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Abstract—This paper deals with the implementation of a
embedded position control system using a robust nonlinear
predictive controller, which is employed to control simultaneously
angular positions of the base and arm of an angular manipulator
of 2DOF (2 Degrees of Freedom). The design of such control
system requires the derivation of the dynamic nonlinear model of
the manipulator, as well as the determination of the corresponding
predictive control law. Intensive simulation studies permitted to
find out the initial values of the tuning parameters of the predic-
tive controller. A CRIO (Compact Reconfigurable Input/Output)
device was used to embed the control system. Good performance
of the predictive control system was verified via experimentation.

I. INTRODUCTION

Control laws for robotic applications require to be effective
for achieving accurate tracking of fast motion in the presence
of uncertainties and variable inertia and gravitational load of
the manipulator during operation. In this context, nonlinear
robust predictive controllers constitute a real alternative due
to its robustness in the presence of model uncertainties and
disturbances.

The number of research works related to the application
of nonlinear predictive control to manipulators is continuously
growing. In reference [1] an efficient approaches for nonlinear
model predictive control, derived via minimization of adequate
cost functions is verified by simulation. A nonlinear receding–
horizon controller for rigid link manipulators, determined from
a quadratic performance index of the predicted tracking error
and the predicted control effort, is treated in [2]. In reference
[4], a PUMA 560 manipulator robot was controlled using a
predictive computed–torque control, while a tracking controller
for a two-link planar manipulator on the horizontal space via
nonlinear model predictive control is proposed in paper [5].

In this paper, an embedded robust nonlinear predictive
control system, based on the algorithm develops in [7], is
implemented. The algorithm, designed to tracking control of
a n–link manipulator, is based on a prediction model, which
is carried out via a truncated Taylor series expansion. The
optimal control is computed directly from the minimization of
a receding horizon cost function. The control law is running
with a simple speed observer instead of the complex nonlinear
state observer proposed in [7]. The implemented embedded
controller is applied to an angular manipulator for control-
ling simultaneously angular positions of its base and arm.
Experimental results demonstrates that the established design

specifications for base and arm: steady state error, percentage
overshoot less than 3%, and settling time less than 0.5 s, are
met.

This paper is organized as follows. Section II describes the
nonlinear model of the manipulator. Derivation of the robust
predictive controller is performed in section II, while in section
IV is carried out the simulation of the designed control system.
The experimental setup, the embedded control software, and
the experimental results are presented in sections V, VI, and
VII, respectively. Some relevant conclusions of this work are
discussed in section VIII. A non embedded version of this
work is treated in [8].

II. MANIPULATOR MODELLING

The 2DGOF (2 Degrees of Freedom) angular manipulator
depicted in Fig. 1 consists of two DC servomotors driving the
base and arm of such manipulator. Each servomotor possesses
a reduction mechanism (a gear train) and an encoder to
sense the angular position of the servo shaft. The described
manipulator is a MIMO (Multiple Input Multiple Output)
system due to its two inputs: control voltages u1 and u2

applied to the armature of each servo, and two outputs: angular
positions q1 and q2 of the servomotor axes of. Table I describes
the variables and parameters of the manipulator.
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Fig. 1. Angular manipulator scheme.

Neglecting joint frictions (reason for that is explained in
equation (14)), the dynamic model of the manipulator (the



TABLE I. VARIABLES AND PARAMETERS OF THE MANIPULATOR.
INDEX i TAKES VALUES 1 AND 2 FOR THE BASE AND ARM, RESPECTIVELY.

Symbol Description Value Units

qi Angular position rad
Mi DC servomotor
Ti Generated torque by Mi N-m
md Disc mass 0.55 kg
mb Bar mass 0.9 kg
ma Arm mass 0.8 kg
mh Final effector mass 0.15 kg
m2 Arm equivalent mass kg
d Disc width 0.01 m
rd Disc radioo 0.06 m
b Bar length 0.25 m
a2 Area of the bar section 0.044 2 m2

Lb Arm length 0.3 m
Lh Final effector length 0.05 m
L1 MC (Mass Center) of the base m
L2 Arm equivalent length m
Jh Moment de inertia (MI) of the effector kg-m2

