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Abstract—This paper deals with the implementation of two
position control systems: FOPID (Fractional Order Proportional
Integral Derivative) and FOPD (FO Proportional Derivative),
which are employed to control simultaneously angular positions of
the base, arm, and forearm of an angular manipulator of 3DOF (3
Degrees of Freedom). The design of such control systems requires
the derivation of the dynamic nonlinear model of the angular
manipulator, as well as the determination of the corresponding
control laws. Intensive simulation studies permitted to find out the
initial values of the tuning parameters of the FOPD and FOPID
controllers for realtime implementation. Good performances of
the designed FOPD and FOPID control systems were verified via
experimentation.

I. INTRODUCTION

Fractional calculus (FC) is a mathematical topic with
more than 300 years old history. However, its application
to physics and engineering has been published only in the
recent years. Essentially, fractional calculus uses fractional
integro–differential operators, which are a generalization of
their integer counterparts. Fractional control system employs
in its design FOPID controllers.

The number of research works related to the application
of fractional control systems in many areas of science and
engineering, including robotics, is continuously growing. For
example, reference [1] presents the implementation of frac-
tional order algorithms in the position/force hybrid control of
robotic manipulators, while citation [2] deals with the study
of the performance of FOPID controllers in a hexapod robot
with joints at the legs having viscous friction and flexibility.
A FOPID controller is investigated for a position servomech-
anism control system in [3], considering actuator saturation
and the shaft torsional flexibility. In [4], the FOPID control of
a 6 Degree Of Freedom hydraulic joystick–like master arm is
investigated via simulation. Reference [5], develops a simulator
that allows the integer and FO control of a dual-arm robotic
system for cooperative manipulation of objects considering the
existence of nonlinearities, while a FOPID control strategy for
pneumatic position servosystem is presented in [6]. The paper
[7] deals with the develop of an optimal procedure using a FO
controller to control the position of a robotic system driven by
DC motors.

II. FRACTIONAL CALCULUS (FC)

FC generalizes the notion of the derivative Dn of functions
where the order of differentiation n is a non integer number

[11], [10]. For the time–domain, FO derivative and integral
operators are defined by means of the convolution operator,
whereas for the Laplace–domain, the term sα defines such
operations, depending on the sign of the real number α.
Following are presented the definitions of FO derivative and
integral operators.

A. FO Integral of Riemann–Lioviulle

Let us define the following expression of the integral

D−1f(x) =

∫

f(x)dx (1)

Establishing the integration limits, integral D−1, and for
extension D−2, can be expressed as

D−1f(x) =

∫ x

0

f(t)dt

D−2f(x) =

∫ x

0

∫ t2

0

f(t1)dt1dt2

Interchanging the order of the integration in D−2, we obtain

D−2f(x) =

∫ x

0

∫ x

t1

f(t1)dt2dt1 (2)

Since f(t1) is not a function of t2, then, this function can be
extracted from the integral, such as

D−2f(x) =

∫ x

0

f(t1)[

∫ x

t1

dt2]dt1

=

∫ x

0

f(t)(x − t)dt

=

∫ x

0

f(t1)(x − t1)dt1

Employing the same procedure, we can produce

D−3f(x) =
1

2

∫ x

0

f(t)(x − t)2dt

D−4f(x) =
1

(2)(3)

∫ x

0

f(t)(x − t)3dt

...

D−nf(x) =
1

(n − 1)!

∫ x

0

f(t)(x − t)n−1dt (3)



Substituting in (3) the order −n for an arbitrary λ number,
as well as the factorial term for its corresponding gamma
function, we obtain the following integral of Liouville

Dλf(x) =
1

Γ(−λ)

∫ x

0

f(t)

(x − t)λ+1
dt (4)

Take into account that the gamma function is defined as

Γ(z) =

∫

∞

0

e−ttz−1dt (5)

which possesses the following characteristic:

Γ(z + 1) = z! (6)

If: λ ≥ 0 in (4), then this expression is non proper due to
t → x; therefore, (x − t) → 0. The integral (4) diverges for
all λ ≥ 0. If: −1 < λ < 0, such integral converge, so that λ
could be negative. Then, the equation (4) results a fractional
integral.

