to fastSTRUCTURE, 

which has most cluster mean and median probability values below 0.8. The number of 

individuals with membership probabilities above 0.9 for sNMF and fastSTRUCTURE 

with simple and logistic priors were 559, 647 and 577 respectively. Therefore, these 

nonparametric methods provide a useful, practical, and less costly alternative for the 

population structure analysis of large genetic datasets, especially when used in 

conjunction, either DAPC or SVD with DA along with sNMF, such that overall structure 

and admixture of the data can be explored. 

 

5. Finally, the workflow followed for this study, consisting of data preprocessing, genetic 

diversity analysis, population structure analysis and approach comparison, can be 

replicated and adapted for use in other population genetics studies using SNP data. The 

produced R workflow was written such that the analyses run automatically once the initial 

variables are defined. The convenience and effectiveness of this programming language 

for this type of investigations was confirmed due to the large amount of open access 

packages available, the flexibility of data structuring options and cross-platform 

compatibility. The analysis methods not readily available through R packages were 

successfully implemented from scratch. Moreover, the code includes data visualization 

sections, which facilitate posterior result analysis. This R workflow will be readily 

available for use in CIP and partner organizations. It will be included as part of CIPs 

institutional manual on analysis of crop SNP data; however, it can also be uploaded to 

online repositories such that other people can reproduce these types of analyses. This will 

encourage more of these population genetics studies to be carried out and investigate 

previously unexplored genetic datasets. This is an important contribution for research for 
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megadiverse countries, such as Peru, that hold large biological diversity and are just 

beginning to understand the meaning of that diversity. 
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ANNEX	1:	Referential	framework	

The present investigation does not include a specific chapter for information 

regarding the legal, geographic, and historical background, given the relevant information 

has already been included in the introduction and theoretical framework. The pertinent 

geographic information regarding potato crops has been included in section 2.1. With respect 

to CIP and its institutional organization, necessary information has been included in the 

introduction and in section 2.2. 



 
 

ANNEX	2:	Libraries	

library(dartR) # genetic diversity 

library(adegenet) # population structure (dimensionality reduction) 

library(snpReady) # genetic diversity 

library(seqinr) 

library(ade4) # population structure (distance-based) 

library(ape) # tree export 

library(poppr) # population structure 

library(pegas) 

library(tibble) 

library(purrr) 

library(data.table) 

library(writexl) 

library(readxl) 

library(itol.toolkit) 

library(StAMPP) 

library(LEA) # population structure (dimensionality reduction) 

library(MASS) # population structure (dimensionality reduction) 

library(RColorBrewer) 

library(viridis) 

library(mclust) 

library(devtools) 

library(pophelper) # fastSTRUCTURE results visualization 

library(gtools) 

library(reshape2) 

library(dplyr) 

library(gridExtra) 

library(rnaturalearth) 

library(rnaturalearthdata) 

library(ggpubr) 

 

source("Functions.R")  

# colours 

clist <- list( 

"shiny"=c("#1D72F5","#DF0101","#77CE61", 

"#FF9326","#A945FF","#0089B2","#FDF060","#FFA6B2","#BFF217","#60D5FD","#C
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C1577","#F2B950","#7FB21D","#EC496F","#326397","#B26314","#027368","#A4A4

A4","#610B5E"), 

"strong"=c("#11A4C8","#63C2C5","#1D4F9F","#0C516D","#2A2771","#396D35","#

80C342","#725DA8","#B62025","#ED2224","#ED1943","#ED3995","#7E277C","#F7E

C16","#F8941E","#8C2A1C","#808080"),  

"funky" = c("#A6CEE3", "#3B8ABE", "#72B29C", "#84C868", 

"#4F9F3B","#EC9A91", "#E93E3F", "#F06C45", "#FDAC4F",  "#FB820F", 

"#D1AAB7", "#8C66AF", "#A99099", "#EEDB80", "#B15928")) 	  
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ANNEX	3.	Functions	

# Nei's genetic distance (poppr nei's gen dist) 

nei.dist.alt <- function(x){ 

  mat <- x 

  idmat <- mat %*% t(mat) 

  vec <- sqrt(diag(idmat)) 

  idmat <- idmat/vec[col(idmat)] 

  idmat <- idmat/vec[row(idmat)] 

  D <- -log(idmat) 

  if (any(D %in% Inf)){ 

    D <- infinite_vals_replacement(D, warning) 

  } 

  D <- as.dist(D) 

  return(D) 

} 

 

# Euclidean distance by chunks 

euc.dist.chunks <- function(x){ 

  l <- seploc(x, n.block=10) 

  lD <- lapply(l, function(e) dist(as.matrix(e))) 

  D <- Reduce("+", lD) 

  return(D) 

} 

 

# LEA write geno mod 

write.geno.mod <- function(R, output.file)  

{ 

  if(missing(R)) 

    stop("'R' argument is missing.") 

  else if (!(is.matrix(R) || is.data.frame(R) || is.vector(R))) 

    stop("'R' argument has to be of type matrix, data.frame or vector.") 

  else if (is.vector(R)) 

    R = matrix(R,ncol=1,nrow=length(R)) 

  else if (is.data.frame(R)) 

    R = as.matrix(R) 
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  output.file = test_character("output.file", output.file, NULL) 

   

  R[which(is.na(R))] = 9 

  R[which(is.nan(R))] = 9 

   

  write.table(t(R), output.file, col.names=FALSE,row.names=FALSE,sep=""); 

  return(output.file); 

} 

 

test_character <- function(name, param, default) 

{ 

  if(missing(param)) { 

    if(is.null(default)) { 

      p = paste("'",name,"' argument is missing.", sep=""); 

      stop(p) 

    } else  

      return(default); 

  } else { 

    if(!is.character(param)) { 

      p = paste("'",name,"' argument has to be of type character.",  

                sep=""); 

      stop(p); 

    } 

  } 

  return(param) 

} 

   

# Adegenet palette creator 

   

.palette_parser <- function(inPAL, npop, pnames) 

  { 

  PAL <- try(match.fun(inPAL, descend = FALSE), silent = TRUE) 

  if ("try-error" %in% class(PAL)){ 

    if (all(pnames %in% names(inPAL))){ 

      color <- inPAL[pnames] 

    } else if (npop == length(inPAL)){ 

      color <- stats::setNames(inPAL, pnames) 
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    } else if (npop < length(inPAL)){ 

      warning("Number of populations fewer than number of colors 

supplied. Discarding extra colors.") 

      color <- stats::setNames(inPAL[1:npop], pnames) 

    } else { 

      warning("insufficient color palette supplied. Using funky().") 

      color <- stats::setNames(funky(npop), pnames) 

    } 

  } else { 

    color   <- stats::setNames(PAL(npop), pnames) 

  } 

  return(color) 

} 

 

numeric2structure <- function(genmat, 

                              indNames = dimnames(genmat)[[1]], 

                              addtlColumns = NULL, ploidy = 2, 

                              exportMarkerNames = TRUE){ 

  nInd <- dim(genmat)[1] # number of individuals 

  if(length(indNames) != nInd){ 

    stop("Number of individuals does not match between indNames and 

genmat.") 

  } 

  if(!is.null(addtlColumns) && dim(addtlColumns)[1] != nInd){ 

    stop("Number of individuals does not match between addtlColumns and 

genmat.") 

