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Abstract. This paper presents an analytical solution for the thermoelastic bending 

analysis of advanced composite sandwich plates by using a new quasi-3D hybrid type 

HSDT with 6 unknowns which is based on a generalized formulation. In addition, the 

nonlinear term of the temperature field is included in the generalized mathematical 

formulation in such way that it can be freely chosen and if desired can be different from the 

shear strain shape functions of the displacement field. So, infinite quasi-3D hybrid type 

HSDTs with just 6 unknowns can be derived from the present generalized formulation. The 

thermoelastic bending governing equations are obtained through the principle of virtual 

works and solved via Navier Method. Interesting results are obtained and compared with 

quasi-3D and 2D HSDTs. Transverse shear stress results are strongly influenced by 

nonlinear temperature field and for different HSDTs different results are produced. 

Therefore should be further discussed in the literature. 
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Functionally graded materials (FGMs) are a type of heterogeneous composite material 

in which the properties change gradually over one or more directions. This material is 

produced by mixing two or more materials in a certain volume ratio (commonly ceramic and 

metal). FGMs have been proposed [1], developed and successfully used in industrial 

applications since 1980’s [2]. Its counterpart, classical composites structures such as fiber 

reinforced plastics (FRPs) suffer from discontinuity of material properties at the interface of 

the layers and constituents. The continuous nature of the variation of the material properties in 

FGMs lessens the stress concentrations which become troublesome in a classical composites 

structure. FGMs were initially designed as a thermal barrier for aerospace structures and fusion 

reactors. They are now being developed for general use as structural components subjected to 

high temperatures. Nowadays, FGMs are an alternative materials widely used in aerospace, 

nuclear, civil, automotive, optical, biomechanical, electronic, chemical, mechanical and 

shipbuilding industries. 

On other hand, many shear deformation theories have been developed over the last 

years for the analysis of structural elements. These theories can be divided in two groups by 

a simple criterion: shear deformation theories with thickness stretching effect and shear 

deformation theories without thickness stretching effect. When a theory includes the 

thickness stretching effect, the transverse displacement is considered dependent by 

thickness coordinates obeying the Koiter’s recommendation [3], i.e., εzz ≠ 0. In the 

literature many theories that include thickness stretching effect to study the static, dynamic 

and stability behavior of functionally graded (FG) single-layer and sandwich plates 

subjected to thermal or/and mechanical load can be found. Below are listed the most 

relevant works: 

Zenkour [4] investigated the static problem of exponentially graded (EG) 

rectangular plates subjected to transverse mechanical load using both quasi-3D 

trigonometric plate theory (TPT) and 3D elasticity solution. The quasi-3D TPT presented in 

this paper includes the thickness stretching effect, εzz ≠ 0. The thermoelastic bending 

problem of FG sandwich plates (consisting of a homogeneous core with two FG face-sheet 

layers) were studied by Zenkour and Alghamdi [5], using a HSDT with thickness stretching 

effect. The authors modeled nonlinear temperature distribution with a sine function. 



Matsunaga [6] modeled the displacement field with power series of the thickness 

coordinate for the analysis of functionally graded plates (FGPs) under thermal and 

mechanical loads based on 2D HSDT. Carrera et al. [7] studied the effects of thickness 

stretching in FGPs and shells under mechanical loads. For analysis, the authors propose 

several shear deformation theories by using the Carrera’s Unified Formulation (CUF). The 

importance of the transverse normal strain effects in mechanical prediction of stresses for 

FGPs was pointed out. Neves et al. [8,9] presented a quasi-3D sinusoidal and hyperbolic 

shear deformation theory (εzz ≠ 0), respectively, for the static and free vibration analysis of 

FGPs by using collocation with radial basis functions. Mantari and Guedes Soares 

[10,11,12] developed new quasi-3D HSDTs (εzz ≠ 0) for the study of the static analysis of 

FGPs. In [10] and [12] the authors presented generalized formulations for the displacement 

field with two shape functions that are independent of each other. Houari et al. [13] 

analyzed the sandwich plates with FG skins under thermal load by using a trigonometric 

HSDT with thickness stretching effect. Readers can also consult the non-polynomial 

HSDTs presented in Refs. [14-17]. For example, in Sandi et al. [13], in addition to the 

thermoelasticty analysis of FGMs, as in this paper, they also studied the thermomechanical 

effect on FGPs.   

Many authors use non-polynomial shear strain shape functions, such as 

trigonometric, trigonometric hyperbolic, exponential, etc. However, the thickness 

expansion modeling is conditioned by the in-plane displacement model (the transverse non-

linear function in the modeling of the thickness expansion is an even function which 

usually is the derivative of the in-plane non-linear shear strain shape function, i.e. 

)(')( zfzg  ). Therefore, it is not free to choose a different shear strain shape function of 

the thickness expansion. The present formulation has that freedom, and infinite quasi-3D 

hybrid type shear deformation theories (polynomial or non-polynomial or hybrid type) can 

be created just having six unknowns.  

