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ABSTRACT

In this paper we present a robust and improved system for
diabetic retinopathy (DR) screening. The goal of the systemis
to automatically screen out digital fundus photographs of diabetic
patients who do not present signs of DR. This work is motivated
by the large amount of diabetics in the world who do not receive
their recommended eye exams, leading to widespread blindness
as a complication of diabetes. The system is based on multiscale
amplitude-modulation frequency-modulation (AM-FM) methods for
feature extraction, and uses supervised and unsupervised methods to
produce its final output, namely, a normal or abnormal grade.The
most time-consuming processing routines of the system are imple-
mented in C using a compute unified device architecture (CUDA)
to produce results in real-time. The system was tested using776
images from 388 patients (one macula-centered image from each
eye). During the training phase of the system, the data was divided
in 70% for training and 30% for testing. The system was testedusing
20 random training/testing distributions, obtaining an average sensi-
tivity of 89% and specificity of 59%. Analysis of sight-threatening
conditions resulted in a sensitivity of 98% for these types of cases.

Index Terms— amplitude-modulation frequency-modulation
(AM-FM), multi-scale analysis, diabetic retinopathy.

1. INTRODUCTION

The National Institutes of Health (NIH) states that the leading cause
of new blindness among adults of 20-74 years old is diabetes [1].
In 2005-2008, in the United States only, 4.2 million people (28.5%)
with diabetes ages 40 years or older had diabetic retinopathy, and of
these, 4.4% had advanced diabetic retinopathy (DR) that could lead
to severe vision loss. It is estimated that over 10 million diabetics do
not receive the recommended annual eye examinations, significantly
increasing their risk of vision loss.

A system for automatic diabetic retinopathy (DR) screeningus-
ing multi-scale amplitude-modulation frequency-modulation (AM-
FM) methods has been first presented in [2, 3]. In this paper, we
present a new version of the system that is patient-based. Inother
words, instead of classifying individual images, we are nowpro-
ducing a classification for two retinal images taken from thesame
patient. Patient classification is better suited for screening because
it allows us to integrate several components of the exam intoa final
result. It also improves the sensitivity and specificity of the system
depending on which strategy is used for combination of grades. Fi-
nally, in an automatic screening environment an assessmentof the

This work was supported in part by the National Eye Instituteunder
Grants EY018280, EY020015 and RC3 EY020749.

whole case needs to be provided as the final result of the examina-
tion. Furthermore, the new system is validated on a diverse set of
images that were collected from 3 different DR screening centers,
with new image normalization pre-processing, using extended AM-
FM decompositions over 5 scales (instead of 4), with strict cross-
validation (robust regression), that is also re-implemented to run in
real-time.

Related research for DR screening approaches can be found in
[4] where the authors compared k-Nearest Neighbour (kNN) versus
the use of random Forest. Also, in recent years, many authorshave
proposed automatic DR screening systems based on the detection
of microaneurysms, blot haemorrhages and exudates (‘bottom-up’
approaches, see for example [5]). Gabor based methods are also ap-
plied for example in [6]. Although great progress has been made
in the development of automatic systems for DR screening, there
are still several open problems. Thus, AM-FM has been applied to
all types of DR diseases, while other approaches are problemspe-
cific. Our system is based on multi-scale AM-FM decompositions
that allows us to estimate the instantaneous amplitude (IA)and the
instantaneous frequency (IF) at every pixel over 5 different scales.
This approach allows us to provide a top-down approach that can be
applied to several types of eye diseases [7].

We describe the methodology in section 2. Then, we present the
results in section 3 and the discussion in section 4. Finally, conclu-
sions are presented in section 5.

2. METHODOLOGY

We present the block diagram of the system in Fig. 1. For each pa-
tient, a digital retinal image is taken for each eye. The meanimage
intensity is normalized so as to ensure that all images have the same
mean. Then, the AM-FM texture features are computed using 13dif-
ferent combination of scales. Next, we apply k-means clustering to
group extracted regions of interest according to their characteristics.
After that, partial least squares is used to reduce the high dimen-
sionality of the data and to classify each image. Finally, a combiner
block is used to produce the final patient grade from the individual
image grades. The following subsections provide more details for
the most significant steps.