Riemann generalized the integral of Liouville changing the
limit 0 by b. The result is the following integral of Riemann–
Louville

Dλf(x) =
1

Γ(−λ)

∫ x

b

f(t)

(x − t)λ+1
dt (7)

which is valid for λ < 0. After that, Riemann and Liouville
substituted λ by −λ in (8), resulting in the following positive
fractional order integral

bD
−λ
x f(x) =

1

Γ(λ)

∫ x

b

f(t)

(x − t)−λ+1
dt (8)

where λ > 0 for all t > 0. Interchanging variables x by t
and t by τ , we obtain the following generalized integral of
Riemann–Liouville:

bD
−λ
t f(t) =

1

Γ(λ)

∫ t

b

f(τ)

(t − τ)−λ+1
d(τ) (9)

which is valid for λ > 0 and t > 0.

B. FO Derivative of Riemann–Lioviulle

The classical derivative operator

Dn
t =

dn

dtn
,

is generalized by the following FO derivative operator

aD−α
t

where a and t are the limits and α is the order of the operation.
To obtain the FO derivative, Riemann proposed to differentiate
the following FO integral

bD
α−n
x

to produce

bD
α
x f(x) = Dn

bD
α−n
x f(x) n > α (10)

The last expression means to find out the fractional derivative
of order α between the limits b and x. Performing the following
change of variables: x by t, b by a and t by τ , results

aDα
t f(t) = Dn

aDα−n
t f(t) = Dn

aD
−(−α+n)
t f(t)

= Dn 1

Γ(n − α)

∫ t

a

(t − τ)−α+n−1f(τ)d(τ)

=
1

Γ(n − α)

dn

dtn

∫ t

a

(t − τ)−α+n−1f(τ)d(τ) (11)

The equation (11) is known as the generalized FO derivative
of Riemann–Liouville with a real positive FO value. Here, α
is defined in the range: n− 1 < α < n. For n = 1 and a = 0,
we have: 0 < α < 1. Then

0D
α
t f(t) =

1

Γ(1 − α)

dn

dtn

∫ t

0

(t − τ)−αf(τ)d(τ) (12)

C. The FOPID Controller

PIDOF controller arise with the purpose of improving
the design specifications obtained with a conventional PID
controller. The general idea is to take advantage of the simple
structure and general application of PID controllers. A FOPID
controller, also known as a PIλDα controller, takes on the
form

u(t) = Kpe(t) + Ki 0D
−λ
t e(t) + Kd 0D

α
t e(t) (13)

where λ and α are the fractional orders of the controller and
e(t) is the system error. Note that the system error e(t) replaces
the general function f(t) used before. The fundamental advan-
tage of a FOPID controller lie in its two additional parameters:
λ and α. By tuning properly such parameters, the robustness
of the control system can be enhanced.

If parameters λ and α take the value of one, we obtain the
conventional PID control algorithm in the time–domain

u(t) = P (t) + I(t) + D(t) (14)

e(t) = r(t) − y(t)

P (t) = Kpe(t) (15)

I(t) =
Kp

Ti

∫ t

0

e(t)dt (16)

D(t) = KpTd
de(t)

dt
(17)

where Kp, Ki =
Kp

Ti
and Kd = KpTd represent the propor-

tional, integral and derivative gains, respectively. Besides, Ti

and Td denote the integral and derivative times, respectively,
e(t) is the error signal of the system, r(t) represents the
reference or desired signal, and y(t) is the controlled variable.

Substituting the integral and derivative parts od the PID
controller given in (16) and (17) by its fractional counterparts,
we obtain the following control law

u(t) = P (t) + Iλ(t) + Dα(t) (18)

e(t) = r(t) − y(t)

P (t) = Kpe(t) (19)

Iλ(t) = KiRi(t) Ki =
Kp

Ti
(20)

Ri(t) = 0D
−λ
t e(t)

=
1

Γ(λ)

∫ t

0

(t − τ)λ−1f(τ)d(τ) (21)

Dα(t) = KdRd(t) Kd = KpTd (22)

Rd(t) = 0D
α
t e(t)



=
1

Γ(m − α)

dm

dtm

∫ t

0

(t − τ)−α+m−1e(τ)d(τ)

(23)

The very well known PI, PD, PID controllers possess their FO
counterparts: PIλ, PDα and PIλDα.