  } 

  genmat <- as.matrix(genmat) 

  if(!all(genmat %in% c(0:ploidy,NA))){ 

    stop("genmat must only contain 0, 1, 2... ploidy and NA") 

  } 

  if(length(ploidy) != 1 || !is.numeric(ploidy)){ 

    stop("ploidy must be a single number") 

  } 

   

  # make sets of possible genotypes 

  G <- list() 
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  for(i in 0:ploidy){ 

    G[[i + 1]] <- c(rep(1, ploidy - i), rep(2, i)) 

  } 

  G[[ploidy + 2]] <- rep(-9, ploidy) # for missing data 

   

  # set up data frame for Structure 

  StructTab <- data.frame(ind = rep(indNames, each = ploidy)) 

  # add any additional columns 

  if(!is.null(addtlColumns)){ 

    for(i in 1:dim(addtlColumns)[2]){ 

      StructTab <- data.frame(rep(addtlColumns[,i], each = ploidy), 

StructTab) 

    } 

  } 

  colnames(StructTab)[1:dim(addtlColumns)[2]] <- "#" 

   

  # add genetic data 

  for(i in 1:dim(genmat)[2]){ 

    thesegen <- genmat[,i] + 1 

    thesegen[is.na(thesegen)] <- ploidy + 2 

    StructTab[[dimnames(genmat)[[2]][i]]] <- unlist(G[thesegen]) 

  } 

   

  return(StructTab) 

} 

 

kmeansBIC <- function(clust){ 

   

  m = ncol(clust$centers) 

  n = length(clust$cluster) 

  k = nrow(clust$centers) 

  D = clust$tot.withinss 

  return(D + log(n) * m * k) 

} 



 
 

ANNEX	4.	Data	characteristics	plots	
# SNP Map plot 

ggplot(data = SNPMap) +  

  geom_density(aes(x = Position), bw = 150000, linewidth = 0.4,  color = 

"dodgerblue4") + 

  labs(title = "Location of SNPs", x = "SNP Position", y = "Density", 

color = "Chromosome") + 

  scale_x_continuous(expand = c(0, 0), breaks = waiver(), n.breaks = 10) 

+  

  scale_y_continuous(expand = c(0, 0)) + 

  geom_point(aes(x = Position, y = rep(0, nrow(SNPMap)), color = 

factor(Chrom)), size = 2, shape = 3)  + 

  scale_color_viridis(discrete = TRUE, option = "D", direction = 1) + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5), legend.position = 

"bottom", legend.key.size = unit(0.3, 'cm'), legend.title = 

element_text(size=10), legend.text = element_text(size=8)) + 

  guides(color = guide_legend(ncol = 8, bycol = TRUE)) 

 

# saving plot 

ggsave(filename = "Figures/SNPMap.png", device = "png") 

 

# Sample Region Map plot 

ggplot(data = ne_countries(scale = "medium", returnclass = "sf")) + 

  geom_sf() + 

  geom_point(data = data.frame(longitude = SampleInfo[,"Longitude of 

collecting site"], latitude = SampleInfo[,"Latitude of collecting site"], 

elevation = SampleInfo[,"Elevation of collecting site"]), aes(x = 

longitude, y = latitude, color = elevation), size = 1,  

        shape = 20) + 

  scale_color_viridis(discrete = FALSE, option = "D", direction = -1) + 

  coord_sf(xlim = c(min(SampleInfo$`Longitude of collecting site`, na.rm 

= TRUE), max(SampleInfo$`Longitude of collecting site`, na.rm = TRUE)), 

ylim = c(min(SampleInfo$`Latitude of collecting site`, na.rm = TRUE), 

max(SampleInfo$`Latitude of collecting site`, na.rm = TRUE)), expand = 

TRUE) + 
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  theme_classic() + 

  labs(title = "Sample collection sites", x = "Longitude", y = 

"Latitude") + 

  theme(plot.title = element_text(hjust = 0.5, size = 12), axis.line = 

element_line(color = "black", linewidth = 0.4), panel.grid.major = 

element_line(color="grey", size=0.2), axis.title = element_text(size = 

10), legend.key.size = unit(0.5, 'cm'), legend.title = element_text(size 

= 10), legend.text = element_text(size = 8)) 

 

# saving plot 

ggsave(filename = "Figures/SampleRegionMap.png", device = "png") 
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ANNEX	5.	Data	set	filtering	
# import full data file 

fullrawSNP <- read.csv2("Data/FullDataRaw.csv", header=T, sep=",", 

check.names = FALSE) 

 

preSNP <- fullrawSNP[, which(colMeans(fullrawSNP!="NC") > 0.95)] # 

filtering from call rate 

 

preSNP[preSNP == "NC"] <- NA 

 

preSNP <- preSNP[which(rowMeans(is.na(preSNP)) < 0.1),] # filtering from 

missing data 

 

# write filtered data file 

write.csv(preSNP, "DataImport/FullData.csv", row.names = TRUE) 
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ANNEX	6.	Mantel	test	
# import full data 

fullrawSNP <- read.csv2("Data/FullDataRaw.csv", header=T, sep=",", 

check.names = FALSE) 

 

# convert to matrix 

fullmatSNP <- as.matrix(fullrawSNP) 

rownames(fullmatSNP) <- fullmatSNP[,1] 

fullmatSNP <- fullmatSNP[,-1] 

 

fullmatSNP <- ifelse(fullmatSNP == "AAAA", as.numeric(0),fullmatSNP) # 

homozygote AA 

fullmatSNP <- ifelse(fullmatSNP == "AAAB", as.numeric(1) ,fullmatSNP) # 

heterozygote 

fullmatSNP <- ifelse(fullmatSNP == "AABB", as.numeric(2) ,fullmatSNP) # 

heterozygote 

fullmatSNP <- ifelse(fullmatSNP == "ABBB", as.numeric(3) ,fullmatSNP) # 

heterozygote 

fullmatSNP <- ifelse(fullmatSNP == "BBBB", as.numeric(4) ,fullmatSNP) # 

homozygote BB 

 

fullmatSNP <- matrix(as.numeric(fullmatSNP), ncol = ncol(fullmatSNP), 

dimnames = list(rownames(fullmatSNP),colnames(fullmatSNP))) 

 

# save as RDS object 

saveRDS(fullmatSNP, file = "DataReady/MatrixNumericRaw.rds") 

 

# generation of euclidean distance matrix from genlight object for raw 

data 

fullmatSNP <- readRDS(file = "DataReady/MatrixNumericRaw.rds") 

glSNPraw <- new("genlight",fullmatSNP, indNames = rownames(fullmatSNP), 

locNames = colnames(fullmatSNP), parallel=FALSE) 

 

eucDistRaw <- euc.dist.chunks(glSNPraw) 

saveRDS(eucDistRaw, file = "DataReady/eucDistRaw.rds") 
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# generation of euclidean distance matrix from genlight object for 

filtered data 

matnumSNP <- readRDS(file = "DataReady/MatrixNumeric.rds") 

glSNP <- new("genlight", matnumSNP, indNames = rownames(matnumSNP), 

locNames = colnames(matnumSNP), parallel=FALSE) 

 

eucDist <- euc.dist.chunks(glSNP) 

saveRDS(eucDist, file = "DataReady/eucDist.rds") 

 

# mantel test 

mantel <- mantel.rtest(as.dist(eucDist), as.dist(eucDistRaw), nrepet = 

500) 

saveRDS(mantel, file = "DataReady/mantel.rds") 

mantel 

 

# null hypothesis = unrelated (not representative) 

# we can reject the null hypothesis because p-value < 0.05 
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ANNEX	7.	Data	import	
# Filtered file import (accessions vs markers) 

preSNP <- read.csv2("DataImport/FullData.csv", header=T, sep=",", 

check.names = FALSE) 

 

# All Sample map import 

allSampleMap <- read_excel("Data/resumen.xlsx", sheet = "All_Sample Map", 

col_names = T) 

allSampleMap <- allSampleMap[allSampleMap$Name %like% "wp",] 

allSampleMap <- allSampleMap[,-1] # delete index column 

 

# Passport data 

Passport <- read_excel("Data/resumen.xlsx", sheet = "Data Pasaporte", 

col_names = T) 

colnames(Passport)[which(names(Passport) == "Accession number")] <- 

"CIPnumber" 

 