Jm MI of Mi 0.0003 kg-m2

Jeq Equivalent MI kg-m2

Jgi MI of the gear train 0.053 kg-m2

Ji MI of base and arm kg-m2

Bm Friction constant of Mi 0.0001 N-m-s/rad
Beq Equivalent friction constant N-m-s/rad
Bgi Friction constant of a gear train 0.01 N-m-s/rad
n Gear train ratio of Mi 12.5
Ra Armature resistance of Mi 3.5 Ω
La Armature inductance of Mi 0.00015 H
Vbi EMF voltages V
Vai Atrmature voltages V
iai Armature currents A
KA Amplifier gain 8.5
Km Servomotor constant 0.0421 N-m/A
Kb EMF constant 0.0565 V-s/rad
ui Control voltages V
g Gravitational constant 9.81 m/s2

Lagrange model) was derived in [6] by mean of the Lagrange
equations method, which consists in determining the kinetic
(Vi) an potential (Ui) energies for each DOF: angular positions
q1 and and q2. The resulting Lagrange model of the angular
manipulator takes on the form

D(q)q̈+C(q, q̇)q̇+G(q) = u; q =
[

q1

q2

]
; u =

[
u1

u2

]
(1)
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In (1), D = DT > 0 of dimension 2 × 2 (the notation > 0
means that D is a definite positive matrix) is the inertia matrix
of the manipulator, C of order 2 × 2 contains Coriolis and
centripetal forces, G is the order two vector of gravitational
torques, and u represents the control control voltage vector of
order two.

A. State Equation of the Manipulator

Defining the following state variables: x1 = q1, x2 = q2,
x3 = q̇1, and x4 = q̇2, the dynamic model given in (1) can be
transformed into the following state equation⎡

⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f1(x,u)
f2(x,u)
f3(x,u)
f4(x,u)

⎤
⎥⎥⎦ (2)

=

⎡
⎢⎢⎢⎣

x3

x4

D−1
11 (−C11x3 − C12x4 + u1)

D−1
22 (−C21x3 − C22x4 − G21 + u2)

⎤
⎥⎥⎥⎦

III. PREDICTIVE CONTROLLER DESIGN

As an extension of the 2–dimensional equation (1), a
manipulator with rigid arms and n DOF can be described by
the following n–dimensional matrix equation

D(q)q̈ + C(q, q̇)q̇ + G(q) = u (3)

This work employs the robust nonlinear predictive control
algorithm developed in [7]. Such predictive control algorithm
is based on optimization of the following receding-horizon cost
function

J =
1
2

∫ T2

T1

eq(t + τ)T eq(t + τ)dτ (4)

eq(t + τ) = q(t + τ) − qr(t + τ)

where eq(t + τ) is the tracking vector at the time (t + τ), τ
is the prediction time, q(t + τ) is the τ–step ahead prediction
vector of angular positions, and qr(t+τ) represents the vector
of future reference trajectories. The control objective of the
predictive control system is to track some reference trajectories
fulfilling the design specifications previously established.

Applying the truncated Taylor series expansion, the predic-
tion of the output vector q is found to be

q(t + τ) = q(t) + τ q̇(t + τ) +
τ2

2
q̈(t) (5)

Using the manipulator model given in (3), successive diferen-
tiation of the output q(t) produces the following Q(t) vector

Q(t) =

⎡
⎣ q(t)

q̇(t)
q̈(t)

⎤
⎦ =

⎡
⎣ q(t)

q̇(t)
−D(q)−1(C(q, q̇)q̇ + G(q))

⎤
⎦

+

⎡
⎣ 0n×1

0n×1

D(q)−1u(t)

⎤
⎦ (6)



Note that q̈(t) was obtained from (3). Therefore, the prediction
model can be formulated as

q(t+τ) = T(t)Q(t) T(t) = [In×n τIn×n
τ2

2
In×n]

(7)
where In×n is the identity matrix of dimension n × n. The
qr(t + τ) vector can be calculated as before

qr(t+τ) = T(t)Qr(t) Qr(t) = [qr(t) q̇r(t) q̈r(t)]
(8)

The predictive error is defined as

eq(t + τ) = q(t + τ)−qr(t + τ) = T(t)(Q(t)−Qr(t)) (9)

