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ABSTRACT

In this paper we present a robust and improved system fo

diabetic retinopathy (DR) screening. The goal of the sysiem
to automatically screen out digital fundus photographs iabetic
patients who do not present signs of DR. This work is motivate
by the large amount of diabetics in the world who do not rezeiv

their recommended eye exams, leading to widespread bksdne

as a complication of diabetes. The system is based on naléisc
amplitude-modulation frequency-modulation (AM-FM) medls for
feature extraction, and uses supervised and unsupervisguhds to
produce its final output, namely, a normal or abnormal graldee
most time-consuming processing routines of the systemnapéet
mented in C using a compute unified device architecture (CJ
to produce results in real-time. The system was tested u&ii6g
images from 388 patients (one macula-centered image frarh ea
eye). During the training phase of the system, the data wededi

in 70% for training and 30% for testing. The system was tessiug

20 random training/testing distributions, obtaining arrage sensi-
tivity of 89% and specificity of 59%. Analysis of sight-thteaing
conditions resulted in a sensitivity of 98% for these typksases.

Index Terms— amplitude-modulation frequency-modulation
(AM-FM), multi-scale analysis, diabetic retinopathy.

1. INTRODUCTION

The National Institutes of Health (NIH) states that the Irgattause
of new blindness among adults of 20-74 years old is diabdfes [
In 2005-2008, in the United States only, 4.2 million peo28.5%)
with diabetes ages 40 years or older had diabetic retingparial of
these, 4.4% had advanced diabetic retinopathy (DR) that dead
to severe vision loss. Itis estimated that over 10 millicabditics do
not receive the recommended annual eye examinationsfisanily
increasing their risk of vision loss.

A system for automatic diabetic retinopathy (DR) screenisg
ing multi-scale amplitude-modulation frequency-modiolat(AM-

whole case needs to be provided as the final result of the esami
}ion. Furthermore, the new system is validated on a divezs@fs
Images that were collected from 3 different DR screeningersn
with new image normalization pre-processing, using e>aentiM-
FM decompositions over 5 scales (instead of 4), with stnioss-
validation (robust regression), that is also re-impleradrib run in
real-time.

Related research for DR screening approaches can be found in
[4] where the authors compared k-Nearest Neighbour (kNK§use
the use of random Forest. Also, in recent years, many auttawe
proposed automatic DR screening systems based on theidetect
of microaneurysms, blot haemorrhages and exudates (that{w

D. Aapproaches, see for example [5]). Gabor based methodssareml

plied for example in [6]. Although great progress has beedana
in the development of automatic systems for DR screeningreth
are still several open problems. Thus, AM-FM has been agptie
all types of DR diseases, while other approaches are probpeEm
cific. Our system is based on multi-scale AM-FM decomposgio
that allows us to estimate the instantaneous amplitude gid)the
instantaneous frequency (IF) at every pixel over 5 diffessrales.
This approach allows us to provide a top-down approach trabe
applied to several types of eye diseases [7].

We describe the methodology in section 2. Then, we present th
results in section 3 and the discussion in section 4. Finatligclu-
sions are presented in section 5.

2. METHODOLOGY

We present the block diagram of the system in Fig. 1. For eaeh p
tient, a digital retinal image is taken for each eye. The nmigmye
intensity is normalized so as to ensure that all images Haveame
mean. Then, the AM-FM texture features are computed usirtif13
ferent combination of scales. Next, we apply k-means dlingje¢o
group extracted regions of interest according to theiratteristics.
After that, partial least squares is used to reduce the higierd
sionality of the data and to classify each image. Finallypmlginer

FM) methods has been first presented in [2, 3]. In this paper, Wyjock is used to produce the final patient grade from the iddid

present a new version of the system that is patient-basedthér
words, instead of classifying individual images, we are now-
ducing a classification for two retinal images taken from shene
patient. Patient classification is better suited for sdregbecause
it allows us to integrate several components of the examaritoal
result. It also improves the sensitivity and specificity fod system
depending on which strategy is used for combination of ggaéé
nally, in an automatic screening environment an assessofi¢he

This work was supported in part by the National Eye Instituieler
Grants EY018280, EY020015 and RC3 EY020749.

image grades. The following subsections provide more ldefiii
the most significant steps.