# Sample information merged 

SampleInfo <- merge(allSampleMap, Passport[, c("CIPnumber", "Country of 

Origin", "Administrative subdivision 1", "Elevation of collecting site", 

"Latitude of collecting site", "Longitude of collecting site")], 

by="CIPnumber", all.x=TRUE) 

 

# Ploidy formatting 

colnames(SampleInfo)[which(names(SampleInfo) == "Ploidy_FlowCitometry 

Result")] <- "Ploidy" 

SampleInfo$Ploidy <- ifelse(SampleInfo$Ploidy == "2x?", "2x", 

SampleInfo$Ploidy) 

SampleInfo$Ploidy <- ifelse(SampleInfo$Ploidy == "3x?", "3x", 

SampleInfo$Ploidy) 

SampleInfo$Ploidy <- ifelse(SampleInfo$Ploidy == "4x?", "4x", 

SampleInfo$Ploidy) 

SampleInfo$Ploidy <- ifelse(SampleInfo$Ploidy == "5x?", "5x", 

SampleInfo$Ploidy) 

SampleInfo$Ploidy <- ifelse(SampleInfo$Ploidy == "6x?", "6x", 

SampleInfo$Ploidy) 
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SampleInfo$Ploidy <- as.factor(SampleInfo$Ploidy) 

 

# SNP Map import 

SNPMap <- read.table('Data/SNP_Map.txt', sep = '\t', header = TRUE) 

 

# Chromosome formatting 

SNPMap$Chrom <- SNPMap$Chromosome 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "0", "CH00", SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH00", "CH00", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH01", "CH01", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH02", "CH02", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH03", "CH03", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH04", "CH04", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH05", "CH05", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH06", "CH06", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH07", "CH07", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH08", "CH08", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH09", "CH09", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH10", "CH10", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH11", "CH11", 

SNPMap$Chrom) 

SNPMap$Chrom <- ifelse(SNPMap$Chrom == "ST4.03CH12", "CH12", 

SNPMap$Chrom) 	  
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ANNEX	8.	Data	frame	to	matrix	conversion	
# convert to matrix 

matSNP <- as.matrix(preSNP) # change object type 

rownames(matSNP) <- matSNP[,1] 

matSNP <- matSNP[,-1] 

 

matnumSNP <- ifelse(matSNP == "AAAA", as.numeric(0),matSNP) # homozygote 

AA 

matnumSNP <- ifelse(matnumSNP == "AAAB", as.numeric(1) ,matnumSNP) # 

heterozygote 

matnumSNP <- ifelse(matnumSNP == "AABB", as.numeric(2) ,matnumSNP) # 

heterozygote 

matnumSNP <- ifelse(matnumSNP == "ABBB", as.numeric(3) ,matnumSNP) # 

heterozygote 

matnumSNP <- ifelse(matnumSNP == "BBBB", as.numeric(4) ,matnumSNP) # 

homozygote BB 

 

matnumSNP <- matrix(as.numeric(matnumSNP), ncol = ncol(matnumSNP)) 

rownames(matnumSNP) <- rownames(matSNP) 

colnames(matnumSNP) <- colnames(matSNP) 

 

saveRDS(matnumSNP, file = "DataReady/MatrixNumeric.rds") 
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ANNEX	9.	Genetic	diversity	analysis	
# genetic diversity parameter calculation with snpReady package 

# change diploid calls for heterozygosity calculations 

matdiSNP <- ifelse(matnumSNP == 1 | matnumSNP == 2 | matnumSNP == 3, 

as.numeric(1),matnumSNP) 

matdiSNP <- ifelse(matnumSNP == 4, as.numeric(2),matdiSNP) 

saveRDS(matdiSNP, file="DataReady/MatrixNumericDiploid.rds") 

 

# import diploid matrix from file 

matdiSNP <- readRDS(file="DataReady/MatrixNumericDiploid.rds") # direct 

import 

 

# genetic diversity parameters  

SNPstats <- popgen(matdiSNP, plot=FALSE) 

 

# diversity parameters by markers 

SNPmarkers <- SNPstats[["whole"]][["Markers"]] 

SNPmarkers <- rownames_to_column(SNPmarkers,"Marker") 

SNPmarkers 

mean(SNPstats[["whole"]][["Markers"]]$He) 

mean(SNPstats[["whole"]][["Markers"]]$Ho) 

mean(SNPstats[["whole"]][["Markers"]]$GD) 

 

# diversity parameters by accessions 

SNPaccessionsHo <- as.data.frame(SNPstats[["whole"]][["Genotypes"]][,1]) 

SNPaccessionsHo <- rownames_to_column(SNPaccessionsHo, "Accession") 

colnames(SNPaccessionsHo)[2] <- "Observed heterozygosity" 

SNPaccessionsHo 

 

# writing result table files 

write_xlsx(SNPmarkers,"Tables/MarkerStats.xlsx") 

write_xlsx(SNPaccessionsHo,"Tables/AccessionStats.xlsx") 

 

# PIC per markers plot 

ggplot(SNPmarkers, aes(x = PIC)) + 
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  geom_histogram(aes(y = ..count..), binwidth = 0.025, boundary = 0, 

color = "black", fill = "#A6CEE3") + 

  scale_x_continuous(breaks = waiver(), n.breaks = 10) + 

  scale_y_continuous(breaks = waiver(), n.breaks = 7) + 

  theme_classic() + 

  labs(x = "Polymorphic Information Content (PIC)", y = "Number of SNPs") 

 

# saving plot 

ggsave(filename = "Figures/PICPlot.png", device = "png")  

 

## Diversity by species 

# formatting 

speciesData <- SNPaccessionsHo[SNPaccessionsHo$Accession %in% 

SampleInfo$ID[!is.na(SampleInfo$spp)],] 

colnames(speciesData) <- c('ID', 'Observed heterozygosity') 

speciesData <- merge(speciesData, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

speciesData$Species <- as.factor(speciesData$spp) 

 

# plot 

ggplot(speciesData, aes(x=spp, y=`Observed heterozygosity`, color=spp)) +  

  geom_boxplot(outlier.size = 0.5) +  

  coord_flip() +  

  labs(title ="Heterozygosity of accessions", x = "Species") +  

  scale_color_viridis(discrete = TRUE, option = "D", direction = -1) + 

  theme_classic() + 

  theme(legend.position = "none", plot.title = element_text(hjust = 0.5, 

size = 12), axis.ticks.y = element_blank(), axis.text.y = 

element_blank(), axis.title = element_text(size = 10)) 

 

# saving plot 

ggsave(filename = "Figures/SpeciesHo.png", device = "png")  

 

## Diversity by ploidy 

# formatting 

ploidyData <- SNPaccessionsHo[SNPaccessionsHo$Accession %in% 

SampleInfo$ID[!is.na(SampleInfo$Ploidy)],] 
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colnames(ploidyData) <- c('ID', 'Observed heterozygosity') 

ploidyData <- merge(ploidyData, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

 

# plot 

ggplot(ploidyData, aes(x=Ploidy, y=`Observed heterozygosity`, 

color=Ploidy)) +  

  geom_boxplot(outlier.color = “black”) +  

  coord_flip() +  

  labs(title="Heterozygosity of samples") + 

  scale_color_viridis(discrete = TRUE, option = "D", direction = -1) + 

  theme_classic() + 

  theme(legend.position = "none", plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/PloidyHo.png", device = "png") 
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ANNEX	10.	Bulk	genotyping	validation	

# wp-1_761164 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "761164",], method = 

"percentage") 

 

# wp-174_762070 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "762070",], method = 

"percentage") 

 

# wp-201_760642 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "760642",], method = 

"percentage") 

 

# wp-237_765994 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "765994",], method = 

"percentage") 

 

# wp-287_761748 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "761748",], method = 

"percentage") 

 

# wp1281_761156 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "761156",], method = 

"percentage") 

 

# wp-9_760212 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "760212",], method = 

"percentage") 

 

# wp-120_763923 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "763923",], method = 

"percentage") 

