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Abstract. This paper presents a free vibration analysis of functionally graded plates 

(FGPs) by using a novel first shear deformation theory (FSDT). This theory contains only 

four unknowns, with is even less than the classical FSDT. The governing equations for 

vibrational analysis are derived by employing the principle of Hamilton. These equations 

are then solved via Navier-type, closed form solutions. The fundamental frequencies are 

found by solving the eigenvalue problem. The accuracy of the current solutions can be 

visualized by comparing it with the 3D, classical FSDT and other solutions available in the 

literature. 
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1. Introduction 

Functionally graded materials (FGMs) can be defined as advanced materials having graded 

transition in mechanical properties, either continuous or in fine, discrete steps, across the 

interface. This material is produced by mixing two or more materials in a certain volume 

ratio (commonly ceramic and metal). FGMs have been proposed [1], developed and 

successfully used in industrial applications since 1980‟s [2]. These materials were initially 
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designed as a thermal barrier for aerospace structures and fusion reactors. They are now 

being developed for general use as structural components subjected to high temperatures. 

Classical composites structures such as fiber reinforced plastic (FRP) suffer from 

discontinuity of material properties at the interface of the layers and constituents. Therefore 

the stress fields in these regions create interface problems and thermal stress concentrations 

under high temperature environments. Furthermore, large plastic deformation of the 

interface may trigger the initiation and propagation of cracks in the material [3]. These 

problems can be decreased by gradually changing the volume fraction of constituent 

materials and tailoring the material for the desired application. The areas where FGM offer 

potential improvements and advantages in engineering applications include a reduction of 

in-plane and transverse through-the-thickness stresses, prevention or reduction of the 

delamination tendencies in laminated or sandwich structures, improved residual stress 

distribution, enhanced thermal properties, higher fracture toughness, and reduced stress 

intensity factors [4]. 

Many authors have investigated the dynamic behavior of functionally graded plates 

(FGPs), mostly, by means of both the classical first-order shear deformation theory (FSDT) 

and the higher-order shear deformation theories (HSDT). In this paper, relevant works on 

vibrational analysis of FGM based on the classical and modified FSDTs were reviewed and 

presented in what follows.  

Malekzadeh and Alibeygi [5] presented the free vibration analysis of functionally 

graded (FG) arbitrary straight-sided quadrilateral plates under thermal environment based 

on the FSDT employing differential quadrature method (DQM). Hosseini et al. [6] analyzed 

the free vibration of rectangular plates by using the FSDT and exact close-form solution 

procedure. Zhu et al. [7] presented the free vibration analysis of FGPs using the local 

Kriging meshless method. The governing equations of free vibration problem are obtained 

based on the FSDT and the local Petrov-Garlekin formulation.  

Natarajan et al. [8] studied the bending and free vibration behavior of functionally 

graded sandwich plates employed a C
0
 8-noded quadrilateral plate element based on HSDT, 

results based on FSDT were also presented. Valizadeh et al. [9] studied the static and 

dynamic behaviour of FGPs using a non-uniform rational B-spline based iso-geometric 

finite element method, where the plate kinematics is based on FSDT. Thai and Choi [10] 

presented a simple FSDT with four unknowns for bending and free vibration analysis of 



FGPs. The authors divided the transverse displacement “w” into bending and shear parts, 

“wb” and “ws”. 

In the present paper, the free vibration analysis of functionally graded (FG) 

sandwich and single plates are studied. The mechanical properties of the plates are assumed 

to vary in the thickness direction according to a power law distribution or Mori-Tanaka 

homogenization method in terms of the volume fractions of the constituents. The governing 

equations of the plates are derived by employing the Hamilton‟s principle. These equations 

are then solved via Navier solution. The fundamental frequencies are found by solving 

eigenvalue problem.  The accuracy of the present code is verified by comparing it with 

other HSDTs and 3D and quasi-3D solutions available in literature. Although similar 

results as the classical FSDT are found, the reduced number of unknowns of this theory 

plays a key importance in the performance. Consequently, the numerical solution may be of 

paramount interesting for futures works.  

