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Abstract. This paper presents a static analysis of functionally graded plates (FGPs) by 

using a new first shear deformation theory (FSDT). This theory contains only four 

unknowns, with is even less than the classical FSDT. In this paper a simply supported FG 

square sandwich plate is subjected to a bi-sinusoidal load. The governing equations for 

static bending analysis are derived by employing the principle of virtual works. These 

equations are then solved via Navier-type, closed form solutions. The accuracy of the 

present theory is ascertained by comparing it with various available solutions in the 

literature. 
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1. Introduction 

Functionally graded materials (FGMs) can be defined as advanced materials having 

graded transition in mechanical properties, either continuous or in fine, discrete steps, 

across the interface. This material is produced by mixing two or more materials in a certain 

volume ratio (commonly ceramic and metal). FGMs have been proposed, developed and 

successfully used in industrial applications since 1980‟s [1]. These materials were initially 

designed as a thermal barrier for aerospace structures and fusion reactors. They are now 

being developed for general use as structural components subjected to high temperatures. 
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The areas where FGM offer potential improvements and advantages in engineering 

applications include a reduction of in-plane and transverse through-the-thickness stresses, 

prevention or reduction of the delamination tendencies in laminated or sandwich structures, 

improved residual stress distribution, enhanced thermal properties, higher fracture 

toughness, and reduced stress intensity factors [2]. 

Several analytical and numerical formulations to model the behavior of single and 

multilayered structures are available in the literature. Among them, the classical first-order 

shear deformation theory (FSDT) based on Raissner and Mindlin, assume constant 

transverse shear stresses in the thickness direction, thus the theory need a shear correction 

factors to adjust for unrealistic variation of the shear strain/stress. Nguyen et al. [15] studied 

the shear correction factor for FGMs. The authors showed that the shear correction factor 

for FGMs are not the same as for homogeneous plates, in fact, they showed that the shear 

correction factor is as a function of the ratio between elastic moduli of constituents and of 

the distribution of materials through the models. In this paper, for simplicity purposes, the 

considered shear correction factors are as in the paper by Carrera et al. [5]. 

Researchers have investigated the behavior of functionally graded plates (FGPs) 

under mechanical loads using, mostly, both the classical FSDT and the higher-order shear 

deformation theories (HSDT). In this paper, relevant works on FGM based on the classical 

and modified FSDTs was reviewed and presented in what follows. Zenkour [3] studied the 

bending analysis of FGPs resting on elastic foundation using the refined sinusoidal shear 

deformation theory, FSDT results were also presented. Singha et al. [4] investigated the 

nonlinear behavior of FGPs using the finite element method based on the FSDT. The 

authors evaluated the shear correction factors employing the energy equivalence principle. 

Carrera et al. [5] evaluated the effect of thickness stretching in functionally graded 

(FG) plates and shells by using Carrera‟s Unified Formulation (CUF), FSDT results were 

also presented. Valizadeh et al. [6] studied the FGPs using a non-uniform rational B-spline 

based on FEM. The plate kinematics is based on the FSDT. Thai and Choi [7] presented a 

simple FSDT with four unknowns for FG plate considering a division of the transverse 

displacement w  into bending and shear parts. (i.e. sb www  ). Thai et al. [8] analyzed 

the FG sandwich plates composed of FG face sheets and an isotropic homogeneous core by 

using a FSDT with four unknowns. 



In the present paper, the static analysis of FGPs is studied by using a new FSDT 

with four unknowns in which instead of derivative terms in the displacement field, integral 

terms are presented for the first time. Such displacement field, which can be further 

implemented in higher order shear deformation theories, may require new mathematical 

strategies to numerically solve the present theory due to its novelty. The simply supported 

FG plate and sandwich plate is subjected to a bi-sinusoidal load. The mechanical properties 

of the plates are assumed to vary in the thickness direction according to a power law 

distribution in terms of the volume fractions of the constituents. The governing equations of 

the FGPs are derived by employing the principle virtual works. These equations are then 

solved via Navier solution. The accuracy of the present code is verified by comparing it 

with other HSDTs. Although similar results as the classical FSDT are found, the reduced 

number unknowns of this theory play a key importance in the performance. Consequently, 

the numerical solution may be of paramount interest in future works.  

