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Abstract. The closed-form solution of a generalized hybrid type quasi-3D higher order 

shear deformation theory (HSDT) for the bending analysis of functionally graded shells is 

presented. From the generalized quasi-3D HSDT (which involves the shear strain 

functions “f( )” and “g( )” and therefore their parameters to be selected “m” and “n”, 

respectively), infinite six unknowns’ hybrid shear deformation theories with thickness 

stretching effect included, can be derived and solved in a closed-from. The generalized 

governing equations are also “m” and “n” parameter dependent. Navier-type closed-form 

solution is obtained for functionally graded shells subjected to transverse load for simply 

supported boundary conditions. Numerical results of new optimized hybrid type quasi-3D 

HSDTs are compared with the first order shear deformation theory (FSDT), and other 

quasi-3D HSDTs. The key conclusions that emerge from the present numerical results 

suggest that: (a) all non-polynomial HSDTs should be optimized in order to improve the 

accuracy of those theories; (b) the optimization procedure in all the cases is, in general, 

beneficial in terms of accuracy of the non-polynomial hybrid type quasi-3D HSDT; (c) it 

is possible to gain accuracy by keeping the unknowns constant; (d) there is not unique 

quasi-3D HSDT which performs well in any particular example problems, i.e. there exists 

a problem dependency matter.  
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1. Introduction 

 

Laminated composite structures such as shells are extensively used in the industry. 

However, even the designer’s effort to tailor different laminate properties to suit a 

particular application; some laminated composite structures suffer from discontinuity of 

material properties at the interface of the layers and constituents of the composite. 

Therefore the stress fields in these regions create interface problems and thermal stress 

concentrations under high temperature environments. Furthermore, large plastic 

deformation of the interface may trigger the initiation and propagation of cracks in the 

material [1]. In order to alleviate this problem, functionally graded materials (FGMs) 

were proposed by Bever and Duwez [2]. Then, this kind of materials were developed and 

successfully used in industrial applications since 1984 [3].  

In the most general case, FGMs are materials with spatial variation of the material 

properties. However, in most of the applications reported in the literature, as in the 

present work, the variation is only along the thickness; demonstrating the present state of 

development of FGMs.  

Recently, several researchers have reported results on functionally graded plates 

(FGPs) and shells. Both analytical and numerical solutions for these cases can be found 

in the literature, Birman and Byrd [4], see also Mantari and Guedes Soares [5-9]. An 

updated literature review of FGMs can be found in the work by Jha et al. [10]. In the 

present article, the relevant and recent related work on functionally graded shells is 

described in what follows.  

Readers interested in developing HSDTs should consult the referential papers by 

Reddy [11], Vel and Batra [12-13] and Cheng and Batra [14]. Alternative bibliografy can 

be also the paper by Liew et al [15] on postbuckling analysis of functionally graded 

cylindrical shells under axial compression and thermal loads using the element-free kp-

Ritz method. In this paper, the authors developed the formulation to handle problems of 

small strains and moderate rotations, based on the FSDT for shells and von Kármán 

strains. 

 

http://ezproxy.concytec.gob.pe:2063/science/article/pii/S0263822314005182#b0180
http://ezproxy.concytec.gob.pe:2063/science/article/pii/S0263822314005182#b0185


Sofiyev and Kuruoglu [16] studied the torsional vibration and buckling of cylindrical 

shells with FG coatings surrounded by an elastic medium. Consequently, Sofiyev and 

Kuruoglu [17] presented a theoretical approach to solve vibration problems of FG 

truncated conical shells under mixed boundary conditions. Then, Sofiyev [18] 

investigated the dynamic instability of exponentially graded sandwich cylindrical shells 

under static and time dependent periodic axial loadings using HSDT. 

Deniz [19] studied the response of a FG coated truncated conical shell subjected to an 

axial load. The author performed the analysis through non-linear equations governing the 

finite deformations of the shell. Ghannad et al. [20] presented an analytical solution for 

deformations and stresses of axisymmetric clamped–clamped thick cylindrical shells with 

variable thickness made of FGMs subjected to internal pressure. The authors used the 

FSDT and matched asymptotic method (MAM) of the perturbation theory. 