2. Analytical modelling 

 

The mathematical model was built to solve both FG sandwich and single plates. Plates of 

uniform thickness “h”, length “a”, and width “b” are shown in Figure 1a,b. The rectangular 

Cartesian coordinate system x, y, z, has the plane z = 0, coinciding with the mid-surface of the 

plates. 

The material properties for the single plate (Figure 1a) vary through the thickness 

with a power law distribution, which is given below (Figure 2a): 
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where   denotes the effective material property,    and    denote the property of the top 

and bottom faces of the plate, respectively, and     is the exponent that specifies the 

material variation profile through the thickness. In addition, the Mori-Tanaka 

homogenization method was also considered to compute the elastic properties [3]. 

  

2.1. Displacement base field 

The displacement field of the new theory is given as follows:  
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where ),( yxu , ),( yxv , ),( yxw , and ),( yx are the four unknown displacement functions 

of middle surface of the plate. The last unknown is a mathematical term that allows 

obtaining the rotations of the normal to the midplate about the x and y axes (as in the 

ordinary FSDT). Note that the integrals do not have limits. In the present paper is 

considered terms with integrals instead of terms with derivatives (see displacement field 

(2a-c) and [10]). Therefore, to find the values of the coefficients " 1k " and " 2k ", some ideas 

from the paper by Thai and Choi [10] were considered, obtaining: 
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The linear strain expressions derived from the displacement model of Eqs. (2a-c), 

valid for thin, moderately thick and thick plate under consideration are as follows: 
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For the FGP, the stress–strain relationships can be expressed as: 
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in which, = xx , yy , xy , xz , yz 
T
 and = xx , 

yy , xy , xz , yz 
T
 are the stresses and 

the strain vectors with respect to the plate coordinate system. The  expressions in terms 

of engineering constants are given below:  
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2.2. Hamilton’s Principle 

The total potential energy of the considered FGP is expressed as: 
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where   is the strain energy and T is the kinetic energy. They can be written as: 
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where      is mass density per unit volume. 

2.3. Plate governing equations 

Using the displacement–strain relations (Eqs. (4a-e) and stress–strain relations (Eq. (5)), 

and applying integrating by parts and the fundamental lemma of variational calculus and 

ijQ



collecting the coefficients of , , ,  as in Ref.[14], the motion equations are 

obtained as: 
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where Ni and Mi are the resultants similar to the ones found in Ref. [10]. 

3. Solution procedure 

For the analytical solution of the partial differential equations (Eq. (10a-d)), the Navier 

method, based on double Fourier series, is used under the specified boundary conditions. 

Using Navier‟s procedure, the solution of the displacement variables satisfying the simple 

supported boundary conditions can be expressed in the following Fourier series: 
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Substituting Eqs. (11a-d) into Eqs. (10a-d), the following equations are obtained, 

       02  MK            (13) 

where K and M is stiffness and mass matrices respectively and [∆] is the column vector of 

coefficients  mnU  mnV  mnW   mn 
T
. 

The elements of ijK  and ijM  in Eq. (13) are given in Appendix A. The natural 

frequencies of FGPs can be found from the nontrivial solution of Eq. (13). 