 

2. Theoretical Formulation 

The mathematical model was built to solve both: (A) functionally graded plates and (B) 

sandwich plates. The plates of uniform thickness “h”, length “a”, and width “b” are shown in 

Fig. 1. The rectangular Cartesian coordinate system x, y, z, has the plane z = 0, coinciding with 

the mid-surface of the plates. 

2.1. Functionally graded plates 

The material properties for the plate of type A (Fig. 1a) vary through the thickness 

with a power law distribution, which is given below (Fig. 2a): 
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where   denotes the effective material property,    and    denote the property of the top 

(fully ceramic) and bottom (fully metal) faces of the plate, respectively, and     is the 

exponent that specifies the material variation profile through the thickness. The effective 

material properties of the plate, including Young‟s modulus, E, and shear modulus, G, vary 

according to Equations (1a, b), and Poisson ratio,     is assumed to be constant. 

 

In the plate of type B, the bottom skin is isotropic (fully metal) and the top skin is 

isotropic (fully ceramic). The core layer is graded from metal to ceramic so that there are 

no interfaces between core and skins (see Fig. 1b). 

 

The volume fraction in the core is obtained by adapting the power law distribution 

(Eq. 1b): 
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where coreh  is the thickness of the core. 

 

 

2.2. Displacement base field 

The displacement field of the new theory is given as follows:  
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where ),( yxu , ),( yxv , ),( yxw , and ),( yx are the four unknown displacement functions 

of middle surface of the plate. Note that the integrals do not have limits. 



In the present paper is considered terms with integrals instead of terms with 

derivatives (see displacement field (3a-c) and [7]). Therefore, to find the values of the 

coefficients "
1k " and " 

2k ", similar procedure as in Thai and Choi [7] was performed 

obtaining: 
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2.3. Kinematic relations and constitutive relations 

In the derivation of the necessary equations, small strains are assumed (i.e., 

displacements and rotations are small, and obey Hooke‟s law). The linear strain expressions 

derived from the displacement model of Equations (3a-c), valid for thin, moderately thick 

and thick plate under consideration are as follows: 
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The integrals appearing in the above expressions shall be resolved by a Navier type 

solution and can be expressed as follows: 
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where the coefficients " 'A " and " 'B " are defined according to the type of solution adopted, 

in this case via Navier. Therefore, " 'A ", " 'B ", 
1k  and 

2k  are expressed as follows: 
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where  and   are defined in expressions (24a,b) 

For the functionally graded plates, the stress–strain relationships can be expressed 

as: 
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in which, = xx , yy , xy , xz , yz 
T
 and = xx , yy , xy , xz , yz 

T
 are the stresses and 

the strain vectors with respect to the plate coordinate system. The  expressions in terms 

of engineering constants are given below:  
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2.4. Principle of virtual works 

The principle of virtual works of the considered FGPs is expressed as: 

 

0 VU           (11) 

where    is the virtual strain energy and    is the external virtual works due to an external 

load q  applied to the plate. Them can be written as: 
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Substituting the Equations     ,       into the Equation (11), the following integral 

equation can be obtained: 
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where Ni and Mi are the resultants of the following integrations: 
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where K  is the shear correction factor. 

2.5. Plate governing equations 

Using the displacement–strain relations (Equations 5a-e and 6a-h) and stress–strain 

relations (Equation 9), and applying integrating by parts and the fundamental lemma of 

variational calculus and collecting the coefficients of , , ,   in Equation 15, the 

governing equations are obtained as: 

 

:u 061 









y

N

x

N
, 

:v 062 









x

N

y

N
, 

:w q
y

N

x

N









 4

2

5
, 

: 0'')''('' 4
2

5

1

6

2

212

2

2

22

1

2

1 
























y

N
Bk

x

N
Ak

yx

M
BkAk

y

M
Bk

x

M
Ak  (17a-d) 

By substituting the stress-strain relations into the definitions of force and moment 

resultants of the present theory given in Equation (16a-c) the following constitutive 

equations are obtained:  
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From Equations (18a-c), it can be noticed that for Ni, and Mi the variables 

depending on x and y are the strains, 
b

j ( b=0,…,5). Therefore, the expressions in each of 

the plate governing equations (17a-d), for example
x

N i




, 

x

M i




, can be expressed as 

follows:  

x

MN ii



 ),(
= (Aij,Bij)




















































mn

mn

mn

mn

W

V

U

Bk

Ak











'00

'00

00

000

000

2

2

1

2

2

2

+ 

 (Bij,Cij)












































mn

mn

mn

mn

W

V

U

BkAk

Bk

Ak

0000

0000

)''(000

'000

'000

2

21

2

2

3

1







 (20) 