Fraldi and colleagues [21] presented the exact analytical solutions for the elastic 

response of a solid circular cylinder composed by the assembly of a central core and n 

surrounding hollow phases, all made of different homogeneous elastic materials, under de 

Saint Venant load conditions. The authors obtained an equivalent one-dimensional 

homogenized beam model for the whole object. Tornabene et al. [22] performed an 

extensive study on doubly-curved FG shells structures using CUF and the Murakami’s 

Zig-Zag (ZZ) function. The authors used the Generalized Differential Quadrature (GDQ) 

method and good referential results were obtained. 

Xie et al. [23] used the Haar Wavelet Discretization (HWD) method-based solution 

approach to study the free vibration analysis of FG spherical and parabolic shells of 

revolution with arbitrary boundary conditions along with the FSDT. Kim [24] studied the 

free vibration characteristics of FG cylindrical shells partially resting on elastic 

foundation with an oblique edge by using the FSDT. Shooshtari and Razavi [25] studied, 

analytically and by using the FSDT, the linear and nonlinear free vibration of 

symmetrically laminated magneto-electro-elastic doubly-curved thin shell resting on an 

elastic foundation. Qu et al. [26] described a general formulation for free, steady-state 

and transient vibration analyses of FG shells of revolution subjected to arbitrary boundary 

conditions. The formulation is derived by means of a modified variational principle in 

conjunction with a multi-segment partitioning procedure on the basis of the FSDT. Thai 



and Kim [27] performed a remarkable review on equivalent single layer theories (ESL) in 

the modelling of functionally graded plates and shells. 

Carrera and co-workers [28] studied the static analysis of FGPs and shells. The 

stretching effect was included in the mathematical formulation and the importance of the 

transverse normal strain effects in the mechanical prediction of stresses of FGPs and 

shells was remarked. Neves et al. [29][30] and Ferreira et al. [31] presented a quasi-3D 

hybrid type (polynomial and trigonometric) shear deformation theory for the static and 

free vibration analysis of functionally graded plates by using meshless numerical method. 

Their formulation can be seen as a generalization of the original Carreras’s Unified 

Formulation (CUF), by introducing different non-polynomial displacement fields for in-

plane displacements, and polynomial displacement field for the out-of-plane 

displacement. Mantari and Guedes Soares [5-9] presented bending results of FGM by 

using new non-polynomial HSDTs. In [7] and [8], the stretching effect was included and 

improved results of displacement and in plane normal stresses compared with [5] and [6] 

were found. Recently, the authors developed an accurate and attractive optimized quasi-

3D HSDTs for advanced composite plates and shells [32][33] by utilizing the well-known 

polynomial sinusoidal shear strain shape function. 

In the other hand, on the basis of the 4-unknown plate theory and  polynomial shear 

strain shape function, Abdelaziz et al. [34] studied the static analysis of FG sandwich 

plates. Consequently, Mechab et al. [35] considered the static and dynamic analysis of 

FGPs with new non-polynomial shear strain shape function (hyperbolic). Recently, a 5 

unknown variables trigonometric plate theory (TPT) with stretching effect was developed 

by Thai and Kim [36] showing good accuracy with respect to its counterpart the TPT 

with 6-unknows.  

Looking for generalized formulations of shear deformation theories for classical and 

advanced composites, it can be said that they are rare in the literature. Regarding to 

generalized formulations in classical composites, it is important to remark the work done 

by Soldatos [37], Carrera (CUF) [38] and Demasi [39,40], Mantari and Guedes Soares 

[41].   

Besides the powerful CUF there exists a generalized formulation proposed by 

Zenkour [42], which were extended to cover the stretching effect in Zenkour [43]. 



Matusanga [44] also developed a generalized HSDT based on polynomial shear strain 

shape functions. In Mantari and Guedes Soares [8], a generalized hybrid type HSDT for 

plates was developed. This generalized theory is able to reproduce the theory proposed in 

[7][43] and others as special case.  

The generalized HSDT of functionally graded plates presented by Zenkour [42][43] is 

similar to the one formulated by Soldatos [37] for laminated composites. Normally non-

polynomial share strain shape functions, such as trigonometric, trigonometric hyperbolic, 

exponential, etc., can be used in this type of generalized formulation, see also Mantari 

and Guedes Soares [41]. However, the thickness expansion model ( )(zg ) is conditioned 

by the in-plane displacement model ( )(zf ), i.e. the transverse shear strain function is an 

even function which is the derivative of the in-plane shear strain shape function ( )(zg  

= )(' zf ). Therefore, there is no freedom in choosing the shear strain shape functions, i.e. 

the through the thickness displacement field modeling.  

