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Abstract.  

This paper presents a simplified first order shear deformation theory (FSDT) for laminated 

composite and sandwich plates. Unlike the existing FSDT, the present one has a novel 

displacement field which include undetermined integral terms and contains only four 

unknowns. Equations of motion and boundary conditions are derived from the Hamilton’s 

principle. Navier-type analytical solution is obtained in closed form and by solving the 

eigenvalue equation. The comparison of the present results with the available elasticity 

solutions and the results computed independently using the FSDTs available in the literature 

shows that this theory predicts the fundamental frequencies with good accurately. It can be 

concluded that the proposed theory is accurate and simple in solving the dynamic behaviour 

of single and sandwich laminated composite plates. 
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1. Introduction 

 

 Laminated composite materials are extensively used in aerospace, marine, civil and 

other areas. With their high specific modulus, high specific strength, and the capability of 

being tailored for a specific application, laminate composites offer definite advantages 

compared to traditional materials like for example metal. The individual layer consists of 
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high-modulus, high-strength fibers in a polymeric, metallic, or ceramic matrix material. 

With the ongoing development of the high-tech industry, demand for advanced materials 

has led to the development of substitutes for traditional engineering materials such as 

wood, aluminum, steel, concrete, etc. Consequently, new methodology to study the 

behaviour of such materials is still desirable. Among the recent refined mathematical 

models to study the bending, vibration, buckling, etc., several classical theories to study 

the laminated composite plates were previously developed.  

 The classical laminate plate theory (CLPT), which neglects the transverse shear 

effects, provides reasonable results for thin plates. However, underpredicts deflections and 

over predicts frequencies as well as buckling loads with moderately thick plates. Many 

shear deformation theories that account with transverse shear effects have been developed 

to overcome such problem. Consequently, as improvement the FSDT and HSDT (High 

shear deformation theory) were developed. The classical FSDT is based on Reissner [1] 

and Mindlin [2] and account for the transverse shear effects by linearly modelling the 

displacements through the thickness. Since FSDTs violates equilibrium conditions at the 

top and bottom faces of the plate, shear correction factors are required to rectify the 

unrealistic variation of the shear strain/stress through the thickness. 

Many studies have been carried out using FSDT for the free vibration analysis of 

composite plates [3-13]. Kant [11] reproduced the FSDT given by Whitney and Pagano 

[5] for the free vibration analysis of laminated composite and sandwich plates. Thai [12] 

also reproduced the FSDT given by Whitney and Pagano [5] but only for the free vibration 

analysis of laminated composite plate. Thai [13] propose a new FSDT and obtained values 

for fundamental frequency of antisymmetric cross-ply square laminates.       

In order to overcome the limitations of FSDT, polynomial HSDTs which involve higher-

order terms in Taylor’s expansions of the displacements in the thickness coordinate, were 

developed by Librescu [14], Levinson [15], Bhimaraddi and Stevens [16], Reddy [17], 

Ren [18], Kant and Pandya [19], and Mohan et al. [20]. A good review of these theories 

for the analysis of laminated composite plates is available in [21–25]. In what follows 

some papers are consider in this short survey.  

 A two variable refined plate theory was developed by Shimpi [26] for isotropic 

plates, and extended by Shimpi and Patel [27,28] for orthotropic plates. Reddy [29] 

developed a polynomial HSDT with cubic variations for in-plane displacements. Xiang et 

al. [30] proposed a n-order shear deformation theory in which Reddy’s theory comes out 

as special case. Kant and Pandya [31], Kant and Mallikarjuna [32] and Kant and Khare 
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[33] presented also polynomial HSDTs with cubic variations for in-plane displacements as 

in the paper by Reddy [29]. To account for the thickness stretching effect (i.e., Ɛz≠0), Lo 

et al. [35] and Kant et al. [36] introduced HSDTs in which in-plane and transverse 

displacements are assumed as cubic and parabolic variations through the thickness, 

respectively. In addition to the aforementioned works, more recently, Mantari et al. [37–

39] proposed the use of several trigonometric functions for in-plane and transverse 

displacement field.  

 

 It is worth noting that some of the abovementioned HSDTs are computational 

costly due to additional unknowns introduced to the theory (e.g., theories by Refs. [31,32] 

with seven unknowns, Ref. [33] with nine unknowns, Refs. [35,36] with 11 unknowns). 