The elements of the 5x4 matrices are the coefficients obtained after taking the first 

derivation of the strains expression in the Equations (18a-c). As is known, the strains are 

expressed as a function of the 4 unknowns, described in Equations (3a-c). These unknowns 

are expressed as shown in the Equations (23a-d) in order to satisfy the simply supported 

boundary conditions.  
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All matrices of type, ba
vM

, , associated with the expressions of the plate governing 

Equations (17a-d) are given in the Appendix A. 

3. Solution procedure 

For the analytical solution of the partial differential equations (17a-d), the Navier 

method, based on double Fourier series, is used under the specified boundary conditions. 

Using Navier‟s procedure, the solution of the displacement variables satisfying the above 

boundary conditions can be expressed in the following Fourier series: 
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Substituting Equations (23a-d) into Equations (17a-d), the following equations are 

obtained, 
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4. Numerical results and discussions 

 

In this section the accuracy of the present FSDT which has a displacement field 

containing four unknowns, is evaluated. Numerical examples for static analysis of FG 

square plates with various indexes that specify the material variation profile through the 

thickness and several values of the side-to-thickness ratio “a/h” is also presented. Typical 
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mechanical properties for metal and ceramics used in the FGPs are listed in Table 1. In the 

calculations, both, FGPs and FG sandwich plates are studied; also an analysis of the 

parameters was performed. For this study the following relations for presentations of non-

dimensional deflection and non-dimensional stresses was utilized: 
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4.1 Analysis of functionally graded plates 

 

In this example problem, an FG square plate of type A is considered. The materials 

making up the plate are aluminum at the bottom, and alumina at the top face (see materials 

properties in Table 1). The simply supported square plate is subjected to a bi-sinusoidal 

load in the top face. 

Table 2 presents the results of non-dimensional deflection w  and normal stress 

xx  for various values of the side-to-thickness ratio a/h = {4, 10, 100} and index p = {0, 

0.5, 1, 4, 10}. These results are compared with the quasi-3D solutions [5,10,12,14], HSDTs 

[9,14], and FSDT [13]. From this table can be noticed that values of deflection and normal 

stress obtained by the present theory are in good agreement with the quasi-3D solutions. It 

is also observed that the degree of accuracy of the results depends on the used shear 

correction factor for thick plates, as expected. In some cases K=1 is desirable (a/h=4, p 1), 

but in other cases K=5/6. For large values of the side-to-thickness ratio "a/h" the influence 

of the shear correction factor decreases significantly. The values of the non-dimensional 

normal stresses xx  do not depend of the used shear correction factor, see Table 2. 

 

4.2 Analysis of functionally graded sandwich plates 

 

In this example, a simply supported FG square sandwich plate (B type) of thickness “h” 

will be analyzed. The bottom skin is aluminum with thickness hb = 0.1h and the top skin is 



alumina with thickness ht = 0.1h. The core is a FGM with mechanical properties changing 

according to Equation (2a). This sandwich plate is subjected to a bi-sinusoidal load in the 

top face. 

 

Table 3 presents the results of non-dimensional deflection w   and shear stress xz  for 

various values of the side-to-thickness ratio “a/h” and index “p”. These results are 

compared with the quasi-3D solutions [5,11,12,14], HSDTs [14], and FSDT [13]. From this 

table can be noticed that values of deflection and normal stress obtained by the present 

theory are in good agreement with the quasi-3D solutions. When the shear correction factor 

is neglected, i.e. K = 1 and 1p , the deflection results by the present theory is close to the 

solutions proposed by Neves et al. [14]. As in the previous example, the influence of the 

shear correction factor decreases as the side-to-thickness ratio "a/h" increases. In the case of 

transverse shear stresses the shear correction factor K = 5/6 produce results closer to quasi-

3D solutions than when K=1. 

 

Table 4 presents results of non-dimensional in-plane shear stress xy  for side-to-thickness 

ratio a/h = {4, 100} and different index p = {0, 0.5, 1, 5, 10}. These results are also 

compared with quasi-3D solutions [11,12]. From this table can be noticed that the values of 

the non-dimensional in-plane shear stress xy  do not depend on the shear correction factor, 

i.e. K=1 can be used. In general, the present results are in agreement with the other solution 

presented in Table 4. 