In the present paper, a generalized formulation for the thermoelastic bending 

analysis of FG sandwich plates is presented. This generalized quasi-3D hybrid type HSDT 

accounts for adequate distribution of the transverse shear stresses through the plate 

thickness and tangential stress-free boundary conditions on the plate boundary surface, thus 



a shear correction factor is not required. The nonlinear term of the temperature field can be 

different from the shape functions of the displacement field, i.e. is also formulated in 

generalized manner. The mechanical properties of functionally graded layers of the plate 

are assumed to vary in the thickness direction according to a power law distribution in 

terms of the volume fractions of the constituents. The governing equations for the 

thermoelastic static analysis are obtained through the principle of virtual work. Navier-type 

analytical solutions are obtained for FG sandwich plates subjected to transverse thermal bi-

sinusoidal load for simply supported boundary conditions. The performance of this theory 

is verified by comparing it with other quasi-3D and 2D HSDTs available in literature. 

Transverse shear stress results are strongly influenced by nonlinear temperature field and 

for different HSDTs different results are produced. Therefore should be further discussed in 

the literature. 

2. Theoretical Formulation 

 

The sandwich plates of uniform thickness “h”, length “a”, and width “b” is shown in 

Figure 1. The rectangular Cartesian coordinate system x, y, z, has the plane z = 0, coinciding 

with the mid-surface of the plate. The vertical positions of bottom, the two interfaces and the 

top surface of the sandwich plate are denoted by        ,   ,   ,       , respectively. 

The ratio of the thickness of each layers from bottom to top is denoted by the combination of 

three numbers, for example, a symmetric sandwich plate composed of three layers of equal 

thickness will have a configuration or scheme "1-1-1" (       ,        ). 

 

2.1. Functionally graded sandwich plates 

The material properties for the functionally graded layers vary through the thickness 

with a power law distribution, which is given below: 
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where      denotes the effective material property,     
  and     

  denote the property of 

the top and bottom faces of the functionally graded layer, respectively, and “k” represent a 



single-layer of the sandwich plate, i.e., k = 1, 2, 3 for the bottom, middle and top layer, 

respectively. The effective material properties of the plate, including Young’s modulus, E, 

and shear modulus, G, and the thermal expansion coefficients, “ ”, vary according to 

Equation (1). Generally, Poisson’s ratio,   , varies in a small range. For simplicity, in this 

paper,      is assumed constant (see Ref. [14]). 

 

 The sandwich plate is composed of three layers, an isotropic core and two 

functionally graded skins as shown in Figure 1. The core is a fully ceramic layer, the 

bottom layer is made of a mixture of materials from metal to ceramic and the top layer is 

made of a mixture of materials from ceramic to metal. Therefore, the volume fraction for 

the ceramic phase      is expressed as (see Figure 2): 
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where     is the exponent that specifies the material variation profile through the thickness 

(  p0 ). 

From the above equations can be stated that if the exponent is equal to zero (p=0), 

the layer acquires the material properties of the top surface. Likewise, if the exponent is 

equal to infinity (p=∞), the layer acquires the material properties of the bottom surface. 

These considerations are important when studying a homogeneous material. 

 

2.2. Displacement base field 

The generalized displacement field satisfying the conditions of transverse shear 

stresses (and hence strains) vanishing at a point (x, y, ±h/2) on the outer (top) and inner 

(bottom) surfaces of the plate, is given as follows (see Mantari and Guedes Soares [10]): 
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where ),( yxu , ),( yxv , ),( yxw , ),(1 yx , ),(2 yx  and ),(3 yx  are the six unknown 

displacement functions of middle surface of the plate, whilst )
2

('* h
fy   and )

2
(* h

gq  .  

It is important to mention that )(' zf  and )(zg  must be even functions. The possibility of 

having )(')( zfzg   (if desired) allows creating infinite quasi-3D hybrid type HSDTs. In 

this paper )(zf  and )(zg  are as follows: 
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Note that such shear strain shape functions can be further optimized to get close to 

3D solutions as in [12]. 

2.3. Kinematic relations and constitutive relations 

In the derivation of the necessary equations, small strains are assumed (i.e., 

displacements and rotations are small, and obey Hooke’s law). The linear strain expressions 

derived from the displacement model of Equations (3a-c), valid for thin, moderately thick 

and thick plate under consideration are as follows: 

210 )( xxxxxxxx zfz   , 

210 )( yyyyyyyy zfz   , 

5)(' zzzz zg   , 

430 )(')( yzyzyzyz zfzg   , 



430 )(')( xzxzxzxz zfzg   , 

210 )( xyxyxyxy zfz   .        (5a-f) 
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For the functionally graded sandwich plates, the stress–strain relationships for 

plane-stress state including the thermal effects can be expressed as: 
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in which,  = xx , yy , zz , yz , xz , xy 
T
 and  = xx , yy , zz , yz , xz , xy 

T
 are the stresses 

and the strain vectors with respect to the plate coordinate system;  ̅={T, T, T, 0, 0, 0}
T
 is 



the temperature distribution vector. The 
ijQ  expressions in terms of engineering constants 

are given below: 
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The modulus )(zE ,
)1(2
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zE
zG  and the elastic coefficients )(zQij  and the 

thermal expansion coefficients “  Z ”  vary through the thickness according to Equation 

(1). 

The generalized temperature field which varies through the thickness of the plate 

can be expressed as follows: 
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where 1T , 2T  and 3T  are thermal load.  