Moreover, in many of the abovementioned HSDTs as in the CPT or the simple FSDT 

proposed by Thai [13], the expression ∂w/∂x or ∂/∂x are present in the displacement 

field. Consequently, the numerical computation is harder to handle. Normally C
1
-FEM is 

required. However, this can be changed if the displacement field is composed with 

undetermined integral terms as in this paper. 

 In this paper, a simplified FSDT for the dynamic study of single and sandwich 

laminated composite plates is presented. The addition of the integral term in the 

displacement field leads to a reduction in the number of unknowns and governing 

equations. Closed-form solutions of simply supported antisymmetric cross-ply laminates 

are obtained. The results are in many cases equal to the classical FSDT. Consequently, the 

capability of the present FSDT is validated.  

 

2. Theoretical Formulation 
 

2.1. Kinematics:  

 

 In this study, further simplifying assumptions are made to the existing FSDT so 

that the number of unknowns is reduced. The displacement field of the existing FSDT is 

given by Whitney and Pagano [99]: 
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where ),( yxu , ),( yxv , ),( yxw , ),( yxx  and ),( yxy  are five unknown displacement 

functions of the mid-plane of the plate. In this paper a novel displacement field with 4 

unknowns is proposed:  
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where ),( yxu , ),( yxv , ),( yxw  and ),( yx  are the four unknown displacement functions 

of middle surface of the panel. The constants k₁ and k₂ depends on the geometry. The 

integrals used are undetermined. In the derivation of the necessary equations, small strains 

are assumed (i.e., displacements and rotations are small, and obey Hooke’s law). The 

linear strain expressions derived from the displacement model of Equations (2a-c), valid 

for thin, moderately thick and thick plate under consideration are as follows: 
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2.2 Constitutive equations:  

 

 The linear constitutive relations are given below: 
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in which, = xx , yy , xy , xz , yz ᵀ and = xx , yy , xy , xz , yz ᵀ are the stresses 

and the strain vectors with respect to the plate coordinate system. Where ijQ are the 

material constants in the material axes of the layer given as: 
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where E is the modulus of elasticity in the main direction, G is the shear modulus in the 

plane.  

 

2.3. Hamilton’s Principle: 

 

 Hamilton’s Principle is applied to the present case, the following expressions can 

be obtained: 
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where U is the total strain energy due to deformations and K the kinetic energy. 

Substituting the appropriate energy expressions can be obtained: 
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substituting corresponding terms, 



 







2

1

0

2

0

1

1

6

0

6

1

2

0

2

1

1

0

1 )(0

t

t

xzyzxyxyyyyyxxxx QQMNMNMN 

 

 






















2

2

4

32

12

2
112

2
212

2
11 ()()()((

x

I
k

x

uI
kwwIv

y

I
kvIu

x

I
kuI
























                                       

dtdxdy
y

I
k

y

vI
k


















))

2

2

4

32

22

2
2 







                                                                       (8) 

 

where )(k or )(k  are the stresses and the strain vectors,  and 
 

are derived from Navier 

method (13), and Ni, Mi, and Qi  are the resultants of the following integrations: 
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where K is the shear correction factor. The inertia term are defined by the following 

integrations: 
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2.4. Plate governing equations 

 

Using the generalized displacement–strain relations (Equations (3a-e) and (4a-h)) and 

stress–strain relations (Equation 5), and applying integrating by parts and the fundamental 

lemma of variational calculus and collecting the coefficients of ,u ,v w y in 

Equation 8, the equations of motion are obtained as: 
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Note that by the Navier method, the following equality can be obtained:   
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 In what follows, the problem under consideration is solved for the simply 

supported boundary conditions and they are given at all four edges as follows: 
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3. Analytical Solution 

 

 For the analytical solution of the partial differential equations (11a-d), the Navier 

method, based on double Fourier series, is used under the specified boundary conditions 

(Equations 12a-e). Using Navier’s procedure, the solution of the displacement variables 

satisfying the above boundary conditions can be expressed in the following Fourier series: 
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 Substituting Solution functions (13a-d) into Equations (11a-d), the following 

equations are obtained, 
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where [K] and [M] is stiffness and mass matrices respectively and [∆] is the column vector 

of coefficients   .,,,
T

mnmnmnmn WVU 

                                             

 

The natural frequencies can be found from the nontrivial solution of Equation (15). 