 

4.3 Parameter studies 

 

Figure 3a shows the variation of non-dimensional deflection of FG square plate (A type) 

with side-to-thickness ratio a/h=5 as function of the index “p”. In this figure can be seen 

that when the shear correction factor is K=5/6, the results of this theory are very close to 

the solutions of the classical FSDT. For small values of the index "p", the three curves tend 

to approach each other.  

Figure 3b shows the variation of non-dimensional deflection w  of FG square sandwich 

plates (B type) with side-to-thickness ratio a/h=5 as a function of the index “p”. This figure 



shows that for large values of the index "p", the deflections depend on K but have almost a 

constant value. For a given geometry and considering the same materials that make up the 

two types of plates (A, B), the deflection values for a sandwich plate is lower than for a 

simple plate. This is because the sandwich plate is stiffer than the single FG plate due to its 

larger amount of metal, which contributes to the mechanical responses. 

In Figure 4a, the variation of non-dimensional deflection w  of FG square plate (A type) as 

a function of the side-to-thickness ratio "a/h" is shown. From this figure can be seen that for 

a given value of the side-to-thickness ratio "a/h", higher values of index “p” produces 

higher deflections. The three curves show the same trend and practically give the same 

values of deflection. 

Figure 4b shows the variation of non-dimensional deflection w  of FG square sandwich 

plate (B type) as a function of the side-to-thickness ratio "a/h". The curves of this graph 

follow the same trends as the curves of Figure 4b for a simple plate. Then, similar 

comments are valid. 

The present non-dimensional stresses ( xx , xy  and xz ) distributions through the 

thickness of FG plate (type A) with a shear correction factor K={1, 5/6} along with the 

solutions provided by classical FSDT are shown in Figure 5a-c. From Figure 5c can be 

demonstrated, as it is well-known, that the shear correction factor K=5/6 is important for 

the transverse shear stress xz  results.  

 

4.4 Conclusions 

 

This paper presents a static analysis for FG single and sandwich plates using an original 

FSDT with 4 unknowns. The governing equations are obtained through the principle virtual 

works. These equations are solved via Navier‟s method. The results were compared with 

the solutions of several theories. It is concluded that the results of the present theory with 

shear correction factor K=5/6 has a good agreement with quasi-3D theories for the static 

analysis. The shear correction factor has not clear influence in the deflections but strong 

influence on the transverse shear stress.  
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Appendix A: Definition of Constants in Equation (25) 

Calculation of N, M and P: 
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where i, j = 1, 2, 6 

First derivative of N and M with respect to x: 
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First derivative of N and M with respect to y: 
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Second partial derivative of N and M with respect to x: 
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Second partial derivative of N and M with respect to y: 
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Second partial derivative of N and M with respect to x and y: 
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Example to get K(1,j), in Equation (25):  

From the Equations A1 and A2, 
x

N



 1
and

y

N



 6 can be easily obtained and substituted in 

Equation A7. 

K(1,j) =
y

N

x

N
cc








 61 , where  j=1,2,…,5.      (A7) 

Following the same technique the coefficients associated with Q and K can be obtained. 
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Table Legends 

Table 1. Material properties of the used FG plate. 

Table 2. Dimensionless normal stress xx  and deflection w  of Al/Al2O3 square plates 

under sinusoidal loads. 

Table 3. Dimensionless shear stress xz  and deflection w  of sandwich square plates 

embedding an Al/Al2O3 core under sinusoidal loads. 

 

Table 4. Dimensionless shear stress xy  of sandwich square plate with FGM core 

(Al/Al2O3) under sinusoidal loads. 

 

Figure Captions 

Figure 1. Geometry of functionally graded plates. 

Figure 2. Functionally graded function VC along the thickness of an FG plate for different 

values of the index „„p‟‟.  

Figure 3. Variation of non-dimensional deflection  ̅ of FG square plates versus power law 

index “p” (a/h=5). 

Figure 4. Variation of non-dimensional deflection  ̅ of FG square plates versus the side-to-

thickness ratio “a/h” (p = {1, 5, 10}). 