The present formulation has that freedom, i.e. )(zg  can be )(' zf  or different transverse 

shear strain function, and therefore infinite hybrid type shear deformation theories 

(polynomial or non-polynomial or hybrid type) can be created just having 6 unknown 

variables or 6 degree of freedom (DOF) for finite element analysis. 

The generalized hybrid type HSDT for plates and shells presented here, and for 

example the well-known CUF (extended to include non-polynomial shape strain 

functions in their formulation [29-31]) demand the development of new non-polynomial 

shape strain functions, which can be adapted to this advanced generalized formulation 

perhaps for better performance. In the present work, in addition to the main contribution 

of the present paper, new non-polynomial shape strain functions are presented for the first 

time. 

It is important to remark that the static or bending problem of shells made of FGMs 

are not much explored neither available in the literature with the exception of CPT 

formulations (in the case of plate bending problems based on shear deformation theories, 

the contribution is quite representative), it may be because not much attention were given 

to the static behavior of FGMs compared with thermomechanical behavior which initially 

was the main concern due to the application requirements. Moreover, the non-polynomial 

function based-HSDTs are not widely used compared with the polynomial function 



based-HSDTs except for the case of the sinusoidal shear deformation theory (SSDT) as 

reported by Thai and Kim [27] who performed an interesting review on shells and 

functionally graded materials in the context of equivalent single layer and PVD and 

RMVT variational statements. In both directions, this paper contributes with the 

implementation of new quasi-3D non-polynomial hybrid type HSDTs to study the 

bending problem of single and sandwich shells. The SSDT with 5 and 6 unknown 

variables were previously optimized by this author and Guedes Soares [32-33]. In ref. 

[32] the bending shell problem were studied through elegant optimized SSDT.  

In this paper a generalized quasi-3D hybrid type HSDT for shells having fixed 

number of unknowns, 6 in this case, is formulated and can be further optimized 

depending on the free selection of the shear strain shape functions. Moreover, several 

new quasi-3D hybrid type HSDTs were optimized and introduced to study the bending 

problems of shells using non-polynomial HSDTs which are rare in the literature. The 

generalized theory complies with the tangential stress-free boundary conditions on the 

plate boundary surface, and thus a shear correction factor is not required. The plate 

governing equations and its boundary conditions are derived by employing the principle 

of virtual work. Navier-type analytical solutions are obtained for shells subjected to 

transverse load for simply supported boundary conditions. Benchmark results for the 

displacement and stresses of functionally graded rectangular plates are obtained. The 

results of some new hybrid HSDTs are compared with 3D exact, quasi-exact, and with 

other closed-form solutions published in the literature.  

 

2. Theoretical Formulation 

 

 

The rectangular doubly-curved shell made of FGM of uniform thickness, h, is shown 

in Figure 1. The ξ1 and ξ2 curves are lines of curvature on the shell mid-surface, 

ξ3 = ζ = 0, while ξ3 = ζ is a straight line normal to the mid-surface. The principal radii of 

normal curvature of the reference (middle) surface are denoted by R1 and R2. The 

generalized displacement field satisfying the conditions of transverse shear stresses (and 



hence strains) vanishing at a point (ξ1, ξ2, ±h/2) on the outer (top) and inner (bottom) 

surfaces of the shell, is given as follows: 
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where u ),( 21  , v ),( 21   and w ),( 21   are the mid-plane displacements; Ɵ1 ),( 21  , 

Ɵ2 ),( 21   and Ɵ3 ),( 21   are rotations of normal to the mid-plane about 2 -, 1 - and 3 -

axis. They are the six unknown displacement functions of the middle surface of the panel 

(6 DOFs), while )
2

('* h
fy   and )

2
(* h

gq   (being h the thickness of the shell), a1 and a2 

are scalar values inherent to the type of shells. These scalar values are associated to the 

vectors tangent to the ξ1 and ξ2 coordinate lines, respectively, for more details readers 

may consult the interesting book written by Reddy [45]. The theory allows the inclusion 

of a freely chosen shear strain shape function, )(zf  (odd function), and )(zg (even). 

In the derivation of the necessary equations, small elastic deformations are assumed, 

i.e. displacements and rotations are small, and obey Hooke’s law. The starting point of 

the present thick shell theory is the 3D elasticity theory [45], expressed in general 

curvilinear (reference) surface-parallel coordinates; while the thickness coordinate is 

normal to the reference (middle) surface as given in Figure 1.   