Then, cost function (4) takes on the form:

J =
1
2
(Q(t) − Qr(t))T Π(Q(t) − Qr(t)) (10)

where the expression of matrix Π is found to be

Π =
∫ T2

T1

T(t)T T(t)dτ =
[

Π1 Π2

ΠT
2 Π3

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T In×n (T 2/2))In×n

... (T 3/6))In×n

(T 2/2))In×n (T 3/3))In×n

... (T 4/8))In×n

· · · · · · ... · · ·
(T 3/6))In×n (T 4/8))In×n

... (T 5/20))In×n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where T = T2 − T1. The control law u can be obtained from
∂J/∂u = 0 (J is the cost function given in (10))

u(t) = −D(q){[Π−1
3 ΠT

2 In×n][M(t) − Qr(t)]} (11)

M(t) =

⎡
⎣ q(t)

q̇(t)
−D(q)−1(C(q, q̇)q̇ + G(q))

⎤
⎦

[Π−1
3 ΠT

2 In×n] = [(
10

3T 2
)In×n (

5
2T

)In×n In×n]

Therefore, the control law given by (11) is expressed as

u(t) = −D(q){K1(q − qr) + K2(q̇ − q̇r)

−D(q)−1[C(q, q̇)q̇ + G(q)] − q̈r} (12)

K1 = k1In×n; K2 = k2In×n; k1 =
10

3T 2
; k2 =

5
2T

A. The Robust Nonlinear Predictive Controller

Various source of uncertainties, like modeling and compu-
tation errors, as well as unknown loads, need to be considered
for real–time implementation purposes. Such uncertainties
can be formulated as increments Δ(.), which will be added
to nominal matrices and vectors of the manipulator model
described in (3); that is

D ⇒ D + ΔD
C ⇒ C + ΔC
G ⇒ G + ΔG (13)

Then, the dynamic model of the manipulator results

(D(q)+ΔD)q̈+(C(q, q̇)+ΔC)q̇+(G(q)+ΔG)+Fr = u+b
(14)

Note that Fr and b vectors, both of order n, have been added
to (1). Vectors Fr and b represent non modelled frictions
(like the joint frictions of the manipulator under study) and
system disturbances, respectively. Operating on equation (14),
we obtain

D(q)q̈ + C(q, q̇)q̇ + G(q) = u + η(q̈, q̇,q,b) (15)

where η represents the system uncertainty

η = −ΔDq̈ + ΔCq̇ + ΔG + Fr − b (16)

Observe in (16) that the η parameter includes non modelled
quantities, parametric uncertainties, and external disturbances.

To make robust the control law (12), the effects of the
uncertainties need to be included in the control loop. In
general, the uncertainty parameter η is unknown. Then, its
estimate ηest is required to compute the robust control law.
Taken ηest into consideration, the control law (12) results

u(t) = −D(q){K1(q − qr) + K2(q̇ − q̇r)

−D(q)−1[C(q, q̇)q̇ + G(q)] − q̈r} − ηest (17)

B. Uncertainty Estimation that guaranties stability

Replacing (17) in (15), we can obtain the dynamic equation
of the tracking error

ëq(t) + K2ėq(t) + K1eq(t) = D−1(q)eη(t)

eη = η − ηest eq = q − qr (18)

In terms of the tracking error eη , the state space model of the
dynamic system given in (17) can be expressed as

ė = A1e + BD−1eη (19)

ė = [eq ėq] A1 =
[

0n×n In×n

−K1 −K2

]
B =

[
0n×n

In×n

]
Knowing that K1 > 0 and K2 > 0, then matrix A1 is Hurwitz.
Hence, for any Q = QT > 0, exists a finite matrix P = PT >
0 that satisfies the following Lyapunov equation

A1PA1 = −Q (20)

The Lyapunov method requires to define a Lyapunov function
candidate to determine the system stability

V =
1
2
eT Pe + eT

η Γeη (21)

In (21), matrix Γ > 0 is symmetric. The total derivative of V̇
along the trajectory of the system given by (18) results

V̇ = −1
2
eT Qe + eT

η {(D−1)T BT Pe + Γėη} (22)