III. MANIPULATOR MODELLING

The 3DGOF (3 Degrees of Freedom) angular manipulator
depicted in Fig. 1 consists of three DC servomotors driving the
base, arm and forearm of such manipulator. Each servomotor
possesses a reduction mechanism (a gear train) and an encoder
to sense the angular position of the servo shaft. The described
manipulator is a MIMO (Multiple Input Multiple Output)
system due to its three inputs: control voltages u1, u2 and
u3 applied to the armature of each servo, and three outputs:
angular positions q1, q2, and q3 of the servos. Table I describes
the variables and parameters of the manipulator, while Fig.
2 shows its coordinate diagram. See reference [8] for more
details.

Fig. 1. Angular manipulator of 3DOF.

The dynamic model of the manipulator (the Lagrange
model) can be obtained applying the Lagrange equations
method, which consists in determining the kinetic (Vi) an
potential (Ui) energies for each DOF qi; that is, q1 for the
base, q2 the arm, and q3 the forearm, respectively.

The resulting function, known as the Lagrangian function,
has the form

L = V (q1, . . . , qr, q̇1, . . . , q̇r) − U(q1, . . . , qr, q̇1, . . . , q̇r)
(24)

For this manipulator, the Lagrange equation are obtained as
follows

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= Qi i = 1, 2, . . . , r (25)

TABLE I. VARIABLES AND PARAMETERS OF THE MANIPULATOR.
INDEX i TAKES VALUES 1, 2, AND 3 FOR THE BASE, ARM, AND FOREARM,

RESPECTIVELY.

Sḿbolo Descripción Valor Unidad

xi Center of mass m

qi Angular position rad

H Length of the base m

Mi Servomotor N.m

Ti Torque generated by Mi N.m

m1 Equivalent base mass 2.9188 Kg

m2 Equivalent arm mass 0.89 Kg

m3 Equivalent forearm mass 0.25 Kg

md Disk mass Kg

mb Bar mass Kg

ma Arm mass Kg

d Disk width 0.0082 m

rd Disc radio 0.0427 m

b Bar length 0.3378 m

a2 Bar section m2

La Arm length 0.24 m

Lb Forearm length 0.24 m

L1 Center of mass of the base 0.2936 m

L1 Center of mass of the arm 0.1184 m

L1 Center of mass of the forearm 0.12 m

Jmi Moment of inercia (MI) of Mi, 71x10−7 Kg.m2

Jeq Equivalent MI Kg.m2

Jgi MI of the gears 0.053 Kg.m2

J1 MI of the base 0.0278 Kg.m2

J2 MI of the armo 0.0122 Kg.m2

J3 MI of the forearm 0.0015 Kg.m2

Bmi Friction constant of Mi 0.0001 N.m.s/rad

Beq Equivalent friction constant N.m.s/rad

Bgi Friction constant of the gers 0.01 N.m.s/rad

n Gear rate of Mi 65.5

ra Armature resistance of Mi 2.49 Ω
Larm Armature inductance of Mi 0.00263 H

Vbi EM (Electro–Motriz) voltage of Mi V

iai Armature current A

KA Amplifier gain 8.5

Km Motor constant 0.0458 N.m/A

Kb EM constant 0.0458 V.s/rad

ui Control voltage V

g gravitational constant 9.81 m/s2

d1 Length: base disc to M2 shaft 0.045 m

H

L1

m1

(x1,y1,z1)

q1

q2

La

m2

(x2,y2,z2)

L3

Lb

X

Y

Z m3

(x3,y3,z3)q3

L2

Fig. 2. Coordinates diagram of the manipulator.

where Qi represents forces and torques external to the system.



Equations 24 and 25 takes on the form

L = V − U = V1 + V2 + V 3 − (U1 + U2 + U3) (26)

d

dt
(
∂L

∂q̇1
) −

∂L

∂q1
= T1 (27)

d

dt
(
∂L

∂q̇2
) −

∂L

∂q2
= T2 (28)

d

dt
(
∂L

∂q̇3
) −

∂L

∂q3
= T3 (29)

where V1, V2, and V3 are the kinetic energies of the base, arm,
and fore arm, respectively, U1, U2, and U3 are the potential
energies of the base, arm, and fore arm, accordingly, and T1,
T2, and T3 are the torques (neglecting losses) generated by the
DC servomotors.