 

4. Numerical results and discussions 

 

 In this section, various numerical examples are described and discussed to verify the 

accuracy of the present theory. For verification purpose, the obtained results are compared 

with the exact 3D solution and those predicted by other plate theories. The description of 

various plate theories and their corresponding number of unknowns are listed in Table 1. In 

addition, the results of the classical FSDT are also calculated independently in this study. In 

all examples, a shear correction factor of 5/6 is used. The following lamina properties are 

used [40] (Material 1): 

openEE 21 / , 21312 6.0 EGG  , 223 5.0 EG  , 25.012   

For convenience, the following dimensionless form is used: 
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 Example 1. A thick antisymmetric cross-ply n)90/0(  square laminate with 5/ ha  is 

analyzed using Material 1. Dimensionless fundamental frequencies are given in Table 2 for 

various values of modulus ratio and ply number. The obtained results are compared with the 

exact 3D solutions reported by Noor [40] and those generated by Thai [12-13] using FSDT. 



Here also the results obtained by the present FSDT are almost identical with those predicted 

by existing FSDT [12] and FSDT [13]. This statement is also firmly demonstrated in Fig. 2 in 

which the results obtained by the present theory and FSDT [12-13] are in excellent agreement 

for a wide range of values of modulus ratio. Readers may also see the obtained results by 

Kant [11], these values are different from those obtained by FSDT [12-13] (reproduced 

strategically besides the presentation of this paper) and the present FSDT. The FSDT results 

by Kant [11] need to be carefully revised.  

Example 2. A simply supported antisymmetric cross-ply laminates with the thickness 

ratio varied from 2 to 100 and number of layers varied from 2 to 10 is analyzed using 

Material 1 ( 40/ 21 EE ). The natural frequencies computed using various models for two, 

four, six and ten layer antisymmetric cross-ply square laminates are given in Table 3. The 

obtained results are compared with the TSDT developed by Reddy [34] and those generated 

by Thai [12] using FSDT. Here also the results obtained by the present FSDT are almost 

identical with those predicted by existing FSDT [12]. This statement is also firmly 

demonstrated in Fig. 3 in which the results obtained by the present theory and FSDT [12] 

shows excellent agreement of natural frequencies of two layer )90/0(  and six layer 

3)90/0( square laminates for various thickness ratios. 

Example 3. The variation of fundamental frequency with respect to the various 

parameters like the side to thickness ratio ),/( ha  thickness of the core to thickness of flange 

)/( fc tt  and the aspect ratio )/( ba  of a five layer sandwich plate with antisymmetric cross-

ply face sheets using all the models are given in tabular form in Table 4-6. The following of 

material properties are used for the face sheets and the core [34], (Material 2):  

Face sheets (Graphite-Epoxy T300/934) 
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Here also the results obtained by the present FSDT are almost identical with those predicted 

by existing FSDT [5] and others like FSDT [13]. This statement is also firmly demonstrated 

in Fig. 4 and Fig. 5 in which the results obtained by the present theory, the FSDT [5] and the 

FSDT [13] are in excellent agreement for various thickness ratios and aspect ratios. Also see 

the obtained results by Kant [11], these values are different from those obtained by FSDT [5], 

FSDT [13] and the present FSDT, having to be equal o almost identical, this statement is also 

firmly demonstrated in Fig. 5. Kant [11] reproduced badly the FSDT proposed by Whitney 

and Pagano [5] and his obtained results are extensively used in the literature. 

Finally, it can be mentioned that the present simplified theory were successfully validated 

through Navier’s analytical solution. However, the formulation may be adapted to be verified 

through Levy solutions considering similar strategies as in this paper. But, it should be 

furthered investigated. 

 

5. Conclusions 

 

 A simplified FSDT was proposed for dynamics analysis of laminates and sandwich 

plates. By making further simplifying assumptions to the existing FSDT, with the 

inclusion of an undetermined integral term, the number of unknowns and governing 

equations of the present FSDT are reduced by one, and hence, make the this theory simple 

and efficient to use. Verification studies show that the predictions by the present FSDT 

and existing FSDT for antisymmetric cross-ply laminate are close to each other. In 

conclusion, the present theory can improve the numerical computational cost due to their 

reduced degrees of freedom. 
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Appendix A: Definition of Constants in Equation (15) 

 



 The following proposed simple technique to calculate the ‘K’ and ‘M’ element 

matrices (which comes from the governing Equations (11a-d) and (15)) is perhaps more 

convenient and simple than the others. 
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Where i, j = 1, 2, 3, 4, 5 

 

First derivative of N and M with respect to x: 
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First derivative of N and M with respect to y: 

 



























































y

MN

y

MN

y

MN

y

MN

y

MN

cc

cc

cc

cc

cc

),(

),(

),(

),(

),(

55

44

66

22

11

= (Aij,Bij)































22

2

2

00

00

00

000

000











 

+ (Bij,Eij) ,

0000

0000

2000

000

000

2

3

2



































 (A3) 

 

Second partial derivative of N and M with respect to x and y: 
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Example to get K(1,j), in Equation (11a):  

From the Equations A1 and A2, 
x

N c



 1 and
y

N c



 6 can be easily obtained and substituted in 

Equation A7. 