Replacing the Equations (1a-c) into the elasticity equations [45] (see Appendix A) for 

a moderately shallow and deep shell, the following strain-displacement relations, valid 

for a doubly-curved panel under consideration can be obtained: 

 

210 )( xxxxxxxx f   , 

210 )( yyyyyyyy f   , 

5)(' zzzz g   , 



430 )(')( yzyzyzyz fg   , 

430 )(')( xzxzxzxz fg   , 

210 )( xyxyxyxy f   .        (2a-f) 

 

An FG shell of length a, width b and a total thickness h made of a mixture of metal 

and ceramic materials are considered in the present analysis. The elastic material 

properties vary through the thickness and the power-law distribution is assumed to 

describe the variation of material properties, which is expressed as 

  

































).(,
2

1
,)(

.exp,,
)(

2

1

rulemixtureshellsgradedlyfunctionalfor
h

VPVPP

shellsgradedonentiallyforeVVP
P p

bbt

h
p

b






 (3a-b) 

 

where P denotes the effective material property, Pt and Pb denote the property of the top 

and bottom faces of the panel, respectively, and p is the power-law exponent that 

specifies the material variation profile through the thickness. The effective material 

properties of the shell, including Young’s modulus, E and shear modulus, G vary 

according to Equations (3a-b), and the Poisson ratio,  is assumed to be constant. 

Considering the static version of the principle of virtual work and the stress-strain 

relationship through hook’s law, the following expressions can be obtained:  
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where )(k or )(k  are the stresses and the strain vectors of the k
th

 layer, q is the 

distributed transverse load; and Ni, Mi, Pi, Qi and Ki are the resultants of the following 

integrations: 
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The generalized static version of the governing equations are derived from Equation 

(5) by integrating by parts the displacement gradients and setting the coefficients 

of u , v , w , 1 , 2 and 3  to zero separately. The generalized equations obtained are 

as follows: 

 

:u 0
2

6

1

1

21

6

11

1 



















x

N

x

N

xR

M

xR

M
, 

:v 0
1

6

2

2

12

6

22

2 



















x

N

x

N

xR

M

xR

M
, 

:w 02
21

6

2

2

2

2

2

2

1

1

2

2

2

1

1 













 q

xx

M

x

M

x

M

R

N

R

N
, 

:1 0)( 5

2

6

1

1
5

2

6

1

1* 


















K

x

P

x

P
N

x

M

x

M
y , 

:2 0)( 4

1

6

2

2
4

1

6

2

2* 


















K

x

P

x

P
N

x

M

x

M
y , 



:3 0)2( *

3

1

5

2

4

21

6

2

2

2

2

2

2

1

1

2

1

5

2

4*

2

2

1

1 

































 qqR

x

Q

x

Q

xx

M

x

M

x

M

x

N

x

N
q

R

Q

R

Q
. 

(7a-f) 

In what follows, the problem under consideration is solved for the following simply 

supported boundary conditions prescribed at all four edges: 

 

32111   wvPMN  at x = 0, a,     

31222   wuPMN  at y = 0, b.                (8a-b) 

 

3. Solution procedure 

 

 Exact solutions of the generalized partial differential equations (7a-f) on arbitrary 

domain and for general boundary conditions are difficult to find. Although the Navier 

type solutions can be used to validate the present theory, more general boundary 

conditions will require solution strategies involving, e.g. boundary discontinuous double 

Fourier series approach (see for example Oktem and Guedes Soares [46]). 

 Solution functions that completely satisfy the boundary conditions in Equations (8a-

b) are assumed as follows:  
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where  

 

a

r
  , 

b

s
  .  (10) 

 

 Substituting Equations (9a-f) into Equations (7a-f), the following equations are 

obtained, 

 

 jjij FdK    )6,......,1,( ji  and )( jiij KK  .    (11) 

 

Elements of ijK in Equation (11) can be obtained by using Ref. [32] and the governing 

equations 12(a-f). 
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 where rsQ  are the coefficients in the double Fourier expansion of the transverse load,  
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4. Numerical Results and Discussion 

 

 In the present section, the results of the bending analyses of FG plates and shells are 

presented. The results were obtained from the present generalized hybrid type quasi-3D 

HSDTs with new shear strain shape functions. The theory is formulated in such way that 

the thickness stretching effect (TSE) can be taken into account, i.e. the thickness 

expansion is well-modelled by obeying the Koiter’s recommendation [47], for further 

information the reader is referred to Carrera et al. [28]. 