Note that in Equation (9), the function of the nonlinear term is expressed in general 

manner, i.e. it can be different from the shear strain shape functions of the displacement 

field (Equation (3a-c)) if desired. The temperature distribution vector is given as: 
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2.4. Principle of virtual work (PVW) 

The PVW is utilized for the thermoelastic bending problem of FG sandwich plate. 

The PVW is expressed as: 
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where    is the virtual strain energy,    is the external virtual works due to external load 

applied to the plate. These expressions can be written as: 
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 This paper only considers thermal loads, so the effect of mechanical load is omitted. 

Finally, Equation (12) is expressed as: 
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and, then, it can be further simplified to 
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where Ni, Mi, Pi, Qi and Ki are the resultants of the following integrations: 
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2.5. Plate governing equations 

Using the generalized displacement–strain relations (Equations (5a-f) and (6a-p)) 

and stress–strain relations (Equation (7)), and integrating by parts and applying the 

fundamental lemma of variational calculus and collecting the coefficients of u , v , w ,

1 , 2 , 3  in Equation (16), the governing equations are obtained as: 
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By substituting the stress-strain relations into the definitions of force and moment 

resultants given in Equation (17a-g) the following constitutive equations are obtained: 
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In what follows, the problem under consideration is solved for the simply supported 

boundary conditions and they are given at all four edges as follows: 

32111   wvPMN  at x = 0, a,     

31222   wuPMN  at y = 0, b.               (21a,b) 

 



3. Solution procedure 

Navier’s procedure along with governing equations (18a-f) allow to obtain solution 

of the displacement variables satisfying the above boundary conditions. Such displacement 

variables (six unknowns) can be expressed in the following Fourier series: 

 

  ),sin()cos(,
1 1

yxUyxu
r s

rs 








  byax  0;0  (22a) 

  ),cos()sin(,
1 1

yxVyxv
r s

rs 








  byax  0;0  (22b) 

  ),sin()sin(,
1 1

yxWyxw
r s

rs 








  byax  0;0  (22c) 

  ),sin()cos(,
1 1

1

1 yxyx
r s

rs  








  byax  0;0  (22d) 

  ),cos()sin(,
1 1

2

2 yxyx
r s

rs  








  byax  0;0  (22e) 

  ),sin()sin(,
1 1

3

3 yxyx
r s

rs  








  byax  0;0  (22f) 

where 

a

r
  , 

b

s
             (23) 

The transverse thermal loads T1, T2, T3 are also expanded in the double-Fourier sine 

series as: 
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mn TT ˆ ; for sinusoidally distributed thermal load     (25a) 
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mn  ; for uniformly distributed thermal load     (25b)

 

From Equation (19a-i), it can be noticed that for Ni, Mi, Pi, Qi, Ki, and Ri, the 

variables depending on x and y are the strains, b

j  (b=0,…,5). Therefore, the expressions in 

each of the plate governing Equations (18a-f), for example 
2

2

x

N i




, 

2

2

x

M i




, can be 

expressed as follows:  

2

2 ),(

x

MN ii




= (Aij,Bij)





























































































































CC

CS

SC

SS

SS

SS

W

V

U

q

q

y

y

T

rs

rs

rs

rs

rs

rs

3

2

1

3*

2*

32

2*

2*

2

3

0

0

0

0

000

0000

0000

00000

0000

0000















+ 

 (Bij,Gij) 

























































































































CC

CS

SC

SS

SS

SS

W

V

U

q

q

q

yy

y

y
T

rs

rs

rs

rs

rs

rs

3

2

1

3*

22*

4*

3*2*3

2*22

3*4

2

0

0

0

200

00000

00000

00000

000

000













 +  

(Cij,Hij) 



















































































































 CC

CS

SC

SS

SS

SS

W

V

U
T

rs

rs

rs

rs

rs

rs

3

2

1

32

2

3

0000

000000

000000

000000

00000

00000







 + 



(Dij,Iij)























































































































CC

CS

SC

SS

SS

SS

W

V

U
T

rs

rs

rs

rs

rs

rs

3

2

1

3

2

000000

00000

00000

000000

000000

000000




 +  

(Eij,Jij)























































































































CC

CS

SC

SS

SS

SS

W

V

U
T

rs

rs

rs

rs

rs

rs

3

2

1

2

2

000000

00000

00000

000000

000000

000000




+  

(Fij,K’ij)





















































































































CC

CS

SC

SS

SS

SS

W

V

U
T

rs

rs

rs

rs

rs

rs

3

2

1

2

000000

000000

000000

00000

000000

000000


2

2 ),(

x

MN T

i

T

i




 . (26) 

where )sin()sin(SS yx  , )cos()sin(SC yx   and so for,  and  the elements of the 6x6 

matrices are the coefficients obtained after taking the second derivation of the strains 

expression in the Equations (19a-i). As is known, the generalized strains are expressions as 

a function of the 6 unknowns, described in Equations (3a-c) and Equations (22a-f). 
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 are as follow: the first upper and lower (a,v) 

indicates the derivative (second derivative with respect to x, in the example), and the 

second upper character, b, indicates that the derivative is associates with the strain  b
j  

(b=0,…,5). For example, 
0,2

xM is (see Equation (26)): 
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By collecting the expression obtained after substituting Equations (22a-f) and (24) 

into Equations (18a-f), the following equation is obtained, 

 FK jij    )6,......,1,( ji  and )( jiij KK  .    (28) 
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Elements of ijK  in Equation (28) can be obtained by using the matrices 
ba

vM
,

. All 

matrices of type 
ba

vM
,

, associated with the expressions of the plate governing Equations 

(18a-f) are given in Appendix A. 