The kinetic and potential energies of the base are formu-
lated as

V1 =
1

2
J1q̇

2
1 U1 = m1gL1 (30)

The expressions of the kinetic and potential energies of the
arm are

V2 =
1

2
J2q̇

2
2 +

1

2
m2

(

ẋ2
2 + ẏ2

2 + ż2
2

)

U2 = m2g (b + d + d1 + L2cos q2) (31)

Also, the kinetic and potential energies of the forearm are
expressed as

V3 =
1

2
J3q̇

2
3 +

1

2
m3

(

ẋ2
3 + ẏ2

3 + ż2
3

)

U3 = m3g (b + d + d1 + Lacos q2 + L3cos q3) (32)

According to Fig. 2, arm positions x2, y2, and z2 are given by

x2 = (L2sin q2) cos q1

y2 = (L2sin q2) sin q1

z2 = (b + d + d1 + L2cos q2) (33)

while the forearm positions x3, y3, and z3 takes on the form

x3 = (Lasin q2 + L3 sin q3) cos q1

y3 = (Lasin q2 + L3 sin q3) sin q1

z3 = (b + d + d1 + Lacos q2 + L3 cos q3) (34)

Therefore, V2 y V3 result in

V2 =
1

2
J2q̇

2
2+

1

2
m2

(

q̇2
1 + L2

2q̇2
2 + L2

2q̇2
1sin2q2 + 2L2q̇

2
1sin q2

)

(35)

V3 =
1

2
J3q̇

2
3 +

1

2
m3

(

L2
aq̇2

2 + L2
3q̇

2
3

)

+
1

2
m3

(

2L3Laq̇2q̇3 cos(q2 − q3) + L2
a sin2 q2q̇

2
1

)

+
1

2
m3

(

L2
3 sin2 q3q̇

2
1 + 2L3La sin q2 sin q3q̇

2
1

)

(36)

Operating in concordance with (27), (28), and (29), we can
obtain the corresponding torques T1, T2 y T3.

u1

+

_

KA Vb1

Larm

Ra

qm1

Tm1

Tg1

Bm

Jm

N1

N2
Tg2

Bg

Jg

q1

T1

dqm1

dq1

+

_

Fig. 3. Servomotor DC with its gear train.

A. Modelling the DC Servomotors

The three DC servomotors M1, M2 y M3 possess the
same characteristics. Fig. 3 shows one of this servomotor with
its gear train. Neglecting the inductance armature Larm, the
voltage equation of the armature results

KAu1 = Raia1 + Vb1 (37)

The EMF voltage is proportional to the servomotor speed

Vb1 = Kbq̇m1 (38)

The relation between speeds qm1 and q1 is given by

qm1 = nq1 n =
N2

N1
> 1 (39)

where N1 and N2 are the number of tooth of each gear. The
EMF can be written as

Vb1 = Kbnq̇1 (40)

On the other hand, the motor torque Tm1 must overcome
the inertia and viscous torques torques of the servomotor as
follows

Tm1 = Jmnq̈1 + Bmnq̇1 + Tg1 (41)

where Tg1 is the input torque to the gear train. Assuming an
ideal gear train, the energy conservation principle establishes
that the performed work on each side of the gear train must
be the same; that is,

Tg1qm1 = Tg2
qm1

n
Tg2 = nTg1 (42)

Therefore

nTg1 = Jg q̈1 + Bg q̇1 + T1 (43)

where Jm and Jg represents the moment of inertia of the
servomotor and the gear train, respectively, while Bm and
Bg are friction constants of the servomotor and gear train,
respectively. It is well known that the servomotor torque is
proportional to the armature current ia1

Tm1 = Kmia1 (44)

Working with equations (37), (40), (43), and (44), it can be
showed that T1 has the form

T1 = −Jeq q̈1 −

(

Beq +
n2KmKb

Ra

)

q̇1 +
nKmKA

Ra
u1 (45)

Jeq = n2Jm + Jg Beq = n2Bm + Bg



The procedure used to obtain T1 for the base can also be
employed to obtain T2 and T3; that is

T2 = −Jeq q̈2 −

(

Beq +
n2KmKb

Ra

)

q̇2 +
nKmKA

Ra
u2 (46)

T3 = −Jeq q̈3 −

(

Beq +
n2KmKb

Ra

)

q̇3 +
nKmKA

Ra
u3 (47)

Equating torques (45), (46), and (47) with torques (27),
(28), and (29), we can obtain the control voltages u1, u2 y u3

instead of the control torques T1, T2 y T3

M(q)q̈ + P(q, q̇)q̇ + d(q) = u (48)