2.1. AM-FM demodulation

For each normalized image, we consider a multi-scale AM-FM rep-
resentation of digital images given by [8]

I (k1, k2) ≃
M
∑

n=1

an (k1, k2) cosϕn (k1, k2) , (1)



Fig. 1. Block diagram of the patient DR screening system. The
digital images from both eyes of each patient are processed and used
to produce the patient grade.

wheren = 1, 2, . . . ,M denote different frequency scales,an de-
notes the instantaneous amplitude (IA) functions, andϕn denotes the
instantaneous phase (IP) functions. Each scale is defined interms of
a set of separable bandpass filters with similar frequency magnitude
ranges. It is assumed that the IA functions represent the slow varying
over the image; a high IA value means a strong presence of the cor-
responding frequency scale. Associated with each AM-FM compo-
nent, the instantaneous frequency (IF) is defined as∇ϕ = (ϕx, ϕy).

The input images are first filtered using an extended 2-D Hilbert
filter (see [8] for more details). Then, they are processed through a
dyadic filterbank using separable filters. Some examples of similar
AM-FM applications can be found in [2, 8]. Next, the AM-FM de-
modulation is applied at the output of each bandpass filter. For each
pixel, a dominant component analysis (DCA, [9]) is applied within
each frequency scale.

To compute the AM-FM estimates, from the output of each
bandpass filter, we estimate the IA and IP using:â(k1, k2) =

|ÎAS(k1, k2)| and ϕ̂(k1, k2) =

arctan(imag(ÎAS(k1, k2))/ real(ÎAS(k1, k2)), respectively, with
ÎAS(k1, k2) = I(k1, k2) + jH2d[I(k1, k2)], whereH2d denotes a
two-dimensional extension of the one-dimensional Hilberttransform
operator. We use the variable spacing, local linear phase (VS-LLP)
method for robust IA-IF estimation (described in [8]). To estimate
the first IF component, we usêϕx(k1, k2) = 1

n1

arccos (γ (n1)),

where ĪAS(k1, k2) = ÎAS(k1, k2)/|ÎAS(k1, k2)| and γ (n1) =
(

ĪAS(k1 + n1, k2) + ĪAS(k1 − n1, k2)
)

/
(

2ĪAS(k1, k2)
)

. We
perform a similar approach for the second IF componentϕ̂2.

As described in [8],n1 represents a variable displacement, from
1 to 4 formulated from the optimization problem

minimize
n1

|γarccos(n1)|

subject to ϕ̂x ∈ [wp1x , wp2x ],
(2)

wherewp1x andwp2x represents the limits to thex-direction projec-
tion of the bandpass used.

In the DR system, we use 3 AM-FM estimates: (i) IA, (ii) IF
magnitude, and (iii) IF angle. We use a 5-scale filterbank with the

space of frequency scales defined as: (i)H: high, (ii) M: medium,
(iii) L: low, (iv) V : very low (half of L), (v) U: ultra low (half of
V), and (vi) F: lowpass filter. Then, we compute the AM-FM es-
timates (3 in total) using 13 combinations of the frequency scales
(CoS) mentioned before. The goal of each CoS is to analyze the
AM-FM estimation at independent scales and at neighbors of scales
(see [3] for more details).

Since the AM-FM estimation is time demanding, we use a
C/CUDA (compute unified device architecture) implementation as
stated in [10].

Thus, an input image is divided into 39 (3 AM-FM estimates
and 13 CoS) new images.

2.2. Unsupervised learning

Each image from the multiscale AM-FM estimation (39 in total) is
divided into a fixed number of regions of interest (ROI) with fixed di-
mensions. Then, a histogram of the values of each AM-FM estimate
for each ROI is produced to approximate its probability density func-
tion. These histograms become the descriptors of each ROI. Thus,
assuming that we haveNR ROIs per image and that we are usingb
variables for each histogram, each of the 39 images (observations) is
now represented usingNR × b variables.

Next, to reduce the number of variables to represent each image,
we apply k-means as an unsupervised learning method to cluster the
different types of ROIs intoK groups [2,11]. By this, we reduce the
number of variables to represent each of the 39 images fromNR × b
toK.

Due to the high dimensionality of the data in the training set(we
describe the images used in subsection 3.1), different random initial
cluster centroid positions (seeds) can lead to different final centroids.
To make the system more robust and to have more probabilitiesto
reproduce each clustering with the same final centroids, we repeat
the clustering 3 times. Thus, we use as answer the repetitionwith
the minimum sum of point-to-centroid distances.