 

4. Numerical results and discussions 

In this section, the results of thermoelastic bending analysis of FG sandwich plates 

by using the present theory are presented. As it was mentioned above, this theory includes 

the thickness stretching effect, i.e. the thickness expansion is well-modeled, obeying the 

Koiter’s recommendation regarding the thickness stretching effect of the plate [3]. 

Therefore, in order to evaluate this theory various numerical examples of a FG sandwich 

plate with various exponents that specify the material variation profile through the 

thickness, “p”, several aspect ratio “a/b” and different schemes are presented. Typical 

mechanical properties for metal and ceramics used in the numerical examples are listed in 

Table 1. The simply supported FG sandwich plate is subjected to a bi-sinusoidal thermal 

load. All results were obtained considering a side-to-thickness ratio a/h=10. In this paper, 

the following dimensionless relations for the deflection and stresses of thermoelastic 

bending problem are used: 
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The results of non-dimensional deflections w  of FG sandwich square plates for several 

values of exponent “p” and different sandwich schemes are presented in Table 2. The 

sandwich plate is subjected to a linear temperature distribution through the thickness ( 03̂ T ). 

The results are compared with solutions based on TSDT and HSDTs with thickness stretching 

effect proposed by Zenkour and Alghamdi [5] and Houari et al. [13]. From Table 2 can be 



noticed that the present results show excellent agreement with other HSDTs with thickness 

stretching effect [5,13]. It can be also noticed that theories with thickness stretching effect 

(including the present one) presents lower non-dimensional deflection results than other 

solutions based on classical 2D HSDTs (εzz = 0). For a given sandwich scheme, the non-

dimensional deflection increases as the exponent “p” increases. However, this effect decreases 

for high values of the exponent "p". 

Table 3 presents results of non-dimensional deflections w  of FG sandwich plates for 

different values of aspect ratio “a/b” and several sandwich schemes, considering the exponent 

p=3. As before, the sandwich plate is subjected to a linear temperature distribution through the 

thickness ( 03̂ T ). The results are compared with several HSDTs as in Table 2. The results of 

the present theory show excellent agreement with other theories with thickness stretching 

effect, as expected. For a given sandwich scheme, the non-dimensional deflection decreases as 

the aspect ratio “a/b” increases. It can be noticed that the present results are lower than the 

solutions based on classical 2D HSDTs. However, this pattern is opposite for aspect ratios a/b 

> 3. From Tables 2 and 3, it can be said that the aspect ratio “a/b” is more influential in non-

dimensional deflection than the exponent "p". 

Results of non-dimensional axial stresses xx  of FG sandwich square plates for several 

values of exponent “p” and different sandwich schemes are presented in Table 4. The 

sandwich plate is subjected to a linear temperature distribution through the thickness ( 03̂ T ). 

Again, the present results show an excellent agreement with other solutions with thickness 

stretching effect. The present results are higher (in absolute value) than the other solutions 

based on theories that consider zz = 0. From this table can be seen that the non-dimensional 

axial stress decrease as the exponent “p” increase, except for the exponent p=0. 

Table 5 presents results of non-dimensional transverse shear stresses xz  of FG 

sandwich square plates for several values of exponent “p” and different sandwich schemes. 

The results are compared with several HSDTs as mentioned previously. The sandwich plate is 

subjected to both linear and nonlinear temperature distribution ( 1003̂ T ). Note that this 

table was prepared by considering that the function of the nonlinear temperature distribution is 

equal to shear strain shape function of the displacement field, i.e., )()( zzf  . It can be 

noticed that the results of all theories are different, except the solutions based on HSDTs with 



thickness stretching effect proposed by Zenkour and Alghamdi [5] and Houari et al. [13] (both 

theories presented a non-linear temperature field with a sine function). The difference in 

results is attributed to the nonlinear term of the temperature field. 

Due to the capability of the present generalized theory, Table 6 presents a comparison 

of the non-dimensional transverse shear stresses xz  considering a generalized temperature 

distribution through the thickness ( )()( zzf  ). Interestingly, it can be noticed that the 

results are different in all cases. It is worth highlighting that the temperature field with 

polynomial function produces lower values of transverse shear stress. 

Figures 3 and 4 show the variation of the non-dimensional deflection w  as a function 

of the exponent “p” and the aspect ratio “a/b” for various values of the coefficient of thermal 

load 3̂T , respectively. The nonlinear term of the temperature distribution presents a sinusoidal 

function, i.e.    hzhz /sin/)(  . In Figure 3 (for a certain value of 3̂T ) can be seen that 

the non-dimensional deflection remains practically constant for high values of the exponent 

“p”. The non-dimensional deflection increases as the coefficient of thermal load 3̂T  increases. 

Figure 4 shows that the curves have negative slope, i.e. the non-dimensional deflection 

decreases as the aspect ratio “a/b” increases, and as “a/b” is reduced the non-dimensinalized 

deflections are higher. However, the effect decreases as 3̂T  decreases. From Figures 3 and 4 

can be clearly seen that the aspect ratio has a greater influence on the deflection than the 

exponent “p”.  