 

4. Numerical results and discussions 

In this section the accuracy of the present FSDT which has a displacement field 

with four unknowns, is evaluated. Numerical examples for free vibration analysis of FG 

sandwich and single plates with various indexes that specify the material variation profile 

through the thickness and several values of the side-to-thickness ratio “a/h” and aspect ratio 

“a/b” are also presented. Typical mechanical properties for metal and ceramics used in the 

numerical examples are listed in Table 1. In the calculations, both, FG sandwich and single 

plates are studied. For this study the following relations for presentations of non-

dimensional frequencies was utilized: 
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4.1 Analysis of FG sandwich and single plates 

Results of non-dimensional natural frequencies, ,  for simply supported FG square plates are 

presented in Table 2 for various indexes “p” and side-to-thickness ratios “a/h”. The materials 

making up the plate are aluminum at the bottom, and zirconia at the top face (see materials 

properties in Table 1). The Young‟s modulus is computed considering the Mori-Tanaka 

procedure [3]. In this example, the results of the present theory are compared with 3D exact 

solution presented by Vel and Batra [3], quasi-3D sinusoidal and hyperbolic HSDTs proposed 

by Neves et al. [12,13], solutions based on HSDT by Mantari et al. [14] and the simple FSDT 

proposed by Thai and Choi [10]. From this table we can see that the results of non-dimensional 

natural frequencies obtained from the present theory are close to 3D solution [3] considering a 

shear correction factor K=5/6. Is worth mentioning that the present results are close to each 

other, when considering the shear correction factor K = 5/6 and K = 1. The effect of the shear 

correction factor is less influential in large side-to-thickness ratio “a/h”. 

Table 3 shows the results of the first two non-dimensional frequencies for simply 

supported FG square plates. The materials making up the plate are aluminum at the bottom, 

and alumina at the top face (see materials properties in Table 1). The material properties vary 

through the thickness with a power law distribution (Eq. (1a-c)). The results of this theory are 

compared with quasi-3D solutions presented by Matsunaga [11] and solutions based on the 

simple FSDT by Thai and Choi [10]. The present results are very close to the solutions 

obtained by Thai and Choi [10] considering the shear correction factor K=5/6, likewise, have a 

good agreement with the quasi-3D solutions [11]. Again it is noted that the shear correction 

factor is influential in large side-to-thickness ratio “a/h”. 

The results of non-dimensional natural frequencies for simply supported FG square 

sandwich plate are presented in Table 4. In this example three configurations of skin-core-skin 

thickness (1-1-1, 1-2-1, 2-2-1), several values of indexes “p” and three side-to-thickness ratios 

(a/h={5, 10, 100}) are considered. The material properties vary through the thickness with a 

power law distribution. The results are compared with solutions based on HSDTs with 9 and 

13 unknowns proposed by Natarajan et al. [8], inverse trigonometric HSDT by Nguyen et al. 



[15] and the classical FSDT. From this table can observed that results show a good agreement 

with other theories proposed for comparison when the shear correction factor K = 5/6. When 

considering a shear correction factor K = 1, the results are close to the solutions of HSDT with 

13 unknowns and in some cases even more precise than the results obtained considering the 

shear correction factor K = 5/6 (see Table 4, for "a/h = 5" and configuration type "2-2-1"). 

Table 5 shows the results of the lowest four non-dimensional frequencies for simply 

supported FG rectangular plates. The materials making up the plate are aluminum at the 

bottom, and alumina at the top face (see materials properties in Table 1). The material 

properties vary through the thickness with a power law distribution (Eq. (1a-c)). The results of 

this theory are compared with solutions based on HSDT presented by Mantari et al. [14], 

solutions based on the simple FSDT by Thai and Choi [10] and the classical FSDT by 

Hosseini et al.[6]. The present results have a good agreement with the other solutions and are 

equal to the results obtained by Thai and Choi [10]. 

The Figures 3 and 4 shows the variation of the non-dimensional natural frequencies of 

simply supported FG square plates as a function of the index “p” and the aspect ratio “a/b”, 

respectively. The curves obtained from this theory are compared with the curves obtained of 

the HSDT proposed by Mantari et al. [14]. In the calculation process is considered a shear 

correction factor K=5/6. From these figures can be seen that the resulting curves are very close 

to the curves obtained by using a HSDT [14]. Consequently, in general, the present theory is 

successfully validated. 

Table 6 present the non-dimensional natural frequencies of FG square sandwich plate. 