2.1. AM-FM demodulation

For each normalized image, we consider a multi-scale AM-Ep r
resentation of digital images given by [8]

M
I (k1 ko) = " an (ki ko) cos pn (K1, k) ,

n=1
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Fig. 1. Block diagram of the patient DR screening system. Th

digital images from both eyes of each patient are processdsed
to produce the patient grade.

wheren = 1,2,..., M denote different frequency scales, de-
notes the instantaneous amplitude (IA) functions, @ndienotes the
instantaneous phase (IP) functions. Each scale is defirtedns of
a set of separable bandpass filters with similar frequenagnihade
ranges. Itis assumed that the IA functions represent thevsoying

over the image; a high IA value means a strong presence obthe ¢

responding frequency scale. Associated with each AM-FMpmm
nent, the instantaneous frequency (IF) is define¥las= (., ¢y).

The input images are first filtered using an extended 2-D IHilbe

filter (see [8] for more details). Then, they are processeauth a
dyadic filterbank using separable filters. Some examplegofes

AM-FM applications can be found in [2, 8]. Next, the AM-FM de-

modulation is applied at the output of each bandpass filtarekch
pixel, a dominant component analysis (DCA, [9]) is applieithin
each frequency scale.

€

space of frequency scales defined as:Hi)high, (i) M: medium,

(i) L: low, (iv) V: very low (half of L), (v) U: ultra low (half of

V), and (vi) F: lowpass filter. Then, we compute the AM-FM es-
timates (3 in total) using 13 combinations of the frequencgies
(CoS) mentioned before. The goal of each CoS is to analyze the
AM-FM estimation at independent scales and at neighborsalés
(see [3] for more details).

Since the AM-FM estimation is time demanding, we use a
C/CUDA (compute unified device architecture) implemeotatas
stated in [10].

Thus, an input image is divided into 39 (3 AM-FM estimates
and 13 CoS) new images.

2.2. Unsupervised learning

Each image from the multiscale AM-FM estimation (39 in tptal
divided into a fixed number of regions of interest (ROI) wittefi di-
mensions. Then, a histogram of the values of each AM-FM egém
for each ROl is produced to approximate its probability dgrfanc-
tion. These histograms become the descriptors of each ROk, T
assuming that we hawr ROIs per image and that we are using
variables for each histogram, each of the 39 images (olttamgdis
now represented usinr x b variables.

Next, to reduce the number of variables to represent eaadffeima
we apply k-means as an unsupervised learning method techist
different types of ROIs intd< groups [2,11]. By this, we reduce the
number of variables to represent each of the 39 images Nanx b
to K.

Due to the high dimensionality of the data in the training(a&t
describe the images used in subsection 3.1), differenbrariditial
cluster centroid positions (seeds) can lead to differeat iantroids.
To make the system more robust and to have more probabiidies
reproduce each clustering with the same final centroids,epeat
the clustering 3 times. Thus, we use as answer the repetititbn
the minimum sum of point-to-centroid distances.

For the testing images, the centroids computed here aretased
produce the feature vectors witti variables.

2.3. Feature reduction and supervised classification usingar-

To compute the AM-FM estimates, from the output of eachtial least squares and determination of patient grade

bandpass filter, we estimate the IA and IP usinig(k:, k2) =
Tas (k1 k)| and k1, k2) =
arctan(imag (I as(k1, ko))/real(Ias(k1, ko)), respectively, with
Tas(k1,k2) = I(ky, ko) + jHoa[I (k1, k2)], whereHo, denotes a
two-dimensional extension of the one-dimensional Hilb@rsform
operator. We use the variable spacing, local linear phaSeL(MP)
method for robust IA-IF estimation (described in [8]). Tdiemte
the first IF component, we usg, (ki, k2) = n% arccos (v (n1)),