Figures 5 and 6 show the distribution of the non-dimensional deflections, w , and the 

axial stresses, xx , through the thickness of the plate for several exponents “p”, respectively. 

The sandwich plate is subjected to linear temperature distribution ( 03̂ T ). From Figure 5 can 

be noticed that the non-dimensional deflection has its maximum value on the plate surfaces. 

The non-dimensional deflection increases as the exponent “p” increases. As in the non-

dimensional deflection, the non-dimensional axial stress reaches its maximum value on the 

plate surfaces (see Figure 6). 

Figures 7 and 8 show the variation of the deflection w  as a function of the coefficient 

of thermal load 2T̂  for several values of 1̂T  and 3̂T , respectively. From Figure 7 can be 



observed that the coefficient of thermal load 1̂T  has no influence on the results. However, the 

coefficient of thermal load 3̂T  significantly affects the deflection, see Figure 8. 

The distribution of the non-dimensional deflection, axial stress and transverse shear 

stress through the thickness of the plate for several coefficients of thermal load 3̂T  are shown 

in Figures 9, 10 and 11, respectively. From these figures can be concluded that the results are 

very sensitive to the coefficient of thermal load 3̂T . 

 

5. Conclusions 

This paper presents a thermoelastic bending analysis for a FG sandwich plate by using 

of a new quasi-3D hybrid type HSDT subjected to a generalized temperature field. Many 

hybrid types of shear deformation theories with only 6 unknowns, in which the thickness 

stretching effect is included, can be derived by using the present generalized formulation. The 

nonlinear term of the temperature can be different from the shear strain shape functions of the 

displacement field. The governing equations are obtained through the principle of virtual work. 

These equations are solved via Navier’s method. The results were compared with the solutions 

of several theories. It is concluded that the results of the present theory has an excellent 

agreement with other theories with thickness stretching effect for the thermoelastic bending 

problem. The non-dimensional stresses xx , xz  and non-dimensional deflection w  are 

sensitive to the nonlinear term of the temperature field. Furthermore, the nature of the 

nonlinear term of the temperature field (polynomial, sinusoidal, tangential, or other) highly 

affects the results of the non-dimensional deflection and stresses. Consequently, it should be 

extensively discussed in futures research works due to limited comments about it in the 

scientific community. 
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Appendix A. Definition of constants in Equation (28) 



As mentioned before, these matrices are associated with the expressions of the plate 

governing Equations (18a-f) they used to calculate the Kij element matrices. The advantage 

of the present technique is that infinite shear deformation theories can be created and 

calculated by using the same following matrices, only “y*” and “q*” should be changed. 
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Table Legends 

Table 1. Material properties of the used FG sandwich plates. 

Table 2. Comparison of non-dimensional deflection w of FG sandwich square plates 

(a/h=10, 0ˆˆ
31 TT , 1002̂ T ). 

Table 3. Comparison of non-dimensional deflection w of FG sandwich rectangular plates 

(p=3, a/h=10, 0ˆˆ
31 TT , 1002̂ T ). 

Table 4. Comparison of non-dimensional axial stress xx  of FG sandwich plates (a/h=10, 

0ˆˆ
31 TT , 1002̂ T ). 

Table 5. Comparison of non-dimensional shear stress xz  of FG sandwich square plates 

(a/h=10, 01̂ T , 1002̂ T , 1003̂ T , )()( zzf  ). 

Table 6. Comparison of non-dimensional shear stress xz  of FG sandwich square plates 

(a/h=10, 01̂ T , 1002̂ T , 1003̂ T , )()( zzf  ). 

 

Figure Captions 

Figure 1. Geometry of functionally graded sandwich plate. 

Figure 2. Volume fraction for the ceramic phase, )( zV , along the thickness of a FGP for 

different values of the exponent “p” (1-2-1). 

Figure 3. Variation of non-dimensional deflection w of FG sandwich square plate versus 

the exponent “p” considering a generalized temperature field with a sine function ( 01̂ T ,

1002̂ T , a/h = 10, 1-1-1,    hzhz /sin/)(  ). 



Figure 4. Variation of non-dimensional deflection w of FG sandwich plate versus the 

aspect ratio “a/b” considering a generalized temperature field with a sine function ( 01̂ T ,

1002̂ T , a/h = 10, p=2, 1-1-1,    hzhz /sin/)(  ). 

Figure 5. Distribution of non-dimensional deflection w  through the thickness of a FG 

sandwich square plate for several exponents “p” ( 0ˆˆ
31 TT , 1002̂ T , a/h = 10, 1-1-1). 

Figure 6. Distribution of non-dimensional axial stress xx  through the thickness of a FG 

sandwich square plate for several exponents “p” ( 0ˆˆ
31 TT , 1002̂ T , a/h = 10, 1-1-1). 

Figure 7. Variation of deflection w of FG sandwich square plate versus the coefficient of 

the thermal load 2T̂  ( 03̂ T , a/h = 10, p=2, 1-1-1). 

Figure 8. Variation of deflection w of FG sandwich square plate versus the coefficient of 

the thermal load 2T̂  considering a generalized temperature field with a sine function (

   hzhz /sin/)(  , 01̂ T , a/h = 10, p=2, 1-1-1). 