Let us define

ėη = −Γ−1(D−1)T BT Pe = η̇ − η̇est (23)

We do not how η varies in time. Therefore, let us assume
η̇ = 0, also, for the case of slowing time–variation of η. For
each sampling period, from (23), ηest is expressed as

η̇est = Γ−1(D−1)T BT Pe (24)



Substitution of (23) in (22) produces

V̇ = −1
2
eT Qe (25)

According to Lyapunov’s stability theory, (25) guarantees
that e(t) and eη(t), and therefore ηest(t) are bounded. The
uncertainty law given in (24) can be written as

ηest =
∫

Γ−1(D−1)T BT Pedt (26)

An uncertainty estimator developed in [9] can be designed
from the manipulator model (15). That is

η̇est = L(D(q))−1(η − ηest) L = �In×n

= −L(D(q))−1ηest + L(q̈ + (D(q))−1C(q, q̇)q̇
+(D(q))−1G(q) − (D(q))−1u(t)) (27)

Note in (27) that L = �In×n is a gain diagonal matrix, where
� is positive. Considering that η̇(t) = 0, from (27) can be
determined the estimator dynamics; that is

ėq + L(D(q))−1eq = 0 (28)

Using the fact that L > 0 and D > 0, then it is verifiable that
the estimator tracking error converge to zero. On replacing the
control law (16) into equation (28), we obtain the dynamic of
the uncertainties estimation. That is

η̇est(t) = Lëq(t) + K2ėq(t) + K1eq(t)) (29)

Integration of (29) produces

ηest(t) = Lėq(t) + K2eq(t) + K1

∫
eq(t)dt) (30)

Comparison of estimators (30) and (26) tell us that the estima-
tor (30) is better due to the presence of the integral operator,
which permit to achieve null steady state errors.

C. The Speed Observer

Instead of the nonlinear state observer proposed in [7], this
work uses for simplicity a speed observer. Taking into account
that only the angular position q is available, such observer to
estimate ˙̂q has the form

˙̂q = q̇r + Ld(q − q̂) (31)

In (31), Ld = �dIn×n > 0 is the observer’s gain diagonal
matrix, where �d is a positive constant.

IV. DESIGN PROCEDURE AND SIMULATION

The following procedure can be applied to implement the
robust nonlinear predictive controller of III-A:

1) Determine the model of the manipulator (section II)

D(q)q̈ + C(q, q̇)q̇ + G(q) = u (32)

2) Set initial conditions of vectors q, q̇, q̂, and ̂̇q.
3) Set initial values to the tuning parameters �d (speed

observer gain), � (uncertainties estimator gain), T1,
T2, T = T1 − T2, k1 = 10/(3T 2), k2 = 5/(2T ),
K1 = k1In×n, and K2 = k2In×n, where n = 2 is
the system order.

4) Design of the control loop for a sampling time Ts

and for a reference vector qr(t). This work employs
step wise reference signals for simulation purposes.
However, qr(t) could be any trajectory.

5) Formulate the speed observer given by (31) to deter-
mine the estimate vector ˙̂q

˙̂q = q̇r + Ld(q − q̂) (33)

The q̂ vector is obtained by integration of ˙̂q.
6) Formulate equations eq = q− qr, ėq = q̇− q̇r, and∫

eq(t)dt, to determine the uncertainties estimator
(equation (30))

ηest(t) = Lėq(t) + K2eq(t) + K1

∫
eq(t)dt) (34)

7) Calculate the control law given in (17)

u(t) = −D(q){K1(q − qr) + K2(q̇ − q̇r)

−D(q)−1[C(q, q̇)q̇ + G(q)] − q̈r} − ηest (35)

For the simulation phase, the control law (35) is applied to
the dynamic model of the manipulator, whereas for real–time
implementation, such control law drives the manipulator.

The simulation program cprmrar.m, written in MATLAB
code, is listed below. It simulates the predictive control system.
Fig. 2 shows the result of the simulation. Observe that angular
positions q1(t) for the base and q2(t) for the arm tracks the
corresponding step type references q1r(t) and q2r(t). Note that
the design specifications null steady state, settling time less
than 1 s, and percentage overshoot less than 3% are met.
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Fig. 2. Controlled angular positions q1 y q2 of the manipulator using
nonlinear robust predictive control signals u1 y u2.