 

# wp1269_761143 

dist.gene(matnumSNP[rownames(matnumSNP) %like% "761143",], method = 

"percentage")	  



135 
 

ANNEX	11.	Object	creation	for	distance-based	population	structure	

analysis	

matnumSNP <- readRDS(file = "DataReady/MatrixNumeric.rds") 

 

glSNP <- new("genlight", matnumSNP, indNames = rownames(matnumSNP), 

locNames = colnames(matnumSNP), parallel=FALSE) 

glSNP 

 

alleleFreq <- tab(glSNP, freq = TRUE) 

saveRDS(alleleFreq, file="DataReady/Dendrogram/alleleFreq.rds") 
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ANNEX	12.	NJ	dendrogram	and	annotations	

# nei genetic distance (matrix) 

alleleFreq <- readRDS(file = "DataReady/Dendrogram/alleleFreq.rds") #from 

allele frequency data 

 

tNJ <- aboot(alleleFreq, tree = "nj", distance = nei.dist.alt, sample = 

500) #bootstrap = 500 

 

ape::write.tree(tNJ, file="DataReady/Dendrogram/NJ/NeiTreeNJ.txt") 

 

# annotations with itol.toolkit package 

tree <- read.tree("DataReady/Dendrogram/NJ/NeiTreeNJ.txt") 

 

# Ploidy 

unitPloidy <- create_unit(data = SampleInfo %>% select("ID", "Ploidy"), 

key = "Ploidy", type = "DATASET_COLORSTRIP", color = "npg", tree = tree) 

write_unit(unitPloidy, file = 

"DataReady/Dendrogram/NJ/PloidyAnnotations.txt") 

 

# Country 

unitCountry <- create_unit(data = SampleInfo %>% select("ID", "Country of 

Origin"), key = "Country", type = "DATASET_COLORSTRIP", color = "jco", 

tree = tree) 

write_unit(unitCountry, file = 

"DataReady/Dendrogram/NJ/CountryAnnotations.txt") 

 

# Species + City 

LabelsDendrogram <- data.frame(id = SampleInfo$ID, new_label = 

paste(SampleInfo$ID, SampleInfo$spp, SampleInfo$`Administrative 

subdivision 1`)) 

unitSppCity <- create_unit(data = LabelsDendrogram, key = "Spp + City", 

type = "LABELS", tree = tree) 

write_unit(unitSppCity, file = 

"DataReady/Dendrogram/NJ/SppCityAnnotations.txt") 
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ANNEX	13.	UPGMA	dendrogram	and	annotations	

# nei genetic distance (matrix) 

alleleFreq <- readRDS(file = "DataReady/Dendrogram/alleleFreq.rds") 

 

tUPGMA <- aboot(alleleFreq, tree = "upgma", distance = nei.dist.alt, 

sample = 500) #bootstrap = 500 

 

ape::write.tree(tUPGMA, 

file="DataReady/Dendrogram/UPGMA/NeiTreeUPGMA.txt") 

# annotations with itol.toolkit package 

tree <- read.tree("DataReady/Dendrogram/UPGMA/NeiTreeUPGMA.txt") 

 

# Ploidy 

unitPloidy <- create_unit(data = SampleInfo %>% select("ID", "Ploidy"), 

key = "Ploidy", type = "DATASET_COLORSTRIP", color = "npg", tree = tree) 

write_unit(unitPloidy, file = 

"DataReady/Dendrogram/UPGMA/PloidyAnnotations.txt") 

 

# Country 

unitCountry <- create_unit(data = SampleInfo %>% select("ID", "Country of 

Origin"), key = "Country", type = "DATASET_COLORSTRIP", color = "jco", 

tree = tree) 

write_unit(unitCountry, file = 

"DataReady/Dendrogram/UPGMA/CountryAnnotations.txt") 

 

# Species + City 

LabelsDendrogram <- data.frame(id = SampleInfo$ID, new_label = 

paste(SampleInfo$ID, SampleInfo$spp, SampleInfo$`Administrative 

subdivision 1`)) 

unitSppCity <- create_unit(data = LabelsDendrogram, key = "Spp + City", 

type = "LABELS", tree = tree) 

write_unit(unitSppCity, file = 

"DataReady/Dendrogram/UPGMA/SppCityAnnotations.txt") 
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ANNEX	14.	Structure	file	conversion	

# fastStructure file format conversion 

# from diploid matrix 

matdiSNPrev <- readRDS(file = "DataReady/MatrixNumericDiploid.rds") 

accessionsRev <- allSampleMap$ID[allSampleMap$`Seleccion 

structure`=="si"] 

matdiSNPrev <- matdiSNPrev[rownames(matdiSNPrev) %in% accessionsRev,] 

 

# creating structure file 

structureFile <- numeric2structure(matdiSNPrev, indNames = 

rownames(matdiSNPrev), exportMarkerNames = TRUE, addtlColumns = 

matrix("#", nrow = nrow(matdiSNPrev), ncol = 5, 

dimnames=list(NULL,c("#","#","#","#","#")))) 

colnames(structureFile)[1:5] <- "#" 

 

# export all data 

write.table(structureFile, file = "DataReady/SNPdata.str", row.names = 

FALSE, col.names = FALSE, append = FALSE, sep = "\t", quote = FALSE) 
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ANNEX	15.	fastSTRUCTURE	Installation	and	Execution	

# install dependencies 

python --version 

python -m pip --version 

pip install numpy==1.16.0 

pip install numpy==1.16.5 

pip install cython==0.27.3 

pip install scipy==1.2.1 

wget ftp://ftp.gnu.org/gnu/gsl/gsl-1.9.tar.gz 

tar -xf gsl-1.9.tar.gz 

cd gsl-1.9 

./configure --prefix=/Users/tamaraortiz/gsl-1.9 

make 

make check 

make install 

 

# building python extensions 

export CPATH=/Users/tamaraortiz/gsl-1.9/include/ 

export LIBRARY_PATH=/Users/tamaraortiz/gsl-1.9/lib/ 

export LD_LIBRARY_PATH=/Users/tamaraortiz/gsl-1.9/lib/:$LD_LIBRARY_PATH 

export CFLAGS=-I/Users/tamaraortiz/gsl-1.9/include 

 

# get source code 

pwd 

cd /Users/tamaraortiz 

mkdir fastStructure 

cd fastStructure 

wget --no-check-certificate 

https://github.com/rajanil/fastStructure/archive/master.tar.gz 

tar -xf master.tar.gz 

cd /Users/tamaraortiz 

cd ~/fastStructure/fastStructure-master/vars 

python setup.py build_ext --inplace 

cd ~/fastStructure/fastStructure-master/ 

python setup.py build_ext --inplace 

 



140 
 

# testing the code 

python structure.py 

 

python structure.py -K 3 --input=test/testdata --output=testoutput_simple 

--full --seed=100 

ls test/testoutput_simple* 

 

# executing the code 

for k in `seq 15`; do python structure.py -K $k --input=data/SNPdata --

output=data/output_log --full --seed=100 --prior=logistic --format=str; 

done 

for k in `seq 15`; do python structure.py -K $k --input=data/SNPdata --

output=data/output_sim --full --seed=100 --prior=simple --format=str; 

done 

 

# choosing optimum number of K 

python chooseK.py --input=data/output_log 

python chooseK.py –-input=data/output_sim 
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ANNEX	16.	fastSTRUCTURE	simple	prior	plots	

# import files 

fsfilesSim <- list.files(path="DataReady/fastSTRUCTURE/sim", full.names = 

TRUE, all.files = FALSE, pattern = "meanQ") 

fslistSim <- readQ(files = fsfilesSim) 

fslistSim <- fslistSim[order(nchar(fslistSim), fslistSim)] 

fslistSim <- lapply(fslistSim, "rownames<-", rownames(matnumSNPrev))  

 