Figure 5. Variation of non-dimensional stresses through the thickness of FG square plates 

(p=5, a/h=10).  

  



TABLES 

 

Table 1. 

Material 
Properties 

E (GPa) ν 

Aluminum (Al) 70 0.3 

Alumina (Al2O3) 380 0.3 

 

 

 

 

 

 

 

 

 

 

  



Table 2 

p Theory ƐZZ 

 ̅     ⁄    ̅    

a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100 

0 

Ref. [14] 0 0.5151 1.3124 13.1610 0.3786 0.2961 0.2803 

Ref. [14] ≠0 0.5278 1.3176 13.1610 0.3665 0.2942 0.2803 

Present (K=1) 0 0.5269 1.3172 13.1718 0.3626 0.2934 0.2804 

Present (K=5/6) 0 0.5269 1.3172 13.1718 0.3790 0.2961 0.2804 

0.5 

Ref. [14] 0 0.5736 1.4629 14.6720 0.5699 0.4579 0.4365 

Ref. [14] ≠0 0.5860 1.4680 14.6730 0.5493 0.4548 0.4365 

Present (K=1) 0 0.5858 1.4645 14.7180 0.5454 0.4504 0.4347 

Present (K=5/6) 0 0.5858 1.4645 14.7180 0.5680 0.4541 0.4347 

1 

FSDT (K=5/6) 0 0.8060 2.0150 20.1500 0.7291 0.5889 0.5625 

Ref. [9] 0 1.4894 - - 0.5889 - - 

Ref. [13] 0 0.5987 1.4968 14.9683 0.7291 0.5890 0.5625 

Ref. [5] N = 4 ≠0 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625 

Ref. [10] ≠0 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625 

Ref. [12] ≠0 0.5925 1.4945 14.9690 0.6997 0.5845 0.5624 

Ref. [14] ≠0 0.5911 1.4917 14.9450 0.7020 0.5868 0.5647 

Present (K=1) 0 0.5987 1.4968 14.9683 0.7013 0.5845 0.5625 

Present (K=5/6) 0 0.5987 1.4968 14.9683 0.7291 0.5890 0.5625 

4 

FSDT (K=5/6) 0 0.6420 1.6049 1.6049 1.1125 0.8736 0.8280 

Ref. [9] 0 1.1783 - - 0.8651 - - 

Ref. [13] 0 0.4769 1.1922 11.9222 1.1125 0.8736 0.8286 

Ref. [5] N = 4 ≠0 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286 

Ref. [10] ≠0 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286 

Ref. [12] ≠0 0.4404 1.1783 11.9320 1.1178 0.8750 0.8286 

Ref. [14] ≠0 0.4330 1.1588 11.7370 1.1108 0.8700 0.8240 

Present (K=1) 0 0.4769 1.1922 11.9217 1.0651 0.8661 0.8285 

Present (K=5/6) 0 0.4769 1.1922 11.9217 1.1125 0.8736 0.8286 

10 

FSDT (K = 5/6) 0 0.4796 1.1990 11.9900 1.3178 0.9966 0.9360 

Ref. [9] 0 0.8775 - - 1.0089 - - 

Ref. [13] 0 0.3563 0.8907 8.9072 1.3178 0.9966 0.9361 

Ref. [5] N = 4 ≠0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361 

Ref. [10] ≠0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361 

Ref. [12] ≠0 0.3227 1.1783 11.9320 1.3490 0.8750 0.8286 

Ref. [14] ≠0 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227 

Present (K=1) 0 0.3563 0.8907 8.9027 1.2541 0.9864 0.9355 

Present (K=5/6) 0 0.3563 0.8907 8.9027 1.3178 0.9966 0.9356 

 

 