For the testing images, the centroids computed here are usedto
produce the feature vectors withK variables.

2.3. Feature reduction and supervised classification usingpar-
tial least squares and determination of patient grade

Up to this point, each input fundus image has been described by
using 39 features vectors ofK variables each. Thus, to create a
DR system model, givenNTr images for the training, with their
corresponding grades, we use Partial Least Squares (PLS, [12]) first
to reduce the dimensionality from high correlation observations at
each CoS to robust and uncorrelated observations.

PLS is a linear regression method formulated asy = Xβ + ε,
wherey is a n × 1 vector of the classification variables,X is a
n × p matrix of the extracted AM-FM features,β is ap × 1 vector
of regression weights, andε is an× 1 vector of residuals. The least
squares solution to estimatingβ is given by the normal equations
β = (XTX)−1(XT y) (see more details in [2,7]).

In most of classification applications, there are much more ob-
servations than images (variables,p < n), and AM-FM features in
X can be highly correlated. Thus,XTX can be singular or nearly
singular and a unique solution to the normal equations couldnot ex-
ist. PLS reducesX to a lower dimensional subspace (k ≪ p, where
k represent the number of factors used). The first step is to factor X
asX = TL, whereT is an orthogonaln×k matrix ofT -scores and
L is ak× p matrix of factor loadings. TheT -scores matrix are used
to find a threshold for classification as outlined in [13].



For the training stage, using all the images in the training
database, we compute theT -scores matrices for each CoS. The
dimensionality of the input matrix will be reduced fromNTr × K
to NTr × k, with k ≤ K. It is important to mention that thêy
produced for each input training image using the recursive method
SIMPLS [12] will be different than thêy value produced when
the loading matrixL are used. Let’s define theT -scores and the
loading factorsL computed using the recursive method SIMPLS
asTSIMPLS andL with X ≈ TSIMPLSL. If we compute the
T -scores usingL andX using regular matrix operations:X ≈ TL

thenT{usingL} = T =
(

XLT
) (

LLT
)−1

, there are differences
between the recursiveTSIMPLS andT{usingL} computed using the
loading factors. Thus, we use SIMPLS to compute the optimum
number of factorsk and the loading matrixL for each CoS. Then,
we compute theT -scores by matrix multiplications usingX andL.

We compute the optimum number of factork based on the mean-
squared errors (MSE) for the matrix of the extracted AM-FM fea-
turesX and the MSE for the classification variablesy.

Now that we haveT -scores for each CoS,Ti = {T1, T2, · · · , T39},
they are combined in a new matrixM such thatM = [T1T2 · · ·T39].
Then, we use PLS againbut as a classifier to solve the equation
y = Mβ. Finally, we keep the regression parametersβ for classifi-
cation of new images. At this stage, we select a threshold to reach
our target sensitivity and specificity values.

For the testing stage, the generalized inverse ofL for each CoS
is used first to reduce the input features. Then, the reduced features
are combined to compute the estimatedy value given the regression
parametersβ found during the training.

The final grade (normal or abnormal) per image is estimated us-
ing the threshold selected during the training stage. To produce the
grade per patient, we use either an OR rule (patient is abnormal if
either ayer is abnormal) between the 2 eyes, or an AVERAGE rule
(ŷpatient =

1

2
ŷLeftEye+

1

2
ŷRightEye) given the selected threshold.

3. RESULTS

3.1. Images Used

Digital fundus photographs were collected in three different DR
screening centers: (i) Project HOPE in Albuquerque, NM, (ii) Com-
municare Clinics, and (iii) the Retina Institute of South Texas, in
San Antonio, TX. Macula-centered (field 2), non-mydriatic images
of both eyes were captured with a Canon CR1 Mark II camera. The
field of view (FOV) of the images is45◦. The images were origi-
nally 4752 × 3168 pixels of resolution with 72 dots per inch (dpi).
The images were resized to2224 × 1888 pixels due to memory and
processing time constraints. Ground truth was provided indepen-
dently by two optometrists. Any discrepancies were adjudicated by
a certified retinal grader. Cases without enough image quality for
retinal evaluation were manually eliminated from our dataset.

A total of 776 images, corresponding to 388 patients, were col-
lected. For the training, we used 544 images corresponding to 393
normals and 151 abnormals. Note that some patients might have
early signs of DR only in one eye. For the testing, the distribution
was 167 normals and 65 abnormals.