# plot with all K values 

plotQ(alignK(fslistSim), exportpath = "DataReady/fastSTRUCTURE/Plots", 

imgoutput = "join", returnplot = TRUE, exportplot = FALSE, clustercol = 

clist$funky)  

 

# data formatting for plot 

Krange <- 11:14 # user has to define the subpopulation range 

fslistFSim <- fslistSim[c(Krange)] 

 

# DAPC data frame for plot 

fsSimtemp <- as.data.frame(fslistFSim[[1]]) 

colnames(fsSimtemp) <- c(1:Krange[1]) 

fsSimtemp$K <- Krange[1] 

fsSimtemp$ID <- rownames(fsSimtemp) 

fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","Country of Origin")], 

by="ID", all.x=TRUE) 

fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

fsSimtemp <- melt(fsSimtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

fsSimDF <- fsSimtemp 

 

for(i in 2:length(fslistFSim)){ 
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  fsSimtemp <- as.data.frame(fslistFSim[[i]]) 

  colnames(fsSimtemp) <- c(1:Krange[i]) 

  fsSimtemp$K <- Krange[i] 

  fsSimtemp$ID <- rownames(fsSimtemp) 

  fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

  fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","Country of 

Origin")], by="ID", all.x=TRUE) 

  fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

  fsSimtemp <- merge(fsSimtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

  fsSimtemp <- melt(fsSimtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

  fsSimDF <- rbind(fsSimDF, fsSimtemp) 

} 

 

grp.labs <- paste("K =", Krange) 

names(grp.labs) <- Krange  

 

# Composition plot 

ggplot(fsSimDF, aes(x = ID, y = Probability, fill = Group)) + 

  geom_bar(stat = "identity") +  

  facet_grid(rows = vars(K), scales = "free_x", space = "free", labeller 

= labeller(K = grp.labs)) + 

  scale_fill_manual(values=clist$funky) + 

  labs(title = "fastSTRUCTURE Assignment plot w/ simple prior", y = 

"Membership probability") + 

  theme(plot.title = element_text(hjust = 0.5), axis.text.x = 

element_blank(), axis.title.x = element_blank(), axis.ticks.x = 

element_blank(), axis.text.y = element_text(size = 8)) 

 

# saving plot 

ggsave(filename = "Figures/fsSimK11-14.png", device = "png", width = 7, 

height = 4.5) 	 	
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ANNEX	17.	fastSTRUCTURE	logistic	prior	plots	

# import files 

fsfilesLog <- list.files(path="DataReady/fastSTRUCTURE/log", full.names = 

TRUE, all.files = FALSE, pattern = "meanQ") 

fslistLog <- readQ(files = fsfilesLog) 

fslistLog <- fslistLog[order(nchar(fslistLog), fslistLog)] 

fslistLog <- lapply(fslistLog, "rownames<-", rownames(matnumSNPrev)) 

 

# plot with all K values 

plotQ(alignK(fslistFas), exportpath = "DataReady/fastSTRUCTURE/Plots", 

imgoutput = "join", returnplot = TRUE, exportplot = FALSE, clustercol = 

clist$funky) 

 

# data formatting for plot 

Krange <- 11:14 #user has to define the subpopulation range 

fslistFLog <- fslistLog[c(Krange)] 

 

# DAPC data frame for plot 

fsLogtemp <- as.data.frame(fslistFLog[[1]]) 

colnames(fsLogtemp) <- c(1:Krange[1]) 

fsLogtemp$K <- Krange[1] 

fsLogtemp$ID <- rownames(fsLogtemp) 

fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","Country of Origin")], 

by="ID", all.x=TRUE) 

fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

fsLogtemp <- melt(fsLogtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

fsLogDF <- fsLogtemp 

 

for(i in 2:length(fslistFLog)){ 
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  fsLogtemp <- as.data.frame(fslistFLog[[i]]) 

  colnames(fsLogtemp) <- c(1:Krange[i]) 

  fsLogtemp$K <- Krange[i] 

  fsLogtemp$ID <- rownames(fsLogtemp) 

  fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

  fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","Country of 

Origin")], by="ID", all.x=TRUE) 

  fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

  fsLogtemp <- merge(fsLogtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

  fsLogtemp <- melt(fsLogtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

  fsLogDF <- rbind(fsLogDF, fsLogtemp) 

} 

 

grp.labs <- paste("K =", Krange) 

names(grp.labs) <- Krange 

 

# Composition plot 

ggplot(fsLogDF, aes(x = ID, y = Probability, fill = Group)) + 

  geom_bar(stat = "identity") +  

  facet_grid(rows = vars(K), scales = "free_x", space = "free", labeller 

= labeller(K = grp.labs)) + 

  scale_fill_manual(values=clist$funky) + 

  labs(title = "fastSTRUCTURE Assignment plot w/ logistic prior", y = 

"Membership probability") + 

  theme(plot.title = element_text(hjust = 0.5), axis.text.x = 

element_blank(), axis.title.x = element_blank(), axis.ticks.x = 

element_blank(), axis.text.y = element_text(size = 8)) 

 

# saving plot 

ggsave(filename = "Figures/fsLogK11-14.png", device = "png", width = 7, 

height = 4.5)	  



145 
 

ANNEX	18.	DAPC	

# PCA 

# PCA from genlight object 

PCA <- glPca(glSNPrev, parallel = TRUE, nf = NULL) 

saveRDS(PCA, file = "DataReady/PCA.rds") 

 

# PCA from saved object 

PCA <- readRDS(file = "DataReady/PCA.rds") 

 

# Explained variation by principal component 

PCAvariation <- data.frame(PC = 1:length(PCA[["eig"]]), Variation = 

(PCA[["eig"]]/sum(PCA[["eig"]])) * 100, CumulativeVar = 

cumsum((PCA[["eig"]]/sum(PCA[["eig"]])) * 100)) 

 

# scree plot 

ggplot(data = PCAvariance[1:75,], aes(x = PC, y = Variance)) +  

  geom_line(size = 0.25) + 

  geom_point(shape = 21) + 

  geom_vline(xintercept = 50, linetype = "dotted", color="blue") + 

  labs(title = "Scree plot", x = "Principal component", y = "Variance 

explained (%)") + 

  scale_x_continuous(expand = c(0, 1)) +  

  scale_y_continuous(expand = c(0, 1)) + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/DAPCPCAVar.png", device = "png", width = 7, 

height = 4) 

 

# K-means clustering 

# run K-means 

maxKclusters <- 20 

 

DAPCBIC <- find.clusters(glSNPrev, n.pca = 50, stat = "BIC", 

choose.n.clust = FALSE, max.n.clust = maxKclusters, glPca = PCA) 
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saveRDS(DAPCBIC, file = "DataReady/DAPC/KstatDAPC.rds") 

 

# read K-means 

DAPCBIC <- readRDS(file = "DataReady/DAPC/KstatDAPC.rds") 

 

# BIC value plot 

ggplot(data = as.data.frame(DAPCBIC$Kstat), aes(x = 1:20, y = 

DAPCBIC$Kstat)) +  

  geom_point(shape = 21, color = "blue") + 

  theme_classic() + 

  labs(title = "Detection based on BIC", x = "Number of clusters (K)", y 

= "BIC") + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/DAPCBIC.png", device = "png", width = 7, 

height = 4) 

 

# DA 

# DAPC for K numbers 11 to 14 

Krange <- 11:14 #user has to define the subpopulation range 

DAPCgrouplist <- vector(mode = "list", length = length(Krange)) 

DAPC <- vector(mode = "list", length = length(Krange)) 

 

for(i in 1:length(DAPC)){ 

  set.seed(10) 

  DAPCgrouplist[[i]] <- find.clusters(glSNPrev, n.pca = 50, n.clust = 

Krange[i], glPca = PCA, n.iter = 1000) 