Figure 9. Distribution of non-dimensional deflection w  through the thickness of a FG 

sandwich square plate considering a generalized temperature field with a sine function (

   hzhz /sin/)(  , 01̂ T , 1002̂ T , a/h = 10, p=2, 1-1-1). 

Figure 10. Distribution of non-dimensional axial stress xx  through the thickness of a FG 

sandwich square plate considering a generalized temperature field with a sine function (

   hzhz /sin/)(  , 01̂ T , 1002̂ T , a/h = 10, p=2, 1-1-1). 

Figure 11. Distribution of non-dimensional transverse shear stress xz  through the thickness 

of a FG sandwich square plate considering a generalized temperature field with a sine 

function (    hzhz /sin/)(  , 01̂ T , 1002̂ T , a/h = 10, p=2, 1-1-1). 

 

 

 

 

 

 



Tables 

Table 1. 

Material 
Properties 

E (GPa) α (x10
-6

/°C) ν 

Metal: Ti–6A1–4V 66.2 10.3 1/3 

Ceramic: ZrO2 117 7.11 1/3 

 

  



Table 2. 

p Theory 
w  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 

Houri et al.[13] (εz≠0) 0.461634 0.461634 0.461634 0.461634 0.461634 

Zenkour et al.[5] (εz≠0) 0.461634 0.461634 0.461634 0.461634 0.461634 

Zenkour et al.[5] (εz=0) 0.480262 0.480262 0.480262 0.480262 0.480262 

TSDT (εz=0) 0.480262 0.480262 0.480262 0.480262 0.480262 

Present (εz≠0) 0.461630 0.461630 0.461630 0.461630 0.461630 

1 

Houri et al.[13] (εz≠0) 0.614565 0.586124 0.563416 0.599933 0.573327 

Zenkour et al.[5] (εz≠0) 0.614565 0.586124 0.563416 0.599933 0.573327 

Zenkour et al.[5] (εz=0) 0.636916 0.606292 0.582342 0.621098 0.592604 

TSDT (εz=0) 0.636891 0.606256 0.582302 0.621067 0.592568 

Present (εz≠0) 0.614560 0.586129 0.563429 0.599932 0.573335 

2 

Houri et al.[13] (εz≠0) 0.647135 0.618046 0.590491 0.633340 0.601843 

Zenkour et al.[5] (εz≠0) 0.647135 0.618046 0.590491 0.633340 0.601843 

Zenkour et al.[5] (εz=0) 0.671503 0.639361 0.609875 0.656142 0.621581 

TSDT (εz=0) 0.671486 0.639325 0.609829 0.656115 0.621544 

Present (εz≠0) 0.647118 0.618044 0.590503 0.633328 0.601847 

3 

Houri et al.[13] (εz≠0) 0.658153 0.631600 0.602744 0.646475 0.614121 

Zenkour et al.[5] (εz≠0) 0.658153 0.631600 0.602744 0.646475 0.614121 

Zenkour et al.[5] (εz=0) 0.683572 0.653671 0.622467 0.670275 0.634175 

TSDT (εz=0) 0.683560 0.653638 0.622420 0.670253 0.634139 

Present (εz≠0) 0.658131 0.631592 0.602753 0.646456 0.614121 

4 

Houri et al.[13] (εz≠0) 0.662811 0.638705 0.609560 0.652890 0.620663 

Zenkour et al.[5] (εz≠0) 0.662811 0.638705 0.609560 0.652890 0.620663 

Zenkour et al.[5] (εz=0) 0.688803 0.661291 0.629533 0.677321 0.640940 

TSDT (εz=0) 0.688795 0.661260 0.629487 0.677303 0.640905 

Present (εz≠0) 0.662785 0.638693 0.609568 0.652866 0.620661 

5 

Houri et al.[13] (εz≠0) 0.665096 0.642948 0.613842 0.656490 0.624629 

Zenkour et al.[5] (εz≠0) 0.665096 0.642948 0.613842 0.656490 0.624629 

Zenkour et al.[5] (εz=0) 0.691420 0.665898 0.634003 0.681343 0.645070 

TSDT (εz=0) 0.691415 0.665869 0.633958 0.681327 0.645036 

Present (εz≠0) 0.665071 0.642932 0.613848 0.656462 0.624625 

 

  



Table 3. 