Three configurations of skin (top W)-core (FGM)-skin (Cu), see Table 1. Different thickness 

(1-1-1, 1-2-1, 2-2-1) and several values of indexes “p” for several side-to-thickness ratios 

(a/h={5, 10, 100}) are considered. Note that the Poisson´s ration were considered constant and 

equal to 0.31.  

As a final remark, it should be stated that the present theory can be further investigated 

analytically and numerically (by means of both finite element method and meshless). 

Numerically, the solution procedure perhaps needs a new kind of shape functions. It could be 

also interesting to see the advantages in terms of computational costs. 

 

 



 

5. Conclusions 

This paper presents a free vibrational analysis for FG sandwich and single plates 

using an original FSDT with 4 unknowns. The governing equations are obtained through 

the Hamilton´s principle. These equations are solved via Navier‟s method. The fundamental 

frequencies are found by solving the eigenvalue problem. The results were compared with 

the solutions of several theories. It is concluded that the results of the present theory with 

shear correction factor K=5/6 has an excellent agreement with the other theories proposed 

for comparison. The influence of the shear correction factor K decreases with increasing 

side-to-thickness ratio “a/h”. The present formulation of the displacement field is solved 

analytically and very close to the classical FSDT results were obtained. Consequently, the 

authors recommend implementing the numerical solution of this theory. 

 

Appendix A: Definition of Constants in Eq. (13) 

A.1. Calculation of     : 
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A.2. Calculation of     : 

Calculation of N and M: 
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where i, j = 1, 2, 6 

First derivative of N and M with respect to x: 
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First derivative of N and M with respect to y: 
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Second partial derivative of N and M with respect to x and y: 
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Example to get K(1,j), in Eq. (13):  

From the Eqs. (A1) and (A2), 
x

N
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y
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 6 can be easily obtained and substituted in Eq. 

(A5). 
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 61 , where  j=1,2,…,5.      (A5) 

Following the same technique the coefficients associated with K can be obtained. 
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Table Legends 

Table 1. Material properties of the used FG plate and FG sandwich plate. 

Table 2. Comparison of non-dimensional natural frequencies MM Eh /    of 

Al/ZrO2 functionally graded square plates. 

Table 3. First two non-dimensional frequencies CC Eh /ˆ    of Al/Al2O3 functionally 

graded square plates. 

Table 4. Non-dimensional natural frequency   00

2 //
~

Eha    of FG square sandwich 

plates with FG core (Al2O3/Al). 

Table 5. Comparison of first four non-dimensional frequencies   CC Eha //2     of 

Al/Al2O3 functionally graded rectangular plate (     ). 

Table 6. Non-dimensional natural frequency   00

2 //
~

Eha    of FG square sandwich 

plates with FG core (W/Cu). 

 

Figure Captions 

Figure 1. Geometry of functionally graded plates and sandwich plates. (a) FG plate; (b) 

Sandwich plate with an FG core and isotropic skins (1-2-1) 

Figure 2. Functionally graded function VC( ̅) along the thickness of an FG sandwich plate 

for different values of the index „„p‟‟;  ̅ =
 

 
. 

Figure 3. Variation of non-dimensional fundamental frequency   CC Eha //2    of 

Al/Al2O3 functionally graded square plates with power law index “p”.  



Figure 4. Variation of non-dimensional fundamental frequency   CC Eha //2    of 

Al/Al2O3 versus the aspect ratio “a/b” of FG square plates (a/h=10). 

  



TABLES 

 

Table 1. 