3.2. Parameters used in the DR system

We use a 5-scale filterbank as described in subsection 2.1. For the
k-means clustering, we have usedK = 30 clusters. ThisK value
was selected empirically after experimenting with different number
of clusters.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Analysis of misclassified images during all tests. See textfor
the possible reasons for each failure.

The ROIs were selected to be square, non-overlapping regions
of 140× 140 pixels. We cover the full retina picture using a total of
202 ROIs per image.

To avoid the computation of a model which can be producing
extreme results (either good or bad), we produce 20 different runs.
For each run, we randomly change the training and testing sets. The
constraints are that a patient must have his or her 2 photographs in
the same set either training or testing and that the ratio of normal and
abnormal cases in the training and testing sets remains constant. The
original images were normalized to have mean intensity value equal
to 75 in the green channel.

In Table 1 we present a summary of the results in terms of sensi-
tivity/specificity (Sen/Spc) for the 20 models created. We show each
individual result for each model. Also, we show the individuals area
under the receiver operating characteristic (ROC) curve (AUC) for
training and testing. The final Sen/Spc value is given by the average
of the 20 models.

In Fig. 2 we present 6 images that were always misclassified
under different tests for discussion purposes (next section).

4. DISCUSSION

AM-FM methods are robust under intensity variations in the IF fea-
tures. However, IA estimates will be different under cases with sim-
ilar FM textures but with higher or lower intensities. By normalizing
them so that they have the same mean intensity values we reduced
the effect of this problem.

This bring us to the discussion of the need for pre-processing
methods that can normalize any input image under different charac-
teristics. For example, images with non-constant illumination need
to be normalized. The current problem of pre-processing methods
is that they introduce noise or small image artifacts that can be con-
fused with small lesions in a DR problem. We are currently working
on developing pre-processing methods that can improve the quality
of the image without the creation of artifacts.

In terms of the results from Table 1, we can see thatAUCTr ≥
AUCTt (note that only in the models 8 and 15AUCTr = AUCTt).
When theT -scores from the recursive methods (like SIMPLS,
see subsection 2.3) are used, the difference betweenAUCTr and
AUCTt was bigger. This is due to the fact that optimum and unre-
alistic values that cannot be generalized to new sets when there are
many variables such as high dimensionality and correlated data were
computed. The use of the computedT -scores based on the loading



matricesL represent the behavior of new data with more general-
ization. Also, related with PLS, the number of factorsk needs to as
small as possible. Different error metrics can be used (we use the
MSE) keeping in mind that the bigger thek the less generalization
of the system.

We can see that there are models with very high Sen/Spc, for
example, model 17 using the OR rule (92%/65%) or model 13 us-
ing the AVERAGE rule (92%/64%). Recall that the Sen/Spc values
were calculated using a threshold from the training selected auto-
matically. Given the high AUC values in the testing we can getdif-
ferent values for Sen/Spc according to the medical requirements. In
this manuscript we show the results given the automaticallyselected
threshold to analyze the generalization of the problem.

In terms offailure analysis (see Fig. 2), most of the misclassi-
fied images were at very early stages of DR. Fig. 2a presents some
microaneurysms, hemorrhages and exudates out of the optic disc.
However, the image is blurry, which reduces the quality of the im-
age and smooths these lesions. Thus, for the system, this image was
graded as normal. Fig. 2b presents some microaneurysms but the
image is graded as normal due to the small size and quantitiesof
this lesion. Fig. 2c presents some microaneurysms and hemorrhages
indicated by the circle but the retinal is graded as normal since the
hemorrhages are small and too close to the vessels. Fig. 2d and
e presents the same lesions and problems of Fig. 2c. Finally,Fig.
2f is an image with some microaneurysms and some symptoms of
drusen. The quantity of microaneurysms is small and the contrast of
the drusen is low which helps explain why the system mis-classified
these cases.

5. CONCLUSIONS

We have presented an improved version of a DR screening system
based on multiscale AM-FM features. We used fundus images col-
lected from 338 patients from different screening centers.Given the
estimated DR population, we need to get a performance of about
Sen/Spc = 90%/60% for applying the system to population screen-
ing. Some of the models presented here produce results better than
that requirement.

As future work, we will develop methods for reducing the mis-
classification of abnormal images due to the image quality ofthe
fundus images (blurry, out of focus, under- or over-exposured, etc.)
and due to some patterns such as choroidal vessels.
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