Scheme Theory 
w  

a/b=1 a/b=2 a/b=3 a/b=4 a/b=5 

1-0-1 

Houri et al.[13] (εz≠0) 0.658153 0.270902 0.141810 0.088642 0.062334 

Zenkour et al.[5] (εz≠0) 0.658153 0.270902 0.141810 0.088642 0.062334 

Zenkour et al.[5] (εz=0) 0.683572 0.273492 0.136798 0.080512 0.052678 

TSDT (εz=0) 0.683560 0.273480 0.136786 0.080501 0.052667 

Present (εz≠0) 0.658131 0.270879 0.141785 0.088616 0.062305 

1-1-1 

Houri et al.[13] (εz≠0) 0.631600 0.259980 0.136105 0.085094 0.059862 

Zenkour et al.[5] (εz≠0) 0.631600 0.259980 0.136105 0.085094 0.059862 

Zenkour et al.[5] (εz=0) 0.653671 0.261647 0.130971 0.077163 0.050554 

TSDT (εz=0) 0.653638 0.261614 0.130939 0.077131 0.050522 

Present (εz≠0) 0.631592 0.259972 0.136096 0.085084 0.059850 

1-2-1 

Houri et al.[13] (εz≠0) 0.602744 0.248135 0.129933 0.081262 0.057192 

Zenkour et al.[5] (εz≠0) 0.602744 0.248135 0.129933 0.081262 0.057192 

Zenkour et al.[5] (εz=0) 0.622467 0.249245 0.124837 0.073610 0.048277 

TSDT (εz=0) 0.622420 0.249199 0.124791 0.073564 0.048231 

Present (εz≠0) 0.602753 0.248144 0.129942 0.081269 0.057198 

2-1-2 

Houri et al.[13] (εz≠0) 0.646475 0.266094 0.139295 0.087077 0.061244 

Zenkour et al.[5] (εz≠0) 0.646475 0.266094 0.139295 0.087077 0.061244 

Zenkour et al.[5] (εz=0) 0.670275 0.268228 0.134212 0.079029 0.051740 

TSDT (εz=0) 0.670253 0.268206 0.134190 0.079007 0.051718 

Present (εz≠0) 0.646456 0.266074 0.139274 0.087054 0.061219 

2-2-1 

Houri et al.[13] (εz≠0) 0.614121 0.252758 0.132303 0.082701 0.058168 

Zenkour et al.[5] (εz≠0) 0.614121 0.252758 0.132303 0.082701 0.058168 

Zenkour et al.[5] (εz=0) 0.634175 0.253878 0.127112 0.074914 0.049101 

TSDT (εz=0) 0.634139 0.253843 0.127077 0.074879 0.049066 

Present (εz≠0) 0.614121 0.252758 0.132302 0.082699 0.058164 

 

  



Table 4. 

p Theory 
xx  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 

Houri et al.[13] (εz≠0) -2.286893 -2.286893 -2.286893 -2.286893 -2.286893 

Zenkour et al.[5] (εz≠0) -2.286893 -2.286893 -2.286893 -2.286893 -2.286893 

Zenkour et al.[5] (εz=0) -2.079675 -2.079675 -2.079675 -2.079675 -2.079675 

TSDT (εz=0) -2.079675 -2.079675 -2.079675 -2.079675 -2.079675 

Present (εz≠0) -2.286585 -2.286585 -2.286585 -2.286585 -2.286585 

1 

Houri et al.[13] (εz≠0) -2.277311 -2.482321 -2.639491 -2.383671 -2.653105 

Zenkour et al.[5] (εz≠0) -2.277311 -2.482321 -2.639491 -2.383671 -2.653105 

Zenkour et al.[5] (εz=0) -1.993885 -2.144369 -2.261939 -0.071622 -2.276155 

TSDT (εz=0) -1.993921 -2.144422 -2.262000 -2.071668 -2.276209 

Present (εz≠0) -2.277050 -2.482052 -2.639221 -2.383405 -2.652839 

2 

Houri et al.[13] (εz≠0) -2.047272 -2.268798 -2.465763 -2.154066 -2.492766 

Zenkour et al.[5] (εz≠0) -2.047272 -2.268798 -2.465763 -2.154066 -2.492766 

Zenkour et al.[5] (εz=0) -1.824065 -1.982233 -2.127124 -1.899672 -2.152815 

TSDT (εz=0) -1.824089 -1.982285 -2.127193 -1.899711 -2.152872 

Present (εz≠0) -2.047014 -2.268518 -2.465474 -2.153798 -2.492484 

3 

Houri et al.[13] (εz≠0) -1.963621 -2.173723 -2.384720 -2.058212 -2.421808 

Zenkour et al.[5] (εz≠0) -1.963621 -2.173723 -2.384720 -2.058212 -2.421808 

Zenkour et al.[5] (εz=0) -1.764689 -1.911970 -2.065398 -1.830216 -2.099241 

TSDT (εz=0) -1.764705 -1.912017 -2.065467 -1.830246 -2.099296 

Present (εz≠0) -1.963372 -2.173445 -2.384425 -2.057951 -2.421522 

4 

Houri et al.[13] (εz≠0) -1.926265 -2.122027 -2.338550 -2.009198 -2.383070 

Zenkour et al.[5] (εz≠0) -1.926265 -2.122027 -2.338550 -2.009198 -2.383070 

Zenkour et al.[5] (εz=0) -1.738915 -1.874521 -2.030732 -1.795543 -2.070371 

TSDT (εz=0) -1.738925 -1.874564 -2.030800 -1.795568 -2.070424 

Present (εz≠0) -1.926022 -2.121753 -2.338253 -2.008939 -2.382781 

5 

Houri et al.[13] (εz≠0) -1.907167 -2.090296 -2.309021 -1.980712 -2.359110 

Zenkour et al.[5] (εz≠0) -1.907167 -2.090296 -2.309021 -1.980712 -2.359110 

Zenkour et al.[5] (εz=0) -1.726003 -1.851867 -2.008794 -1.775738 -2.052671 

TSDT (εz=0) -1.726010 -1.851906 -2.008861 -1.775759 -2.052722 

Present (εz≠0) -1.906922 -2.090025 -2.308724 -1.980463 -2.358822 

 