% cprmrar.m ROBUST NONLINEAR PREDICTIVE CONTROL
clear all; close all; clc;

% DATA: MECHANICAL SUBSYSTEM
d=0.01; rd=0.06; b=0.25; a=0.044; La=0.3;
Lh=0.05; L2=La+Lh; md=0.55; mb=0.9; ma=0.8;
mh=0.15; g=9.81; n=12.5; m1=md+mb; m2=ma+mh;
L1=(mb*b+md*d)/(mb+md); Jm=0.0003; Jg=0.053;
Jd= md*rdˆ2/2; Jb=mb*aˆ2/6; J1=Jd+Jb;



J2=m2*L2/3; Jeq=nˆ2*Jm+Jg; Bm=0.0001; Bg=0.01;
Beq=nˆ2*Bm+Bg; no=2; % SYSTEM ORDER

% DATA: ELECTRICAL SUBSYSTEM
Km=0.0421; Kb=0.0564; Larm=0; Ra=5.3;

% KA=8.5; co=Ra/(n*Km*KA);
% CONSTANT ELEMENTS OF D, C AND G MATRICES
D22=Ra*(J2+Jeq+m2*L2/4)/(n*Km*KA); D22e=D22;
C11=Ra*(Beq+nˆ2*Km*Kb/Ra)/(n*Km*KA); C11e=C11;
C22=Ra*(Beq+nˆ2*Km*Kb/Ra)/(n*Km*KA); C22e=C22;

% UNCERTAINTIES
DeltaD=[.01 0;0 .02]; DeltaG=[.0;-.1];
DeltaC=[.01 -.02;.001 -.03]; bu=[.1;-.1];

% INITIAL CONDITIONS
q1=0; q2=0; dq1=0; dq2=0; qe1=0; qe2=0;
dqe1=0; dqe2=0; ieq=[0;0]; q=[q1;q2];
dq=[dq1;dq2]; qe=[qe1;qe2]; dqe=[dqe1;dqe2];

% TUNING PARAMETERS
Ld=35; T1=0; T2=0.1; T=T2-T1; el=0.2;
L=el*eye(no); k1=10/(3*Tˆ2); k2=5/(2*T);
K1=k1*eye(no); K2=k2*eye(no);

% CONTROL LOOP
nn=8000; Td=10; A=1; Ts=0.01; % SAMPLING
for k=1:nn

% DESIRED REFERENCES
if(k>=0 && k<=nn/4)

qr1=0.8*A; qr2=0.5*A;
elseif(k>=nn/4&&k<=nn/2)

qr1=0.4*A; qr2=0.8*A;
elseif(k>=nn/2&&k<=3*nn/4)

qr1=0.9*A; qr2=0.4*A;
elseif(k>=3*nn/4&&k <= nn)

qr1=0.5*A; qr2=0.7*A; end
Qr1(k)=qr1; dqr1=0; ddqr1=0;
Qr2(k)=qr2; dqr2=0; ddqr2=0; qr=[qr1;qr2];
dqr=[dqr1;dqr2]; ddqr=[ddqr1;ddqr2];

% SPEED OBSERVER
dqe=dqr+Ld*[q-qe]; qe=qe+Ts*dqe;
eq=qe-qr; deq=dqe-dqr;

% CONTROL LAW
D11e = Ra*(J1 + Jeq)/(n*Km*KA) + ...
(Ra*m2*L2/(4*n*Km*KA))*sin(qe(2))ˆ2;
C12e = Ra*m2*L2ˆ2/(2*n*Km*KA)*dqe(1)* ...
sin(qe(2))*cos(qe(2));
C21e = -(Ra*m2*L2ˆ2/(2*n*Km*KA)/4)* ...
dqe(1)*sin(qe(2))*cos(qe(2));
De=[D11e 0;0 D22e]; Ce=[C11e C12e;C21e C22e];
G21e=-(Ra*m2*L2*g/(2*n*Km*KA))*sin(qe(2));
Ge=[0;G21e];
ieq = ieq + Ts*eq;
etae = L*(deq + K2*eq + K1*ieq);
u =-De*(K1*eq+K2*deq-inv(De)* ...
(Ce*dqe+Ge-ddqr)-etae;
U1(k) = u(1); U2(k) = u(2);