Wbel’eI_As(/ﬁ,kQ) = fAs(kl,kg)/|jAs(k1,k2)| andy(m) =

(Ias(kr +na,k2) + Tas(kr — i, k2)) / (21as(k1, k2)).  We
perform a similar approach for the second IF compougent

Up to this point, each input fundus image has been descrilged b
using 39 features vectors df variables each. Thus, to create a
DR system model, giveiNr, images for the training, with their
corresponding grades, we use Partial Least Squares (P2Jpfif$t
to reduce the dimensionality from high correlation obstoves at
each CoS to robust and uncorrelated observations.

PLS is a linear regression method formulatedyjas X3 + ¢,
wherey is an x 1 vector of the classification variableX is a
n X p matrix of the extracted AM-FM featureg, is ap x 1 vector
of regression weights, arxdis an x 1 vector of residuals. The least
squares solution to estimatirgyis given by the normal equations

As described in [8]n.1 represents a variable displacement, from g = (X7 X)~!(XTy) (see more details in [2, 7]).

1 to 4 formulated from the optimization problem

minimize | yarccos (121)]
™ (2

subjectto ¢, € [wp,, , Wps, |,

wherew,,, andw,,, represents the limits to thedirection projec-
tion of the bandpass used.

In the DR system, we use 3 AM-FM estimates: (i) IA, (i) IF

magnitude, and (iii) IF angle. We use a 5-scale filterbank hie

In most of classification applications, there are much mdare o
servations than images (variables< n), and AM-FM features in
X can be highly correlated. Thu&” X can be singular or nearly
singular and a unique solution to the normal equations coofex-
ist. PLS reduce to a lower dimensional subspade « p, where
k represent the number of factors used). The first step is torfac
asX = TL,whereT is an orthogonah x k matrix of T-scores and
L is ak x p matrix of factor loadings. Th&-scores matrix are used
to find a threshold for classification as outlined in [13].



For the training stage, using all the images in the training
database, we compute tié-scores matrices for each CoS. The
dimensionality of the input matrix will be reduced frovir,, x K
to Nr, X k, with & < K. It is important to mention that the
produced for each input training image using the recursiethod
SIMPLS [12] will be different than thej value produced when
the loading matrix are used. Let's define th€-scores and the
loading factorsL. computed using the recursive method SIMPLS
asTsimprs and L with X =~ TsiymprsL. If we compute the
T-scores usind. and X using regular matrix operations’ ~ T'L
thenTyyeingry = 7 = (XLT) (LLT)fl, there are differences
between the recursiVEsrarprs andTysingr,y COMputed using the
loading factors. Thus, we use SIMPLS to compute the optimum
number of factorg and the loading matrix. for each CoS. Then, (d) (®
we compute thd'-scores by matrix multiplications using and L.

We compute the optimum number of factobased on the mean-
squared errors (MSE) for the matrix of the extracted AM-FM-fe
turesX and the MSE for the classification variablgs

Now that we havd-scores for each Co$; = {711, T%, - , T30}, ) ]
they are combined in a new mati such that\/ = [T)T% - - - Tso). The ROIs were selected to be square, npn-overlgpplng region
Then, we use PLS againbut as a classifier to solve the equaticﬁf 140 x 140 pllxels. We cover the full retina picture using a total of
y = MB. Finally, we keep the regression parameffsr classifi- 202 ROIs per image. _ _ )
cation of new images. At this stage, we select a thresholédotr To avoid the computation of a model which can be producing
our target sensitivity and specificity values. extreme resullts (either good or bad), we produce 20 diffenens.