Material 
Properties 

E (GPa) ρ (kg/m
3
) ν 

Aluminum (Al) 70 2702 0.3 

Alumina (Al2O3) 380 3800 0.3 

Zirconia (ZrO2) 200 5700 0.3 

Cupper (Cu) 85 19300 0.34 

Tungsten (W) 410 8900 0.28 

 

 

 

 

 

 

 

 

 

 

  



Table 2 

Theory 
p=0 p=1 a/h=5 

a/h=√   a/h=10 a/h=5 a/h=10 a/h=20 p=2 p=3 p=5 

Vel and Batra [3] 0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225 

Thai and Choi [10] 0.4618 0.0577 0.2173 0.0592 0.0152 0.2189 0.2207 0.2222 

Neves et al. [12] - - 0.2193 0.0596 0.0153 0.2198 0.2212 0.2225 

Neves et al. [13] - - 0.2193 0.0596 0.0153 0.2201 0.2216 0.2230 

Mantari et al. [14] 0.4624 0.0577 0.2277 0.0619 0.0158 0.2257 0.2263 0.2271 

Present (K=1) 0.4744 0.0579 0.2204 0.0595 0.0152 0.2221 0.2240 0.2256 

Present (K=5/6) 0.4618 0.0577 0.2173 0.0592 0.0152 0.2189 0.2207 0.2222 

 

  



Table 3 

Mode a/h Theory 
p 

0 0.5 1 4 10 

1 

2 

Thai and Choi [10] 0.9265 0.8062 0.7333 0.6116 0.5644 

Matsunaga [11] 0.9400 0.8233 0.7477 0.5997 0.5460 

Present (K=1) 0.9673 0.8389 0.7614 0.6365 0.5907 

Present (K=5/6) 0.9265 0.8062 0.7333 0.6116 0.5644 

5 

Thai and Choi [10] 0.2112 0.1805 0.1631 0.1397 0.1324 

Matsunaga [11] 0.2121 0.1819 0.1640 0.1383 0.1306 

Present (K=1) 0.2142 0.1828 0.1651 0.1416 0.1345 

Present (K=5/6) 0.2112 0.1805 0.1631 0.1397 0.1324 

10 

Thai and Choi [10] 0.0577 0.0490 0.0442 0.0382 0.0366 

Matsunaga [11] 0.0578 0.0492 0.0443 0.0381 0.0364 

Present (K=1) 0.0579 0.0492 0.0444 0.0384 0.0368 

Present (K=5/6) 0.0577 0.0490 0.0442 0.0382 0.0366 

2 

2 

Thai and Choi [10] 1.7045 1.4991 1.3706 1.1285 1.0254 

Matsunaga [11] 1.7406 1.5425 1.4078 1.1040 0.9847 

Present (K=1) 1.8097 1.5856 1.4455 1.1926 1.0906 

Present (K=5/6) 1.7045 1.4991 1.3706 1.1285 1.0254 

5 

Thai and Choi [10] 0.4618 0.3978 0.3604 0.3049 0.2856 

Matsunaga [11] 0.4658 0.4040 0.3644 0.3000 0.2790 

Present (K=1) 0.4744 0.4076 0.3688 0.3126 0.2941 

Present (K=5/6) 0.4618 0.3977 0.3604 0.3049 0.2856 

10 

Thai and Choi [10] 0.1376 0.1173 0.1059 0.0911 0.0867 

Matsunaga [11] 0.1381 0.1180 0.1063 0.0905 0.0859 

Present (K=1) 0.1390 0.1183 0.1068 0.0920 0.0877 

Present (K=5/6) 0.1376 0.1173 0.1059 0.0911 0.0867 

 

 

 

  



Table 4 

a/h Theory 
1-1-1 1-2-1 2-2-1 

0 0.5 1 5 0.5 1 5 0.5 1 5 

5 

Natarajan et al. [8] 

(HSDT9) 
1.1021 1.1449 1.1639 1.2113 1.1597 1.1884 1.2644 1.1965 1.2350 1.3249 

Natarajan et al. [8] 

(HSDT13) 
1.0893 1.1511 1.1701 1.2162 1.1663 1.1952 1.2712 1.2031 1.2421 1.3312 

Nguyen et al. [15] 1.1147 1.1414 1.1561 1.1996 1.1574 1.1827 1.2569 1.1916 1.2268 1.3160 