% DYNAMIC MODEL OF THE MANIPULATOR
D11 = Ra*(J1 + Jeq)/(n*Km*KA) + ...
(Ra*m2*L2/(4*n*Km*KA))*sin(q(2))ˆ2;
C12 = Ra*m2*L2ˆ2/(2*n*Km*KA)*dq(1)* ...
sin(q(2))*cos(q(2));
C21 = -(Ra*m2*L2ˆ2/(2*n*Km*KA)/4)* ...
dq(1)*sin(q(2))*cos(q(2));
D=[D11 0;0 D22]; C=[C11 C12;C21 C22];
G21=-(Ra*m2*L2*g/(2*n*Km*KA))*sin(q(2));
G=[0;G21]; dq=dq+Ts*inv(D+DeltaD)*((u+bu)-...
(C+DeltaC)*dq - (G+DeltaG));
q =q+Ts*dq; Q1(k)=q(1); Q2(k)=q(2); end

% IT FOLLOWS PLOTS SENTENCES

V. EXPERIMENTAL SETUP

Fig. 3 shows the experimental setup of the predictive
position control system. The base and arm of the angular
manipulator (Fig. 1) are driven by two DC servomotors. Each
of them possesses a reduction mechanism and a quadrature en-
coder to sense the angular position of the servomotor shaft. A
NI cRIO–9073 (Cmpact Reconfigurable Input/Output) device
was used to embed the control algorithm. Module NI 9263
14–Ch ± 10 V 16 bit was employed to output the two control
voltages, while module NI 9401 8–Ch TTL High Speed Digital
I/O had the task to process the two angular position signals
(in the form of two pulse trains) from the quadrature encoders.
Each control voltage is in turn amplified by a PWM (Pulse
Width Modulation) Galil Motion Control Amplifier. In turn,
each amplifier outputs a control DC voltage to the armature of
its corresponding DC servomotor.

Fig. 3. The experimental setup.

VI. CONTROL SOFTWARE

The control software, written in LabVIEW code, comprises
several parts. A work computer (e.g., a laptop) is used to run
the Human Machine Interface part in order to observe running
variables and introduce tuning parameters. There are also the
part to storage historic data, the communication loop part to
connect variables between the work computer and the cRIO
device, and, the part to display historic data. The cRIO device
executes another communication loop: the control algorithm
(Fig. 4), and, all the data required by the implementation. The
control software is based on the simulation program cprmrar.m
(section IV).

VII. EXPERIMENTAL RESULTS

The performance of the designed robust nonlinear pre-
dictive control system was tested via experimentation for a
sampling time Ts = 10 ms. Design specifications were set to
null steady state error, overshoot percentage less than 3%, and
settling time less than 1 s.

Figs. 5 depicts the simultaneous control of angular po-
sitions of the base and arm of the manipulador. Tuning
parameters were set to Ld = 50, T1 = 0, T2 = 0.15 and �



Fig. 4. Portion of the program showing the control algorithm.

=0.5. Such parameters permit to calculate the other tuning
parameters: T = T1 − T2, k1 = 10/(3T 2), k2 = 5/(2T ),
K1 = k1I, and K2 = k2I, where I is the Identity matrix of
order 2. Note that the required design specifications for the
angular positions of base and arm: percentage overshoot less
than 3%, settling time less than 1 s, and null steady state error,
are satisfied.

VIII. CONCLUSIONS

In view of the results of section VII, the main goal of this
work has been achieved: to control simultaneously the base
and arm positions of an angular manipulator using a robust
nonlinear predictive control systems. Fig. 5 demonstrates that
the established design specifications were met: null steady state
error, percentage overshoot less than 2%, and settling time less
than 0.5 seconds.

The determination of the dynamic model of the manipulator
(section II) was required to simulate the behavior of the
designed predictive control systems (Fig. 2) and to determine
by trial–and–error the initial values of the tuning parameters.

The proposed design procedure to implement an embedded
nonlinear predictive control system, can be applied to any
nonlinear system whose dynamic model can be represented
as in equation (3).
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