For the testing stage, the generalized inversé &r each Cos ~ For each run, we randomly change the training and testirsg $ee
is used first to reduce the input features. Then, the redwesidres ~ COnstraints are that a patient must have his or her 2 phgibgria
are combined to compute the estimageealue given the regression e same set either training or testing and that the ratioohal and
parameterss found during the training. ab_n_ormf_il cases in the training and testing sets r_emalnan'he

The final grade (normal or abnormal) per image is estimated us2rginal images were normalized to have mean intensityevatjual
ing the threshold selected during the training stage. Tdume the (© 75 in the green channel. _ _
grade per patient, we use either an OR rule (patient is akaidfm In Table 1 we present a summary of the results in terms of sensi

either ayer is abnormal) between the 2 eyes, or an AVERAGE rul tivity/specificity (Sen/Spc) for the 20 models created. \Wevs each
(Jpationt = 2iinestEye + L Rignt £ye) given the selected threshold individual result for each model. Also, we show the indiatkiarea
atient — 2 e e 2 3 € -

under the receiver operating characteristic (ROC) curdgéG@pfor
training and testing. The final Sen/Spc value is given by teeage
3. RESULTS of the 20 models.
In Fig. 2 we present 6 images that were always misclassified
3.1. Images Used under different tests for discussion purposes (next sectio

Fig. 2. Analysis of misclassified images during all tests. Seeftaxt
the possible reasons for each failure.

Digital fundus photographs were collected in three diffierBR
screening centers: (i) Project HOPE in Albuquerque, NM,Gbm- 4. DISCUSSION
municare Clinics, and (iii) the Retina Institute of Souttxas, in
San Antonio, TX. Macula-centered (field 2), non-mydriatitages = AM-FM methods are robust under intensity variations in théda-
of both eyes were captured with a Canon CR1 Mark Il camera. Theures. However, IA estimates will be different under casith sim-
field of view (FOV) of the images i45°. The images were origi- ilar FM textures but with higher or lower intensities. By nalizing
nally 4752 x 3168 pixels of resolution with 72 dots per inch (dpi). them so that they have the same mean intensity values weagduc
The images were resized 2024 x 1888 pixels due to memory and the effect of this problem.
processing time constraints. Ground truth was provide@ped- This bring us to the discussion of the need for pre-procgssin
dently by two optometrists. Any discrepancies were adigid by  methods that can normalize any input image under differleatac-
a certified retinal grader. Cases without enough image tyuiair teristics. For example, images with non-constant illurtioraneed
retinal evaluation were manually eliminated from our detas to be normalized. The current problem of pre-processinghoukst

A total of 776 images, corresponding to 388 patients, wele co is that they introduce noise or small image artifacts thatlmcon-
lected. For the training, we used 544 images correspondir@®3  fused with small lesions in a DR problem. We are currentlykivay
normals and 151 abnormals. Note that some patients mighg hawn developing pre-processing methods that can improveuhbty)
early signs of DR only in one eye. For the testing, the digtidn  of the image without the creation of artifacts.
was 167 normals and 65 abnormals. In terms of the results from Table 1, we can see th&iC'r,. >
AUC, (note that only in the models 8 and #8/Cr,. = AUCTy).
When theT-scores from the recursive methods (like SIMPLS,
see subsection 2.3) are used, the difference betwdé6'r, and
We use a 5-scale filterbank as described in subsection 2rithéo AU Cr: was bigger. This is due to the fact that optimum and unre-
k-means clustering, we have us&d= 30 clusters. ThiskK value alistic values that cannot be generalized to new sets where tre
was selected empirically after experimenting with diffgaraumber  many variables such as high dimensionality and correlaataldere
of clusters. computed. The use of the comput&escores based on the loading

3.2. Parameters used in the DR system



matricesL represent the behavior of new data with more general
ization. Also, related with PLS, the number of factéraeeds to as
small as possible. Different error metrics can be used (veetlis
MSE) keeping in mind that the bigger tlethe less generalization
of the system.