M11 0 0

0 M22 M23

0 M32 M33













q̈1

q̈2

q̈3






+







P11 P12 P13

P21 P22 P23

P31 P32 P33













q̇1

q̇2

q̇3






+







0

d21

d31






=







u1

u2

u3







M11 =
Ra

nKmKA

(

J1 + Jeq + m2L
2
2sin

2 q2 +

m3L
2
asin2 q2 + m3L

2
3sin

2 q3 + 2m3LaL3sin q2sin q3

)

M22 =
Ra

nKmKA

(

J2 + Jeq + m2L
2
2 + m3L

2
a

)

M23 = M32 =
Ra

nKmKA
(m3L3La cos(q2 − q3))

M33 =
Ra

nKmKA

(

J3 + Jeq + m3L
2
3

)

P11 =
Ra

nKmKA

(

Beq +
n2KmKb

Ra

)

P12 =
Ra

nKmKA

(

2m2L
2
2sin q2cos q2q̇1+

2m3L3Lacos q2sin q3q̇1 + 2m3L
2
asin q2cos q2q̇1

)

P13 =
Ra

nKmKA

(

2m3L
2
3sin q3cos q3q̇1+

2m3L3Lasin q2cos q3q̇1)

P21 = −
Ra

nKmKA

(

m2L
2
2sin q2q̇1+

m3L
2
asin q2cos q2q̇1 + m3LaL3sin q3cos q2q̇1

)

P22 =
Ra

nKmKA

(

Beq +
n2KmKb

Ra

)

P23 =
Ra

nKmKA
(m3L3Laq̇3 sin(q2 − q3))

P31 = −
Ra

nKmKA

(

m3L
2
3sin q3cos q3q̇1+

m3L3Lasin q2cos q3q̇1)

P32 =
Ra

nKmKA
(m3L3Laq̇3 sin(q3 − q2))

P33 =
Ra

nKmKA

(

Beq +
n2KmKb

Ra

)

d21 = −
Ra

nKmKA
(m2gL2sin q2 + m3gLasin q2)

d31 = −
Ra

nKmKA
(m3gL3sin q3)

In (48), M and P are the inertia and Coriolis matrices of order
three, respectively, d is the gravitational force vector of order
three, while u is the voltage control vector of order three

IV. FOPID CONTROLLER DESIGN

The expression of the FOPID (or PIλDα) controller was
formulated in subsection II-C. The control forces correspond-
ing to algorithms PDα(t) (FOPD) and PIλ (FOPI) have the
form

u(t) = P (t) + Dα(t) e(t) = r(t) − y(t) (49)

u(t) = P (t) + Iλ(t) e(t) = r(t) − y(t) (50)

A. Computing the FO Derivative Rd

The FO Derivative Rd is given by (23) for α = 0.5 and m =
1. It can be computed using the following MATLAB program
[8]

% DFRL.m COMPUTING THE FO DERIVATIVE Rd

clear all; close all; clc;

% RANGE: 0 < alpha < 1 AND LIMITS 0 AND t

alpha = 0.5; e=r-y; % SYSTEM ERROR

syms y T Vd r n; % SYMBOLIC CALCULUS

Vd=[.1,.2,.3,.4,.5,.6,.7,.8,.98];

n=length(Vd); % LENGTH OF VECTOR Vd

for k=1:n

Rd(k)=(1/gamma(1-Vd(k)))*...

((T-y)ˆ(-(Vd(k))))*(r-y);

Rd(k)=diff((int(Rd(k),y,0,T)));

Rd(k)=VPA(Rd(k));

end

% Rd=(0.1880*(3.0*r-2.0*T))/Tˆ(1/2)- ...

% 0.7522*Tˆ(1/2); % SELECTED Rd

B. Computing the FO Integral Ri

The FO integral Ri expressed in (21) for values of λ = 0.5
and a = 0, can be computed using the following MATLAB
program [8]

% IFRL.m COMPUTING THE FO INTEGRAL Ri

clear all; close all; clc;

% RANGE: 0 < alpha < 1 AND LIMITS 0 AND t

alpha = 0.5; e=r-y; % SYSTEM ERROR

syms y T Vi r n;

Vi=[.1,.2,.3,.4,.5,.6,.7,.8,.9,1];

n=length(Vi); % LENGTH OF VECTOR Vi

for k=1:n

Ri(k)=int(Ri(k),y,0,T); % FUNCTION Ri

Ri(k)=VPA(Ri(k))

end

% Ri=0.3761*Tˆ(1/2)*(3.0*r-2.0*T);

% SELECTED Ri



V. SIMULATION STUDIES

The simulation procedure consists on applying the FOPD
and FOPID control algorithms to the nonlinear dynamic model
of the manipulator to demonstrate that the controlled angular
positions of the base, arm and forearm met the desired design
specifications: settling time less than 1 second, null steady state
error, and percentage overshoot less tan 2%. All the programs
where written in MATLAB code. Such programs can be found
in reference [8].