FSDT 1.1263 1.1503 1.1642 1.2050 1.1660 1.1880 1.2567 1.1950 1.2299 1.3173 

Present (K=1) 1.1401 1.1630 1.1766 1.2173 1.1797 1.2012 1.2700 1.2079 1.2431 1.3318 

Present (K=5/6) 1.1274 1.1512 1.1650 1.2058 1.1670 1.1889 1.2575 1.1958 1.2307 1.3180 

10 

Natarajan et al. [8] 

(HSDT9) 
1.2138 1.2373 1.2506 1.2921 1.2578 1.2785 1.3492 1.2846 1.3216 1.4161 

Natarajan et al. [8] 

(HSDT13) 
1.2087 1.2392 1.2524 1.2935 1.2598 1.2806 1.3513 1.2865 1.3238 1.4180 

Nguyen et al. [15] 1.2172 1.2359 1.2478 1.2883 1.2567 1.2763 1.3466 1.2827 1.3187 1.4130 

FSDT 1.2225 1.2394 1.2509 1.2903 1.2601 1.2786 1.3469 1.2842 1.3201 1.4136 

Present (K=1) 1.2275 1.2438 1.2551 1.2944 1.2649 1.2831 1.3512 1.2887 1.3245 1.4184 

Present (K=5/6) 1.2233 1.2400 1.2515 1.2907 1.2608 1.2792 1.3473 1.2848 1.3206 1.4140 

100 

Natarajan et al. [8] 

(HSDT9) 
1.2617 1.2751 1.2854 1.3239 1.2981 1.3148 1.3825 1.3198 1.3559 1.4519 

Natarajan et al. [8] 

(HSDT13) 
1.2616 1.2751 1.2854 1.3239 1.2981 1.3148 1.3825 1.3198 1.3559 1.4519 

Nguyen et al. [15] 1.2617 1.2752 1.2853 1.3238 1.2984 1.3147 1.3824 1.3198 1.3558 1.4518 

FSDT 1.2618 1.2751 1.2854 1.3239 1.2981 1.3148 1.3825 1.3198 1.3559 1.4518 

Present (K=1) 1.2625 1.2758 1.2859 1.3243 1.2993 1.3153 1.3828 1.3203 1.3562 1.4521 

Present (K=5/6) 1.2624 1.2758 1.2859 1.3242 1.2993 1.3153 1.3827 1.3203 1.3562 1.4520 

 

  



Table 5 

a/h 
Mode no. 

(m,n) 
Theory 

P 

0 0.5 1 2 5 8 10 

5 

1 (1,1) 

Hosseini et al. [6] 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

Thai et al. [10] 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

Mantari et al. [14] 3.4414 2.9348 2.6476 2.3948 2.2264 2.1691 2.1404 

Present (K=5/6) 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

2 (1,2) 

Hosseini et al. [6] 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

Thai et al. [10] 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

Mantari et al. [14] 5.2817 4.5183 4.0784 3.6804 3.3922 3.2952 3.2507 

Present (K=5/6) 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

3 (1,3) 

Hosseini et al. [6] 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

Thai et al. [10] 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

Mantari et al. [14] 8.0759 6.9374 6.2670 5.6388 5.1393 4.9736 4.9045 

Present (K=5/6) 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

4 (2,1) 

Hosseini et al. [6] 9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518 

Thai et al. [10] 10.1089 8.6926 7.8711 7.1189 6.5749 6.3708 6.2683 

Mantari et al. [14] 10.1182 8.7152 7.8774 7.0750 6.4030 6.1817 6.0942 

Present (K=5/6) 10.1089 8.6926 7.8711 7.1189 6.5749 6.3708 6.2683 

10 

1 (1,1) 