K(1,j) =
y

N

x

N cc








 61 , where  j=1,2,…,5.      (A5) 

 

For Mij 
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                                                                                                                                     (A6) 

Following the same technique the coefficients associated with the rest of the governing 

equations can be obtained, and in this way the system of equations, see Eq. (15), can be 

solved. 
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Table Headings 

Table 1. 

Displacement models. 

Table 2. 

Dimensionless fundamental frequency of antisymmetric cross-ply 
n)90/0(  square 

laminates (Material 1, ha 5 ). 

Table 3. 

Dimensionless fundamental frequency of antisymmetric cross-ply 
n)90/0(  square 

laminates (Material 1, 40/ 21 EE ). 

Table 4. 

Dimensionless fundamental frequency of antisymmetric )90/0//90/0( core  sandwich 

plate laminates (Material 2, ,1/ ba 10/ fc tt ). 

Table 5. 

Dimensionless fundamental frequency of antisymmetric )90/0//90/0( core  sandwich 

plate laminates (Material 2, ,1/ ba 10/ ha ). 

Table 6. 

Dimensionless fundamental frequency of antisymmetric )90/0//90/0( core  sandwich 

plate laminates (Material 2, ,10/ fc tt 10/ ha ). 

 

Figure Legends 



 

Figure 1. Coordinate system and layer numbering used for a typical laminate. 

Figure 2. Variation of dimensionless fundamental frequency of antisymmetric cross-ply 

n)90/0(  square laminates versus material anisotropic (Material 1, ha 5 ). 

Figure 3. Variation of dimensionless fundamental frequency of antisymmetric cross-ply 

n)90/0(  square laminates versus thickness ratio (Material 1, 40/ 21 EE ). 

Figure 4. Variation of dimensionless fundamental frequency of antisymmetric 

)90/0//90/0( core  sandwich plate laminates versus thickness ratio (Material 2, ,1/ ba

 

10/ fc tt ). 

Figure 5. Variation of dimensionless fundamental frequency of antisymmetric 

)90/0//90/0( core  sandwich plate laminates versus aspect ratio (Material 2, ,10/ fc tt

 

10/ ha ). 

 

 

 

Tables 

 

 

Table 1. 

 

Model  Theory Unknowns 

CPT Classical plate theory 3 

 
FSDT First-order shear deformation theory (Whitney and 

Pagano [5])  

5 

  

FSDT First-order shear deformation theory (Thai [13]) 4 

TSDT Third-order shear deformation theory (Reddy [34])  5 

RPT1 Refined plate theory 1 (Thai [12]) 4 



RPT2 Refined plate theory 2 (Thai [12]) 5 

Present New FSDT 4 

 

Table 2. 

 

E1/E2 Theory 
  n             

  1   2   3   5 

          

3 

Exact [40] 

 

6.2578 

 

6.5455 

 

6.6100 

 

6.6458 

TSDT [12] 

 

6.2169 
 

6.5008 

 

6.5558 

 

6.5842 

FSDT [11] 

 

6.1490 
 

6.4402 

 

6.4916 

 

6.5185 

FSDT [12] 

 

6.2085 
 

6.5043 

 

6.5569 

 

6.5837 

FSDT [13] 

 

6.2085 
 

6.5043 

 

6.5569 

 

6.5837 

Present  

 

6.2085 
 

6.5043 

 

6.5569 

 

6.5837 

 
 

 
   

 
 

 
 

10 

Exact [40] 

 

6.9845 
 

8.1445 

 

8.4143 

 

8.5625 

TSDT [12] 

 

6.9887 
 

8.1954 

 

8.4052 

 

8.5126 

FSDT [11] 

 

6.9156 
 

8.1963 

 

8.3883 

 

8.4842 

FSDT [12] 

 

6.9392 
 

8.2246 

 

8.4183 

 

8.5132 

FSDT [13] 

 

6.9392 
 

8.2246 

 

8.4183 

 

8.5132 

Present  

 