  



Table 5. 

p Theory 
xz  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 

Houri et al.[13] (εz≠0) 0.762438 0.762438 0.762438 0.762438 0.762438 

Zenkour et al.[5] (εz≠0) 0.762438 0.762438 0.762438 0.762438 0.762438 

Zenkour et al.[5] (εz=0) 0.574063 0.574063 0.574063 0.574063 0.574063 

TSDT (εz=0) 0.466349 0.466349 0.466349 0.466349 0.466349 

Present (εz≠0) 0.647283 0.647299 0.647304 0.647293 0.647299 

1 

Houri et al.[13] (εz≠0) 0.916983 0.911165 0.922812 0.905127 0.914313 

Zenkour et al.[5] (εz≠0) 0.916983 0.911165 0.922812 0.905127 0.914313 

Zenkour et al.[5] (εz=0) 0.696774 0.694817 0.705269 0.689077 0.697901 

TSDT (εz=0) 0.564059 0.559957 0.566925 0.556662 0.562231 

Present (εz≠0) 0.776577 0.771795 0.781716 0.766516 0.774339 

2 

Houri et al.[13] (εz≠0) 0.919218 0.905787 0.930546 0.894489 0.916889 

Zenkour et al.[5] (εz≠0) 0.919218 0.905787 0.930546 0.894489 0.916889 

Zenkour et al.[5] (εz=0) 0.696044 0.689620 0.711266 0.679194 0.699571 

TSDT (εz=0) 0.565881 0.556769 0.571546 0.550567 0.564062 

Present (εz≠0) 0.778004 0.766879 0.788118 0.756985 0.776258 

3 

Houri et al.[13] (εz≠0) 0.923419 0.896673 0.930393 0.883314 0.914156 

Zenkour et al.[5] (εz≠0) 0.923419 0.896673 0.930393 0.883314 0.914156 

Zenkour et al.[5] (εz=0) 0.697635 0.681516 0.710627 0.669256 0.696850 

TSDT (εz=0) 0.568711 0.551237 0.571319 0.544027 0.562514 

Present (εz≠0) 0.781379 0.758865 0.787806 0.747194 0.773758 

4 

Houri et al.[13] (εz≠0) 0.931204 0.888770 0.928612 0.875373 0.911369 

Zenkour et al.[5] (εz≠0) 0.931204 0.888770 0.928612 0.875373 0.911369 

Zenkour et al.[5] (εz=0) 0.702617 0.674664 0.708782 0.662291 0.694226 

TSDT (εz=0) 0.573625 0.546463 0.570117 0.539446 0.560893 

Present (εz≠0) 0.787952 0.752051 0.786182 0.740374 0.771341 

5 

Houri et al.[13] (εz≠0) 0.940770 0.882525 0.926543 0.870190 0.909225 

Zenkour et al.[5] (εz≠0) 0.940770 0.882525 0.926543 0.870190 0.909225 

Zenkour et al.[5] (εz=0) 0.709315 0.669326 0.706821 0.657748 0.692220 

TSDT (εz=0) 0.579530 0.542724 0.568771 0.536526 0.559642 

Present (εz≠0) 0.796105 0.746661 0.784368 0.735758 0.769403 

 

  



Table 6. 

p Theory 
xz  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 

Present
a
 (εz≠0) 0.843140 0.843148 0.843153 0.843141 0.843147 

Present
b
 (εz≠0) 0.779757 0.779754 0.779757 0.779753 0.779755 

Present
c
 (εz≠0) 0.903551 0.903544 0.903551 0.903553 0.903553 

1 

Present
a
 (εz≠0) 1.008621 1.001380 1.013835 0.994964 1.004650 

Present
b
 (εz≠0) 0.926195 0.917266 0.927741 0.912356 0.920192 

Present
c
 (εz≠0) 1.088556 1.083387 1.097958 1.075332 1.087015 

2 

Present
a
 (εz≠0) 1.011299 0.995136 1.021869 0.983042 1.007090 

Present
b
 (εz≠0) 0.930521 0.911855 0.934510 0.902449 0.922331 

Present
c
 (εz≠0) 1.089278 1.076289 1.107360 1.061264 1.089786 

3 

Present
a
 (εz≠0) 1.016334 0.985017 1.021510 0.970784 1.004005 

Present
b
 (εz≠0) 0.936610 0.903197 0.934292 0.892227 0.919872 

Present
c
 (εz≠0) 1.093012 1.064629 1.106852 1.046833 1.086030 

4 

Present
a
 (εz≠0) 1.025315 0.976379 1.019474 0.962232 1.000997 

Present
b
 (εz≠0) 0.945861 0.895768 0.932590 0.885136 0.917448 

Present
c
 (εz≠0) 1.101542 1.054721 1.104461 1.036717 1.082395 

5 

Present
a
 (εz≠0) 1.036215 0.969546 1.017179 0.956512 0.998612 

Present
b
 (εz≠0) 0.956571 0.889871 0.930629 0.880430 0.915513 

Present
c
 (εz≠0) 1.112492 1.046906 1.101814 1.029908 1.079525 

a
    hzhz /sin/)(   

b
    2

/3/41)( hzzz   

c
 

 2/2)( hzzez   
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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