  DAPC[[i]] <- dapc(glSNPrev, pop = DAPCgrouplist[[i]]$grp, n.pca = 50, 

n.da = 5, glPca = PCA, parallel = TRUE, var.contrib = TRUE, var.loadings 

= TRUE) 

} 

 

# Exploring how much variability is explained for each linear function 

DAPCvar <- vector(mode = "list", length = length(DAPC)) 
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for(i in 1:length(DAPCvar)){ 

  DAPCvar[[i]] <- data.frame(DA = 1:length(DAPC[[i]][["eig"]]), Variance 

= (DAPC[[i]][["eig"]] / sum(DAPC[[i]][["eig"]])) * 100, CumulativeVar = 

cumsum((DAPC[[i]][["eig"]] / sum(DAPC[[i]][["eig"]])) * 100))  

} 

 

# Plotting variability and linear functions 

ggplot(data = DAPCvar[[3]], aes(x = DA, y = Variance)) +  

  geom_line(size = 0.25) + 

  geom_point(shape = 21) + 

  geom_vline(xintercept = 5, linetype = "dotted", color="blue") + 

  labs(title = "Discriminant analysis eigenvalues", x = "Linear 

discriminant", y = "Variance explained (%)") + 

  scale_x_continuous(expand = c(0, 0.1), breaks = 

c(1,2,3,4,5,6,7,8,9,10)) +  

  scale_y_continuous(expand = c(0, 1)) + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/DAPCDAVar.png", device = "png", width = 7, 

height = 4) 

 

# DAPC data frame for plot 

DAPCtemp <- as.data.frame(DAPC[[1]]$posterior) 

DAPCtemp$K <- Krange[1] 

DAPCtemp$ID <- rownames(DAPCtemp) 

DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","Country of Origin")], 

by="ID", all.x=TRUE) 

DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 
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DAPCtemp <- melt(DAPCtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

DAPCDF <- DAPCtemp 

 

for(i in 2:length(DAPC)){ 

  DAPCtemp <- as.data.frame(DAPC[[i]]$posterior) 

  DAPCtemp$K <- Krange[i] 

  DAPCtemp$ID <- rownames(DAPCtemp) 

  DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

  DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","Country of Origin")], 

by="ID", all.x=TRUE) 

  DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

  DAPCtemp <- merge(DAPCtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

  DAPCtemp <- melt(DAPCtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

  DAPCDF <- rbind(DAPCDF, DAPCtemp) 

} 

 

grp.labs <- paste("K =", Krange) 

names(grp.labs) <- Krange 

 

# Composition plot 

ggplot(DAPCDF, aes(x = ID, y = Probability, fill = Group)) + 

  geom_bar(stat = "identity") +  

  facet_grid(rows = vars(K), scales = "free_x", space = "free", labeller 

= labeller(K = grp.labs)) + 

  scale_fill_manual(values=clist$funky) + 

  labs(title = "DAPC Assignment plot", y = "Membership probability") + 

  theme(plot.title = element_text(hjust = 0.5), axis.text.x = 

element_blank(), axis.title.x = element_blank(), axis.ticks.x = 

element_blank()) 
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# saving plot 

ggsave(filename = "Figures/DAPCK11-14.png", device = "png", width = 7, 

height = 4.5) 

 

# Map plots 

# Sample Region Map plot K = 13 Group = 8 

DAPCG8Map <- ggplot(data = ne_countries(scale = "medium", returnclass = 

"sf")) + 

  geom_sf() + 

  geom_point(data = data.frame(longitude = SampleInfo[SampleInfo$ID %in% 

DAPCDF$ID[DAPCDF$K == 13 & DAPCDF$Group == 8 & DAPCDF$Probability > 

0.90],"Longitude of collecting site"], latitude = 

SampleInfo[SampleInfo$ID %in% DAPCDF$ID[DAPCDF$K == 13 & DAPCDF$Group == 

8 & DAPCDF$Probability > 0.90], "Latitude of collecting site"], elevation 

= SampleInfo[SampleInfo$ID %in% DAPCDF$ID[DAPCDF$K == 13 & DAPCDF$Group 

== 8 & DAPCDF$Probability > 0.90], "Elevation of collecting site"]), 

aes(x = longitude, y = latitude, color = elevation), size = 1,  

        shape = 20) + 

  scale_color_viridis(discrete = FALSE, option = "D", direction = -1) + 

  coord_sf(xlim = c(min(SampleInfo$`Longitude of collecting site`, na.rm 

= TRUE), max(SampleInfo$`Longitude of collecting site`, na.rm = TRUE)), 

ylim = c(min(SampleInfo$`Latitude of collecting site`, na.rm = TRUE), 

max(SampleInfo$`Latitude of collecting site`, na.rm = TRUE)), expand = 

TRUE) + 

  theme_classic() + 

  labs(title = "Sample collection sites for cluster 8 in K = 13", x = 

"Longitude", y = "Latitude") + 

  theme(plot.title = element_text(hjust = 0.5, size = 10), axis.line = 

element_line(color = "black", linewidth = 0.4), panel.grid.major = 

element_line(color="grey", size=0.2), axis.title = element_text(size = 

10), legend.key.size = unit(0.4, 'cm'), legend.title = element_text(size 

= 8), legend.text = element_text(size = 6)) 

 

# Sample Region Map plot K = 13 Group = 4 

DAPCG4Map <- ggplot(data = ne_countries(scale = "medium", returnclass = 

"sf")) + 

  geom_sf() + 
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  geom_point(data = data.frame(longitude = SampleInfo[SampleInfo$ID %in% 

DAPCDF$ID[DAPCDF$K == 13 & DAPCDF$Group == 4 & DAPCDF$Probability > 

0.90],"Longitude of collecting site"], latitude = 

SampleInfo[SampleInfo$ID %in% DAPCDF$ID[DAPCDF$K == 13 & DAPCDF$Group == 

4 & DAPCDF$Probability > 0.90], "Latitude of collecting site"], elevation 

= SampleInfo[SampleInfo$ID %in% DAPCDF$ID[DAPCDF$K == 13 & DAPCDF$Group 

== 4 & DAPCDF$Probability > 0.90], "Elevation of collecting site"]), 

aes(x = longitude, y = latitude, color = elevation), size = 1,  

        shape = 20) + 

  scale_color_viridis(discrete = FALSE, option = "D", direction = -1) + 

  coord_sf(xlim = c(min(SampleInfo$`Longitude of collecting site`, na.rm 

= TRUE), max(SampleInfo$`Longitude of collecting site`, na.rm = TRUE)), 

ylim = c(min(SampleInfo$`Latitude of collecting site`, na.rm = TRUE), 

max(SampleInfo$`Latitude of collecting site`, na.rm = TRUE)), expand = 

TRUE) + 

  theme_classic() + 

  labs(title = "Sample collection sites for cluster 4 in K = 13", x = 

"Longitude", y = "Latitude") + 

  theme(plot.title = element_text(hjust = 0.5, size = 10), axis.line = 

element_line(color = "black", linewidth = 0.4), panel.grid.major = 

element_line(color="grey", size=0.2), axis.title = element_text(size = 

10), legend.key.size = unit(0.4, 'cm'), legend.title = element_text(size 

= 8), legend.text = element_text(size = 6)) 

 

#arranged plot 

ggarrange(ggarrange(DAPCG8Map, DAPCG4Map, ncol = 2, labels = c("A", 

"B"))) 

 

#saving plot 

ggsave(filename = "Figures/DAPCG8G4.png", device = "png", width = 7, 

height = 4) 
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ANNEX	19.	SVD	with	DA	

# SVD 

# matrix centering 

matrixCentered <- scale(matnumSNPrev, center = TRUE, scale = FALSE) 

 

# mean imputation for NA values 

for(i in 1:ncol(matrixCentered)) { 

  matrixCentered[ , i][is.na(matrixCentered[ , i])] <- 

mean(matrixCentered[ , i], na.rm = TRUE) 

} 

 