6.9392 
 

8.2246 

 

8.4183 

 

8.5132 

 
 

 
   

 
 

 
 

20 

Exact [40] 

 

7.6745 
 

9.4055 

 

9.8398 

 

10.0843 

TSDT [12] 

 

7.8210 
 

9.6265 

 

9.9181 

 

10.0674 

FSDT [11] 

 

7.6922 
 

9.6729 

 

9.9266 

 

10.0483 

FSDT [12] 

 

7.7060 
 

9.6885 

 

9.9427 

 

10.0638 

FSDT [13] 

 

7.7060 
 

9.6885 

 

9.9427 

 

10.0638 

Present  

 

7.7060 
 

9.6885 

 

9.9427 

 

10.0638 

 
 

 
   

 
 

 
 

30 

Exact [40] 

 

8.1763 
 

10.1650 

 

10.6958 

 

11.0027 

TSDT [12] 

 

8.5050 
 

10.5348 

 

10.8547 

 

11.0197 

FSDT [11] 

 

8.3112 
 

10.6095 

 

10.8723 

 

10.9959 

FSDT [12] 

 

8.3211 
 

10.6198 

 

10.8828 

 

11.0058 

FSDT [13] 

 

8.3211 
 

10.6198 

 

10.8828 

 

11.0058 

Present  

 

8.3211 
 

10.6198 

 

10.8828 

 

11.0058 

 
  

 
 

 
 

 
 

 

40 

Exact [40] 

 

8.5625 

 

10.6789 

 

11.2728 

 

11.6245 

TSDT [12] 

 

9.0871 

 

11.1716 

 

11.5012 

 

11.6730 

FSDT [11] 

 

8.8255 

 

11.2635 

 

11.5189 

 

11.6374 

FSDT [12] 

 

8.8333 

 

11.2708 

 

11.5264 

 

11.6444 

FSDT [13] 

 

8.8333 

 

11.2708 

 

11.5264 

 

11.6444 

Present  

 

8.8333 

 

11.2708 
 

11.5264 
 

11.6444 

                    

          Note-1:  Thai [12] reproduced the FSDT proposed by Whitney and Pagano [5].  



Note-2:  Kant [11] reproduced the FSDT proposed by Whitney and Pagano [5].  

 

 

 

Table 3. 

 

a/h Theory 
  n             

  1   2   3   5 

          2 TSDT [34] 

 
5.7170 

 
5.7546 

 
5.8741 

 
5.9524 

FSDT [12] 

 
5.2104 

 
5.6656 

 
5.6992 

 
5.7140 

Present  
 

5.2104 
 

5.6656 
 

5.6992 
 

5.7140 

RPT1 
 

5.7170 
 

5.7546 
 

5.8741 
 

5.9524 

RPT2 
 

5.5017 
 

5.7240 
 

5.8180 
 

5.8721 
 CLPT 

 
8.6067 

 
14.1036 

 
15.0895 

 
15.6064 

 
 

 
   

 
 

 
 

4 TSDT [34] 

 
8.3546 

 
9.7357 

 
9.9878 

 
10.1241 

FSDT [12] 

 
8.0349 

 
9.8148 

 
9.9852 

 
10.0628 

Present  
 

8.0349 
 

9.8148 
 

9.9852 
 

10.0628 

RPT1 
 

8.3546 
 

9.7357 
 

9.9878 
 

10.1241 

RPT2 
 

8.2651 
 

9.7357 
 

9.9855 
 

10.1167 

CLPT 
 

10.4244 
 

16.3395 
 

17.2676 
 

17.7314 
 

 
 

   
 

 
 

 
10 TSDT [34] 

 
10.5680 

 
14.8463 

 
15.4632 

 
15.7700 

FSDT [12] 

 
10.4731 

 
14.9214 

 
15.5010 

 
15.7790 

Present  
 

10.4731 
 

14.9214 
 

15.5010 
 

15.7790 

RPT1 
 

10.5680 
 

14.8463 
 

15.4632 
 

15.7700 

RPT2 
 

10.5480 
 

14.8433 
 

15.4627 
 

15.7700 

CLPT 
 

11.1537 
 

17.1448 
 

18.0461 
 

18.4916 
 

 
 

   
 

 
 

 
20 TSDT [34] 

 
11.1052 

 
16.5733 

 
17.3772 

 
17.7743 

FSDT [12] 