The results showed in Figs. 4 and 5 demonstrate that
the established design specifications are met for the designed
FOPD and FOPID control systems. The FOPD control law is
generated by the following portion of the simulation program:

% FO DERIVATIVE CONTROL LAW

ud1=Kd1*((0.1880*(3.0*r1-2.0*T))*...

(T.ˆ-(1/2))-0.7522*T.ˆ(1/2));

ud2=Kd2*((0.1880*(3.0*r2-2.0*T))*...

(T.ˆ-(1/2))-0.7522*T.ˆ(1/2));

ud3=Kd3*((0.1880*(3.0*r3-2.0*T))*...

(T.ˆ-(1/2))-0.7522*T.ˆ(1/2));

% CONTROL LAW PDˆ{alpha}

u1=Kp1*e1+ud1; U1(k)=u1;

u2=Kp2*e2+ud2; U2(k)=u2;

u3=Kp3*e3+ud3; U3(k)=u3;

In the same way, the FOPID control law is generated by the
following portion of the simulation program:

% FO DERIVATIVE CONTROL LAW

ud1=Kd1*((0.1880*(3.0*r1-2.0*T))*...

(T.ˆ-(1/2))-0.7522*T.ˆ(1/2));

ud2=Kd2*((0.1880*(3.0*r2-2.0*T))*...

(T.ˆ-(1/2))-0.7522*T.ˆ(1/2));

ud3=Kd3*((0.1880*(3.0*r3-2.0*T))*...

(T.ˆ-(1/2))-0.7522*T.ˆ(1/2));

% FO INTEGRAL CONTROL LAW

ui1=Ki1*0.3761*(T.ˆ(1/2))*(3.0*r1 - 2.0*T);

ui2=Ki2*0.3761*(T.ˆ(1/2))*(3.0*r2 - 2.0*T);

ui3=Ki3*0.3761*(T.ˆ(1/2))*(3.0*r3 - 2.0*T);

% CONTROL LAW PIˆ{gamma}Dˆ{alpha}

u1 = Kp1 * e1 + ui1 + ud1; U1(k)=u1;

u2 = Kp2 * e2 + ui2 + ud2; U2(k)=u2;

u3 = Kp3 * e3 + ui3 + ud3; U3(k)=u3;

VI. EXPERIMENTAL SETUP

Fig. 6 shows the experimental setup of the FOPID position
control system. The base, arm and forearm of the angular ma-
nipulator (see Fig. 1) are driven by three DC servomotors. Each
of them possesses a reduction mechanism and a quadrature
encoder to sense the angular position of the servo shaft.

A PC was used to process the FOPID control algorithms.
A Data Acquisition (DAQ) Board and a DAQ-STC (System
Timing Controller) device, both from NI (National Instrument),
were employed to process inputs and outputs system signals.
The DAQ-STC device was used to sense three angular posi-
tions from the encoders (the inputs of the system), while the
DAQ Board was employed to input to the PC three angular
position signals (from the DAQ-STC device) and to output
three control voltages. Each control voltage is in turn amplified
by a PWM (Pulse Width Modulation) Power Amplifier. Next,
eeach amplifier outputs a control force in form of a DC voltage

0 5 10 15 20 25 30 35 40
0

5

q
1

 [
ra

d
]

0 5 10 15 20 25 30 35 40
−10

0

10

TIEMPO       [S]

u
1

 [
V

]

0 5 10 15 20 25 30 35 40
0

2

4

q
2

 [
ra

d
]

0 5 10 15 20 25 30 35 40
−10

0

10

TIEMPO       [S]

u
2

  
[V

]

0 5 10 15 20 25 30 35 40
0

2

4

q
3

 [
ra

d
]

0 5 10 15 20 25 30 35 40
−10

0

10

TIEMPO       [S]

u
3

  
[V

]