Hosseini et al. [6] 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

Thai et al. [10] 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

Mantari et al. [14] 3.6518 3.0990 2.7937 2.5364 2.3913 2.3409 2.3109 

Present (K=5/6) 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

2 (1,2) 

Hosseini et al. [6] 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580 

Thai et al. [10] 5.7693 4.8997 4.4192 4.0142 3.7881 3.7071 3.6580 

Mantari et al. [14] 5.7695 4.9015 4.4193 4.0089 3.7676 3.6841 3.6366 

Present (K=5/6) 5.7693 4.8997 4.4192 4.0142 3.7881 3.7071 3.6580 

3 (1,3) 

Hosseini et al. [6] 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086 

Thai et al. [10] 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086 

Mantari et al. [14] 9.1883 7.8191 7.0517 6.3884 5.9749 5.8329 5.7568 

Present (K=5/6) 9.1876 7.8144 7.0512 6.4015 6.0247 5.8887 5.8086 

4 (2,1) 

Hosseini et al. [6] 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639 

Thai et al. [10] 11.8307 10.0737 9.0928 8.2515 7.7505 7.5688 7.4639 

Mantari et al. [14] 11.8319 10.0813 9.0936 8.2306 7.6707 7.4795 7.3811 

Present (K=5/6) 11.8307 10.0736 9.0928 8.2515 7.7505 7.5688 7.4639 

20 1 (1,1) 

Hosseini et al. [6] 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642 

Thai et al. [10] 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642 

Mantari et al. [14] 3.7123 3.1457 2.8352 2.5771 2.4402 2.3922 2.3619 



Present (K=5/6) 3.7123 3.1455 2.8352 2.5777 2.4425 2.3948 2.3643 

2 (1,2) 

Hosseini et al. [6] 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681 

Thai et al. [10] 5.9199 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681 

Mantari et al. [14] 5.9199 5.0178 4.5228 4.1100 3.8882 3.8106 3.7621 

Present (K=5/6) 5.9199 5.0173 4.5228 4.1115 3.8939 3.8170 3.7682 

3 (1,3) 

Hosseini et al. [6] 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843 

Thai et al. [10] 9.5669 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843 

Mantari et al. [14] 9.5670 8.1131 7.3133 6.6432 6.2756 6.1472 6.0689 

Present (K=5/6) 9.5669 8.1118 7.3132 6.6471 6.2903 6.1639 6.0843 

4 (2,1) 

Hosseini et al. [6] 12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166 

Thai et al. [10] 12.4562 10.5657 9.5261 8.6572 8.1875 8.0207 7.9165 

Mantari et al. [14] 12.4564 10.5674 9.5262 8.6508 8.1628 7.9927 7.8906 

Present (K=5/6) 12.4562 10.5653 9.5261 8.6572 8.1875 8.0207 7.9166 

 

Table 6 

  

a/h Theory 
1-1-1 1-2-1 2-2-1 

0.5 1 5 0.5 1 5 0.5 1 5 

5 
Present (K=1) 0.612 0.608 0.608 0.628 0.618 0.618 0.609 0.612 0.628 

Present (K=5/6) 0.605 0.601 0.601 0.621 0.612 0.610 0.602 0.605 0.619 

10 
Present (K=1) 0.650 0.647 0.651 0.668 0.659 0.664 0.649 0.655 0.679 

Present (K=5/6) 0.648 0.645 0.649 0.666 0.657 0.661 0.647 0.653 0.676 

100 
Present (K=1) 0.665 0.662 0.668 0.684 0.675 0.682 0.665 0.672 0.699 

Present (K=5/6) 0.665 0.662 0.668 0.684 0.675 0.682 0.665 0.672 0.699 



 

Figures 

Figure 1. 

 

(a) FG plate 

 

 

(b) Sandwich plate with an FG core and isotropic skins. 



Figure 2. 

 

(a)  



 

(b) 

  



Figure 3. 

 

 

 

 

 

  



Figure 4. 

 

 

 