 
11.0779 

 
16.6008 

 
17.3926 

 
17.7800 

Present  
 

11.0779 
 

16.6008 
 

17.3926 
 

17.7800 

RPT1 
 

11.1052 
 

16.5733 
 

17.3772 
 

17.7743 

RPT2 
 

11.0997 
 

16.5719 
 

17.3769 
 

17.7743 

CLPT 
 

11.2693 
 

17.2682 
 

18.1652 
 

18.6080 
 

  
 

 
 

 
 

 
 

50 TSDT [34] 

 
11.2751 

 
17.1849 

 
18.0644 

 
18.4984 

FSDT [12] 

 
11.2705 

 
17.1899 

 
18.0673 

 
18.4995 

Present  
 

11.2705 
 

17.1899 
 

18.0673 
 

18.4995 

RPT1 
 

11.2751 
 

17.1849 
 

18.0644 
 

18.4984 

RPT2 
 

11.2742 
 

17.1847 
 

18.0643 
 

18.4984 

CLPT 
 

11.3023 
 

17.3032 
 

18.1990 
 

18.6410 

          100 TSDT [34] 

 
11.3002 

 
17.2784 

 
18.1698 

 
18.6097 

FSDT [12] 

 
11.2990 

 
17.2796 

 
18.1706 

 
18.6100 

Present  
 

11.2990 
 

17.2796 
 

18.1706 
 

18.6100 



RPT1 
 

11.3002 
 

17.2784 
 

18.1698 
 

18.6097 

RPT2 
 

11.2999 
 

17.2783 
 

18.1698 
 

18.6097 

CLPT 
 

11.3070 
 

17.3082 
 

18.2038 
 

18.6457 

                    

          Note-3:  Thai [12] reproduced the FSDT proposed by Whitney and Pagano [5].  

 

 

Table 4. 

 

a/h 
Theories  

FSDT [11]    FSDT [5]    FSDT [13]    Present  

        2 5.2017 

 

5.6114 

 

5.6114 

 

5.6114 

4 9.0312 

 

9.5447 

 

9.5447 

 

9.5447 

10 13.8694 

 

14.1454 

 

14.1454 

 

14.1454 

20 15.5295 

 

15.6124 

 

15.6124 

 

15.6124 

30 15.9155 

 

15.9438 

 

15.9438 

 

15.9438 

40 16.0577 

 

16.0655 

 

16.0655 

 

16.0655 

50 16.1264 

 

16.1229 

 

16.1229 

 

16.1229 

60 16.1612 

 

16.1544 

 

16.1544 

 

16.1544 

70 16.1845 

 

16.1735 

 

16.1735 

 

16.1735 

80 16.1991 

 

16.1859 

 

16.1859 

 

16.1859 

90 16.2077 

 

16.1944 

 

16.1944 

 

16.1944 

100 16.2175 

 

16.2006 

 

16.2006 

 

16.2006 

                

        Note - 4: Results using these theories [5] and [13] are computed 
independently by the authors. 

  

 

 

 

 

Table 5. 

 

 

tc/tf 
Theories 

FSDT [11]    FSDT [5]    FSDT [13]    Present  

        4 13,9190 

 

13,3307 

 

13,3307 

 

13,3307 

10 13,8694 

 

14,1454 

 

14,1454 

 

14,1454 

20 12,8946 

 

13,9939 

 

13,9939 

 

13,9939 

30 11,9760 

 

13,5209 

 

13,5209 

 

13,5209 

40 11,2036 

 

13,0152 

 

13,0152 

 

13,0152 

50 10,5557 

 

12,5338 

 

12,5338 

 

12,5338 



100 8,4349 

 

10,6571 

 

10,6571 

 

10,6571 

                

        Note - 5: Results using these theories [5] and [13] are computed 
independently by authors. 

  
Table 6. 

 

a/b 
Theories 

FSDT [11]    FSDT [5]    FSDT [13]    Present  

        0,5 39,4840 

 

40,1511 

 

40,3559 

 

40,3559 

1 13,8694 

 

14,1454 

 

14,1454 

 

14,1454 

1,5 9,4910 

 

9,7826 

 

9,8376 

 

9,8376 

2 10,1655 

 

7,9863 

 

8,0759 

 

8,0759 

2,5 6,5059 

 

6,8463 

 

6,9340 

 

6,9340 

3 5,6588 

 

5,9993 

 

6,0727 

 

6,0727 

5 3,6841 

 

3,9658 

 

3,9929 

 

3,9929 

                

        Note - 6: Results using these theories [5] and [13] are computed 
independently by the authors. 
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