Fig. 4. Controlled angular positions q1, q2, and q3 of the manipulator
using FOPD control laws u1, u2, and u3, respectively, for step type reference
signals.
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Fig. 5. Controlled angular positions q1, q2, and q3 of the manipulator using
FOPID control laws u1, u2, and u3, respectively, for step type reference
signals.

to supply the armature of its corresponding DC servomotor.
Fig. 7 shows the block diagram of the FOPID control system,
where r1, r2, and r3 are de desired signals, y1, y2, and y3 are
the controlled signals (angular positions of the base, arm and
forearm), and u1, u2, and u3 are the control signals.

VII. CONTROL SOFTWARE

The control software was written in LabVIEW code. The
structure of this program comprises five parts: the Human Ma-
chine Interface to change off– and on–line process parameters
and constants (Fig. 8); the program portion to load and unload
historic data; the part to storage historic data; the control
algorithm (Fig. 9); and, the portion to initialize variables.
Reference [8] describes in detail the control software used in
this work. Some other examples of designed control software
can be found in [9].



Fig. 6. The experimental setup.
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Fig. 7. Block diagram of the FOPID control system.

Fig. 8. Human Machine Interface of the control software.

VIII. EXPERIMENTAL RESULTS

Two designed FO control systems were verified via ex-
perimentation: position control of the manipulator employing
FOPD and FOPID controllers, respectively. Design specifica-
tions were set to: null steady state error, overshoot percentage
less than 2%, and settling time less than 1 second.

Fig. 10 shows the controlled positions of the base, arm, and
forearm of the manipulator. The corresponding control voltages
are also illustrated. Gains Kp of the FOPD controllers for the
base, arm, and forearm were set to 40, 52, and 70, respectively,
while the derivative time parameter Td for the same controllers

Fig. 9. Portion of the program showing the control algorithm.

took values of 0.0001, 0.0005 and 0.0006, respectively.

The fractional parameters λ and α were set to the value
of 0.5 for all cases. Such values were determined in the
simulation phase using the trial–and–error method. The results
illustrated in Fig. 10 demonstrate that the design specifications
are fulfilled.
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Fig. 10. Controlled angular positions of the base, arm, and forearm by means
of a FOPD control system.

Figs. 11, 12, and 13 illustrate the controlled positions of the
base, arm, and forearm of the manipulator. The corresponding
control voltages are also depicted. Gains Kp of the FOPD
controllers for the base, arm, and forearm were set to 40, 56,
and 70, respectively, while the derivative time parameter Td

for the same controllers took values of 0.0001, 0.0005, and
0.0006, respectively. The integral time parameter Ti was set
to 120 for all cases.

The fractional parameters λ and α, as above, were set to



the value of 0.5 for all cases. Such values, were determined
in the simulation phase using trial–and–error. The results
illustrated in Figs. 11, 12, and 13 met the established design
specifications.
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Fig. 11. Controlled angular position of the manipulator base using a FOPID
controller.
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Fig. 12. Controlled angular position of the manipulator arm using a FOPID
controller.
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Fig. 13. Controlled angular position of the manipulator forearm using a
FOPID controller.

IX. CONCLUSIONS

In view of the results of section VIII, the main goal of
this work has been achieved: to control simultaneously the
base, arm, and forearm positions of an angular manipulator
using FOPD and FOPID control systems. Figs. 10, 11, 12,
and 13 demonstrate that the previously established design
specifications were met: null steady state error, percentage
overshoot less than 2%, and settling time less than 0.5 seconds.

The determination of the dynamic model of the manipulator
(section III) was required to simulate the behavior of the

designed FOPD and FOPID control systems (Figs. 4 and 5)
using the selected FO tuning parameters Kp, Ki, Kd, γ, and α,
which were chosen by trial–and–error. Such parameters were
also used as initial parameters in the experimentation phase.

The designed FOPID controller (section IV) is inherently
nonlinear. This fact results convenient in the design of nonlin-
ear systems. FOPID controller possess five tuning parameters.
It has been demonstrated in section VIII, that a good choice
of such parameters could solve regulation and robustness
problems of a control system.

As a future work, it is recommendable to embed the
designed FOPID control systems for industrial purposes. A
CRIO (Compact Reconfigurable Input Output) device, among
other possibilities, could be used for such a purpose.
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