We can see that there are models with very high Sen/Spc, f
example, model 17 using the OR rule (92%/65%) or model 13 us-

Table 1. Summary of the results in terms sensitivity (Sen.) and
specificity (Spc.) in the testing results give a selecteedhold from
the training. The results are per patient given the OR ruléher
AVERAGE rule (see subsection 2.3). We also show the indafidu
d?‘UC for each model for training (Tr) and testing (Tt).

ing the AVERAGE rule (92%/64%). Recall that the Sen/Spceslu
were calculated using a threshold from the training setkeatgo-

matically. Given the high AUC values in the testing we canditt
ferent values for Sen/Spc according to the medical requrgsn In

this manuscript we show the results given the automatisallgcted

threshold to analyze the generalization of the problem.

In terms offailure analysis (see Fig. 2), most of the misclassi-

fied images were at very early stages of DR. Fig. 2a presents so

microaneurysms, hemorrhages and exudates out of the dptic d

However, the image is blurry, which reduces the quality &f ith-

age and smooths these lesions. Thus, for the system, thigimas

graded as normal. Fig. 2b presents some microaneurysmeut t

image is graded as normal due to the small size and quandities

this lesion. Fig. 2c presents some microaneurysms and hieagas

indicated by the circle but the retinal is graded as normatesihe

hemorrhages are small and too close to the vessels. Fig. @&d a

e presents the same lesions and problems of Fig. 2c. Filédly,

2f is an image with some microaneurysms and some symptoms

drusen. The quantity of microaneurysms is small and the-ashof

the drusen is low which helps explain why the system missdfiasl

these cases.

5. CONCLUSIONS

We have presented an improved version of a DR screeningnsyst
based on multiscale AM-FM features. We used fundus imagles ¢

lected from 338 patients from different screening cent@igen the

estimated DR population, we need to get a performance oftabou
Sen/Spc = 90%/60% for applying the system to populationesere

OR rule AVERAGE rule AUC

Run # Sen.| Spc.| Sen.| Spc. T[Tt
1 0.83 | 0.60 | 0.78 0.73 0.92| 0.79
2 0.89 | 0.51 | 0.89 0.63 0.94| 0.77
3 0.89 | 0.76 | 0.78 0.89 0.92| 0.87
4 0.86 | 0.49 | 0.81 0.75 0.91] 0.81
5 092 | 0.66 | 0.72 0.78 0.91] 0.82
6 0.86 | 0.51| 0.78 0.78 0.91] 0.83
7 0.92 | 0.51| 0.83 0.60 0.93| 0.77
8 0.89 | 0.80| 0.78 0.90 0.87 | 0.87
9 0.86 | 0.45| 0.81 0.60 0.94 | 0.76
10 0.94 | 054 | 0.81 0.65 091 0.81
11 0.83 | 0.46 | 0.72 0.69 0.92 | 0.72
12 0.89 | 0.68| 0.72 0.74 0.92 | 0.82
13 0.89 | 0.53| 0.92 0.64 091 0.81
. 14 0.92 | 0.59| 0.83 0.73 0.88 | 0.82
& 15 0.83| 0.75| 0.81 0.89 0.87 | 0.87
16 0.92 | 059 | 0.81 0.69 0.89 | 0.80
17 0.92 | 0.65| 0.89 0.78 091 | 0.84
18 0.86 | 0.69 | 0.75 0.76 0.89 | 0.84
19 0.89 | 0.50| 0.86 0.73 0.89 | 0.84
20 0.92 | 0.61| 0.86 0.68 0.89 | 0.81
Average 0.89 | 0.59 | 0.81 0.73 0.91| 0.81
Minimum 0.83 | 045 | 0.72 0.60 0.87| 0.72
Maximum 0.94 | 0.80 | 0.92 0.90 0.94| 0.87
Standard Dev. || 0.03 | 0.10 | 0.06 0.09 0.02 | 0.04
Median 0.89 | 0.59| 0.81 0.73 0.91| 0.82

ing. Some of the models presented here produce results treite
that requirement.

As future work, we will develop methods for reducing the mis-
classification of abnormal images due to the image qualityhef
fundus images (blurry, out of focus, under- or over-expeguetc.)
and due to some patterns such as choroidal vessels.
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