Table 3 

p Theory ƐZZ 
 ̅     ⁄    ̅    

a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100 

0 

Ref. [14] 0 0.2193 0.2202 0.2202 0.4612 0.3736 0.3568 

Ref. [14] ≠0 0.2208 0.2227 0.2228 0.4447 0.3711 0.3568 

Present (K=1) 0 0.1733 0.1733 0.1733 0.4474 0.3721 0.3579 

Present (K=5/6) 0 0.2080 0.2080 0.2080 0.4653 0.3750 0.3579 

0.5 

Ref. [14] 0 0.2511 0.2522 0.2522 0.6422 0.5277 0.5058 

Ref. [14] ≠0 0.2546 0.2581 0.2585 0.6168 0.5238 0.5058 

Present (K=1) 0 0.1977 0.1978 0.1978 0.6211 0.5231 0.5045 

Present (K=5/6) 0 0.2373 0.2373 0.2374 0.6446 0.5268 0.5045 

1 

FSDT (K = 5/6) 0 0.2458 0.2458 0.2458 0.7738 0.6337 0.6073 

Ref. [13] 0 - - - 0.7406 0.6005 0.5740 

Ref. [5] N = 4 ≠0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072 

Ref. [11] ≠0 0.2613 0.2605 0.2603 0.7628 0.6324 0.6072 

Ref. [12] ≠0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092 

Ref. [14] ≠0 0.2745 0.2789 0.2795 0.7417 0.6305 0.6092 

Present (K=1) 0 0.2048 0.2048 0.2048 0.7461 0.6293 0.6073 

Present (K=5/6) 0 0.2458 0.2458 0.2458 0.7739 0.6337 0.6073 

4 

FSDT (K = 5/6) 0 0.1877 0.1877 0.1877 1.0285 0.8191 0.7796 

Ref. [13] 0 - - - 1.0699 0.8407 0.7975 

Ref. [5] N = 4 ≠0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797 

Ref. [11] ≠0 0.2429 0.2431 0.2432 1.0934 0.8321 0.7797 

Ref. [12] ≠0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784 

Ref. [14] ≠0 0.2696 0.2747 0.2753 1.0371 0.8199 0.7784 

Present (K=1) 0 0.1564 0.1564 0.1564 0.9869 0.8124 0.7795 

Present (K=5/6) 0 0.1877 0.1877 0.1877 1.0285 0.8191 0.7796 

10 

FSDT (K = 5/6) 0 0.1234 0.1234 0.1234 1.1109 0.8556 0.8075 

Ref. [13] 0 - - - 1.1841 0.8970 0.8429 

Ref. [5] N = 4 ≠0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077 

Ref. [11] ≠0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077 

Ref. [12] ≠0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050 

Ref. [14] ≠0 0.1995 0.2034 0.2039 1.1752 0.8645 0.8050 

Present (K=1) 0 0.1029 0.1029 0.1029 1.0601 0.8475 0.8073 

Present (K=5/6) 0 0.1234 0.1234 0.1234 1.1108 0.8556 0.8074 

 

 

 

 



Table 4 

p Theory ƐZZ 
 ̅         

a/h=4 a/h=100 

0 
Present (K=1) 0 0.3187 7.9684 

Present (K=5/6) 0 0.3187 7.9684 

0.5 
Present (K=1) 0 0.3414 8.5288 

Present (K=5/6) 0 0.3414 8.5288 

1 

Ref. [11] 0 0.3007 8.4968 

Ref. [12] 0 0.3303 8.4882 

Ref. [11] ≠0 0.3007 8.4968 

Ref. [12] ≠0 0.3167 8.4911 

Present (K=1) 0 0.3399 8.4984 

Present (K=5/6) 0 0.3399 8.4984 

5 

Ref. [11] 0 0.1999 6.4942 

Ref. [12] 0 0.2317 6.4454 

Ref. [11] ≠0 0.1996 6.4942 

Ref. [12] ≠0 0.2248 6.4441 

Present (K=1) 0 0.2598 6.4962 

Present (K=5/6) 0 0.2598 6.4962 

10 

Ref. [11] 0 0.1412 5.1402 

Ref. [12] 0 0.1745 5.0745 

Ref. [11] ≠0 0.1403 5.1401 

Ref. [12] ≠0 0.1687 5.0754 

Present (K=1) 0 0.2057 5.1414 

Present (K=5/6) 0 0.2057 5.1414 

 

 

  



Figures 

Figure 1. 

 

(a) FG plate 

 

 

(b) Sandwich plate with an FG core and isotropic skins. 



Figure 2. 

 

 

(a) FG plate 

  



 

(b) Sandwich plate with an FG core and isotropic skins. 

  



Figure 3. 

 

(a) FG plate 



 

(b) Sandwich plate with an FG core and isotropic skins. 

 

  



Figure 4. 

 

 

(a) FG plate 

  



 

(b) Sandwich plate with an FG core and isotropic skins. 

 

  



Figure 5. 
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(b) 
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