# SVD 

SVD <- svd(matrixCentered) 

saveRDS(SVD, file = "DataReady/SVD/SVD.rmd") 

 

SVD <- readRDS(file = "DataReady/SVD/SVD.rmd") 

 

SVDvariance <- data.frame(SV = 1:length(SVD$d), Variance = 

SVD$d^2/sum(SVD$d^2) * 100, CumulativeVar = cumsum(SVD$d^2/sum(SVD$d^2)) 

* 100) 

 

# singular value variance plot 

ggplot(data = SVDvariance[1:75,], aes(x = SV, y = Variance)) +  

  geom_line(size = 0.25) + 

  geom_point(shape = 21) + 

  geom_vline(xintercept = 50, linetype = "dotted", color="blue") + 

  labs(title = "Explained variance plot", x = "Singular value", y = 

"Variance explained (%)") + 

  scale_x_continuous(expand = c(0, 1)) +  

  scale_y_continuous(expand = c(0, 1)) + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/SVDVar.png", device = "png", width = 7, height 

= 4) 
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# reducing data size with 50 singular values 

SVDrec <- (SVD$u[,1:50] %*% diag(SVD$d[1:50])) 

rownames(SVDrec) <- rownames(matnumSNPrev) 

 

# K-means clustering 

SVDclusters <- vector(mode = "list", length = length(1:20)) 

KstatSVDMatrix <- data.frame(matrix(nrow = 20, ncol = 2)) 

colnames(KstatSVDMatrix) <- c("K", "BIC")  

 

for(i in 1:20){ 

  set.seed(10) 

  SVDclusters[[i]] <- kmeans(SVDrec, centers = i) 

  KstatSVDMatrix$K[i] <- i 

  KstatSVDMatrix$BIC[i] <- kmeansBIC(SVDclusters[[i]]) 

} 

 

# BIC plot 

ggplot(data = KstatSVDMatrix, aes(x = K, y = BIC)) +  

  geom_point(shape = 21, color = "blue") + 

  theme_classic() + 

  labs(title = "Detection based on BIC", x = "Number of clusters (K)", y 

= "BIC") + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/SVDDABIC.png", device = "png", width = 7, 

height = 4) 

 

# DA 

# DA for K numbers 9 to 13 

Krange <- 9:13 # user has to define the subpopulation range 

SVDDA <- vector(mode = "list", length = length(Krange)) 

 

for(i in 1:length(SVDDA)){ 

  set.seed(10) 

  SVDDA[[i]] <- lda(SVDrec, grouping = SVDclusters[[Krange[i]]]$cluster) 

  SVDDA[[i]]$posterior <- predict(SVDDA[[i]], dimen = 5) 
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  SVDDA[[i]]$eig <- SVDDA[[i]]$svd^2 

} 

 

# Exploring how much variability is explained for each linear function 

SVDDAvar <- vector(mode = "list", length = length(SVDDA)) 

 

for(i in 1:length(SVDDAvar)){ 

  SVDDAvar[[i]] <- data.frame(DA = 1:length(SVDDA[[i]][["eig"]]), 

Variance = (SVDDA[[i]][["eig"]] / sum(SVDDA[[i]][["eig"]])) * 100, 

CumulativeVar = cumsum((SVDDA[[i]][["eig"]] / sum(SVDDA[[i]][["eig"]])) * 

100))  

} 

 

# Plotting variability and linear functions 

ggplot(data = SVDDAvar[[3]], aes(x = DA, y = Variance)) +  

  geom_line(size = 0.25) + 

  geom_point(shape = 21) + 

  geom_vline(xintercept = 5, linetype = "dotted", color="blue") + 

  labs(title = "Discriminant analysis eigenvalues", x = "Linear 

discriminant", y = "Variance explained (%)") + 

  scale_x_continuous(expand = c(0, 0.1), breaks = 

c(1,2,3,4,5,6,7,8,9,10)) +  

  scale_y_continuous(expand = c(0, 1)) + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/SVDDAVar.png", device = "png", width = 7, 

height = 4) 

 

# data formatting for plot 

Krange <- 9:13 #user has to define the subpopulation range 

 

# SVDDA data frame for plot 

SVDDAtemp <- as.data.frame(SVDDA[[1]]$posterior$posterior) 

SVDDAtemp$K <- Krange[1] 

SVDDAtemp$ID <- rownames(SVDDAtemp) 
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SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","Country of Origin")], 

by="ID", all.x=TRUE) 

SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

SVDDAtemp <- melt(SVDDAtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

SVDDAdf <- SVDDAtemp 

 

for(i in 2:length(SVDDA)){ 

  SVDDAtemp <- as.data.frame(SVDDA[[i]]$posterior$posterior) 

  SVDDAtemp$K <- Krange[i] 

  SVDDAtemp$ID <- rownames(SVDDAtemp) 

  SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

  SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","Country of 

Origin")], by="ID", all.x=TRUE) 

  SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

  SVDDAtemp <- merge(SVDDAtemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

  SVDDAtemp <- melt(SVDDAtemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

  SVDDAdf <- rbind(SVDDAdf, SVDDAtemp) 

} 

 

grp.labs <- paste("K =", Krange) 

names(grp.labs) <- Krange 

 

# Composition plot 

ggplot(SVDDAdf, aes(x = ID, y = Probability, fill = Group)) + 

  geom_bar(stat = "identity") +  
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  facet_grid(rows = vars(K), scales = "free_x", space = "free", labeller 

= labeller(K = grp.labs)) + 

  scale_fill_manual(values=clist$funky) + 

  labs(title = "SVD + DA Assignment plot", y = "Membership probability") 

+ 

  theme(plot.title = element_text(hjust = 0.5), axis.text.x = 

element_blank(), axis.title.x = element_blank(), axis.ticks.x = 

element_blank()) 

 

# saving plot 

ggsave(filename = "Figures/SVDDAK9-13.png", device = "png", width = 7, 

height = 4.5) 
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ANNEX	20.	sNMF	

# creating object 

write.geno.mod(matnumSNPrev, "DataReady/LEA/LEAgeno.geno") 

 

# snmf for 1-20 K 

# import from file 

snmfObjectKvar <- snmf("DataReady/LEA/LEAgeno.geno", K=1:20, ploidy = 4, 

alpha = 100, entropy = TRUE, project = "new") 

saveRDS(snmfObjectKvar, file="DataReady/LEA/snmfLEAKvar.rds") 

 

# cross entropy data 

snmfObjectKvar <- readRDS("DataReady/LEA/snmfLEAKvar.rds") 

snmfCrossEntr <- data.frame(matrix(nrow = 20, ncol = 2)) #20 rows for the 

20 Kmax clusters 

 

for(i in 1:20){ 

  snmfCrossEntr[i,1] <- i 

  snmfCrossEntr[i,2] <- snmfObjectKvar@runs[[i]]@crossEntropy 

} 

 

colnames(snmfCrossEntr) <- c("K", "Cross-entropy") 

 

# plot 

ggplot(data = snmfCrossEntr, aes(x = K, y = `Cross-entropy`)) +  

  geom_point(shape = 21, color = "blue") + 

  scale_x_continuous(breaks=seq(0, 20, 2)) + 

  theme_classic() + 

  labs(title = "Detection based on cross-entropy", x = "Number of 

clusters (K)", y = "Cross-entropy") + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# saving plot 

ggsave(filename = "Figures/NMFCrossEnt.png", device = "png", width = 

7.29, height = 4.91) 

 

# Extracting data for K range 
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Krange <- 10:14 #user has to define the subpopulation range 

NMFmatrix <- vector(mode = "list", length = length(Krange)) 

 

for(i in 1:length(NMFmatrix)){ 

  NMFmatrix[[i]] <- Q(snmfObjectKvar, K = Krange[i]) 

} 

 

# NMF data frame 

NMFTemp <- as.data.frame(NMFmatrix[[1]]) 

names(NMFTemp) <- 1:Krange[1] 

NMFTemp$K <- Krange[1] 

NMFTemp$ID <- rownames(matnumSNPrev) 

NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","Country of Origin")], 

by="ID", all.x=TRUE) 

NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 

NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","Administrative subdivision 

1")], by="ID", all.x=TRUE) 

NMFTemp <- melt(NMFTemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

NMFdf <- NMFTemp 

 

for(i in 2:length(NMFmatrix)){ 

  NMFTemp <- as.data.frame(NMFmatrix[[i]]) 

  names(NMFTemp) <- 1:Krange[i] 

  NMFTemp$K <- Krange[i] 

  NMFTemp$ID <- rownames(matnumSNPrev) 

  NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","Ploidy")], by="ID", 

all.x=TRUE) 

  NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","Country of Origin")], 

by="ID", all.x=TRUE) 

  NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","spp")], by="ID", 

all.x=TRUE) 
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  NMFTemp <- merge(NMFTemp, SampleInfo[, c("ID","Administrative 

subdivision 1")], by="ID", all.x=TRUE) 

  NMFTemp <- melt(NMFTemp, variable.name = "Group", value.name = 

"Probability", id = c("ID", "K", "Ploidy", "Country of Origin", "spp", 

"Administrative subdivision 1")) 

  NMFdf <- rbind(NMFdf, NMFTemp) 

} 

 

grp.labs <- paste("K =", Krange) 

names(grp.labs) <- Krange 

 

# plot 

ggplot(NMFdf, aes(x = ID, y = Probability, fill = Group)) + 

  geom_bar(stat = "identity") +  

  facet_grid(rows = vars(K), scales = "free_x", space = "free", labeller 

= labeller(K = grp.labs)) + 

  scale_fill_manual(values=clist$funky) + 

  labs(title = "NMF Assignment plot", y = "Membership probability") + 

  theme(plot.title = element_text(hjust = 0.5), axis.text.x = 

element_blank(), axis.title.x = element_blank(), axis.ticks.x = 

element_blank()) 

 

# saving plot 

ggsave(filename = "Figures/NMFK10-14.png", device = "png", width = 7, 

height = 4) 
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ANNEX	21.	Approach	comparison	

# Comparing cluster characteristics for K = 13 

# fastStructure simple prior 

fsSimClusterSum <- ggplot(fsSimDF[fsSimDF$K == 13 & fsSimDF$Probability > 

0.01,], aes(x = Group, y = Probability, color = Group)) + 

  geom_boxplot(show.legend = FALSE) + 

  scale_color_viridis(discrete = TRUE, option = "D", direction = -1) + 

  stat_summary(fun.y=mean, colour="black", geom="text", size = 1.8, 

show_guide = FALSE, vjust = 1.4, aes(label = round(..y.., digits = 3))) + 

  labs(title = "fastSTRUCTURE (simple prior) - K = 13") + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5, size = 10), axis.title.x = 

element_text(size = 10), axis.title.y = element_text(size = 10)) 

 

# fastStructure logistic prior 

fsLogClusterSum <- ggplot(fsLogDF[fsLogDF$K == 13 & fsLogDF$Probability > 

0.01,], aes(x = Group, y = Probability, color = Group)) + 

  geom_boxplot(show.legend = FALSE) + 

  scale_color_viridis(discrete = TRUE, option = "D", direction = -1) + 

  stat_summary(fun.y=mean, colour="black", geom="text", size = 1.8, 

show_guide = FALSE, vjust = 0.8, aes(label = round(..y.., digits = 3))) + 

  labs(title = "fastSTRUCTURE (logistic prior) - K = 13") + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5, size = 10), axis.title.x = 

element_text(size = 10), axis.title.y = element_text(size = 10)) 

 

# DAPC 

DAPCClusterSum <- ggplot(DAPCDF[DAPCDF$K == 13 & DAPCDF$Probability > 

0.01,], aes(x = Group, y = Probability, color = Group)) + 

  geom_boxplot(show.legend = FALSE) + 

  scale_color_viridis(discrete = TRUE, option = "D", direction = -1) + 

  stat_summary(fun.y=mean, colour="black", geom="text", size = 1.8, 

show_guide = FALSE, vjust = 2, aes(label = round(..y.., digits = 3))) + 

  labs(title = "DAPC - K = 13") + 

  theme_classic() + 
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  theme(plot.title = element_text(hjust = 0.5, size = 10), axis.title.x = 

element_text(size = 10), axis.title.y = element_text(size = 10)) 

 

# SVD + DA 

SVDDAClusterSum <- ggplot(SVDDAdf[SVDDAdf$K == 13 & SVDDAdf$Probability > 

0.01,], aes(x = Group, y = Probability, color = Group)) + 

  geom_boxplot(show.legend = FALSE) + 

  scale_color_viridis(discrete = TRUE, option = "D", direction = -1) + 

  stat_summary(fun.y=mean, colour="black", geom="text", size = 1.8, 

show_guide = FALSE, vjust = 2, aes(label = round(..y.., digits = 3))) + 

  labs(title = "SVD + DA - K = 13") + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5, size = 10), axis.title.x = 

element_text(size = 10), axis.title.y = element_text(size = 10)) 

 

# NMF + LS 

NMFClusterSum <- ggplot(NMFdf[NMFdf$K == 13 & NMFdf$Probability > 0.01,], 

aes(x = Group, y = Probability, color = Group)) + 

  geom_boxplot(show.legend = FALSE) + 

  scale_color_viridis(discrete = TRUE, option = "D", direction = -1) + 

  stat_summary(fun.y=mean, colour="black", geom="text", size = 1.8, 

show_guide = FALSE, vjust = 2.5, aes(label = round(..y.., digits = 3))) + 

  labs(title = "NMF + LS - K = 13") + 

  theme_classic() + 

  theme(plot.title = element_text(hjust = 0.5, size = 10), axis.title.x = 

element_text(size = 10), axis.title.y = element_text(size = 10)) 

 

# plot 

ggarrange(arrangeGrob(fsSimClusterSum, DAPCClusterSum, NMFClusterSum, 

heights = c(0.3,0.3,0.3)), arrangeGrob(fsLogClusterSum, SVDDAClusterSum, 

heights = c(0.3,0.3, 0.3)), ncol = 2) 

 

# saving plot 

ggsave(filename = "Figures/ClusterSummary.png", device = "png", width = 

7, height = 7) 

 

# Plotting results together 
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# bind data frames 

K13df <- rbind(cbind(fsSimDF[fsSimDF$K == 13,], method = "fS (simple)"), 

cbind(fsLogDF[fsLogDF$K == 13,], method = "fS (logistic)"), 

cbind(DAPCDF[DAPCDF$K == 13,], method = "DAPC"), cbind(SVDDAdf[SVDDAdf$K 

== 13,], method = "SVD + DA"), cbind(NMFdf[NMFdf$K == 13,], method = 

"NMF")) 

method.labs <- unique(K13df$method) 

names(method.labs) <- method.labs 

 

# plot 

ggplot(K13df, aes(x = ID, y = Probability, fill = Group)) + 

  geom_bar(stat = "identity") +  

  facet_grid(factor(method, levels = names(method.labs)) ~ ., scales = 

"free_x", space = "free", labeller = labeller(method = method.labs)) + 

  scale_fill_manual(values = clist$funky) + 

  labs(title = "Assignment plot per method K = 13", y = "Membership 

probability") + 

  theme(plot.title = element_text(hjust = 0.5), axis.text.x = 

element_blank(), axis.title.x = element_blank(), axis.ticks.x = 

element_blank(), axis.text.y = element_text(size = 8), strip.text.x = 

element_text(size = 6)) 

 

# saving plot  

ggsave(filename = "Figures/AssignmentPlotComparisonK13.png", device = 

"png") 
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ANNEX	22.	Data	sharing	agreement	with	CIP	

https://shorturl.at/fsABT 