 The main aim of the present paper is to develop an unavailable generalized hybrid-

quasi-3D HSDT for shells. However, new and well-known optimized shear strain 

functions are also presented. In addition, the foundations to obtain very accurate shear 

strain functions which can allow finding accurate HSDTs are given. The “problem 

dependency matter” regarding to the precision of HSDTs is noticed and discussed for 

advanced composites. Based on the optimization procedure given in this paper, future 

works may be conducted in order to find out the most accurate HSDT having a limited 

number of unknown variables for classical and advanced composite plates.  

 Four pairs of shear strain functions (f() and g()) are studied in the context of the 

present generalized theory, so four different quasi-3D HSDTs are obtained. The first 

HSDT is the well-known trigonometric plate theory TPT (HSDT1) which was here 

optimized for advanced composite plates. The second one is the new tangential 

trigonometric HSDT. The third one is the hybrid type HSDT which combines 

trigonometric and exponential shear strain functions. The fourth one is the polynomial 

quasi-3D HSDT. Table 1 presents more details regarding the shear strain function used in 

this paper. It should keep in mind that the shear strain shape functions presented in Table 

1 allow the transverse shear deformation to have an approximately parabolic distribution 

and it satisfies exactly the zero shear stress conditions on the upper and lower plate 

surfaces. It is also important to mention that this generalized formulation avoid the use of 

complex shear strain function expressions as when accurate 5 unknown HSDTs without 

TSE are looked for, see for example Mantari and Guedes Soares [41].  

 In this paper, in fact, the options to select the shear strain shape functions can be 

infinite and as simple as polynomial HSDT or other more accurate non-polynomial 

functions, and also hybrid type (see Table 1) can be utilized.  

The selection of the unknown parameter “m” and “n” of the shear strain shape 

functions belonging to each quasi-3D HSDTs presented in Table 1 are discussed in what 

follows. Additionally, results reproduced by the present generalized hybrid type quasi-3D 

HSDT are compared with the exact solution provided by Zenkour [43] and other HSDTs 

available in the literature. 

 



4.1 Selection of the parameters “m” and  “n” of the shear strain shape functions “f( )” 

and “g( )” 

The generalized displacement field in Equations 1a-c are formulated with “f( )” and 

“g( )” and therefore with “m” and “n” parameter dependency (see Table 1). The 

generalized governing equations (Equations 12a-f) are formulated with “y
*
” and “q

*
”, and 

therefore they are also “m” and “n” parameter dependent (see Table 1). The unknown 

parameter “m” and “n” of each of the HSDTs presented in Table 1 are obtained by 

providing: (a) the center plate deflection, w (a/2, b/2, 0); and (b) the inplane normal 

stresses yy (a/2, b/2, 0), which produces relatively close results to 3D elasticity bending 

solutions provided by Zenkour [43].  

Zenkour [43] provided 3D exact solutions for exponentially graded rectangular plates 

under bi-sinusoidal loading. The static analysis was conducted using aluminium (bottom, 

Al) graded exponentially trough the thickness of a rectangular plate. The following 

material properties are used for computing the numerical results: 

 

Eb = 70 GPa, b = 0.3         (15) 

 

The following non-dimensional quantities are used: 
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 Figure 2 shows the exponential function V( ) along the thickness of an EG plate for 

different values of the parameter p.  

 Firstly, the well-known trigonometric HSDT (HSDT1, see Table 1) which was also 

studied in Ref. [32] is presented in this paper. This theory, also called trigonometric plate 

theory (TPT), includes the sine function and it was originally developed by Levy [48], 

corroborated and improved by Stein [49], extensively used by Touratier [50], Vidal and 



Polit [51-54], and recently adapted to functionally graded plates (FGP) and EGP by 

Zenkour [42-43]. Here, the TPT is discussed in detail in the sense that the corresponding 

shear strain functions “ )sin()(
m

mf


  ” and “ )cos()(
n

g


  ” are expressed as a 

function of “m” and “n”, respectively, and because they are directly related to the highly 

coupled differential equations (Equations 7a-f) through the parameters “y*” and “q*”, 

then “m” and “n” are optimized to give close results to 3D solution obtained by Zenkour 

[43] as stated above.  When m=n=


h
, the TPT is outlined as special case (noticed that 

when a/h=2 and a=1, the value of m=n=0.1592), see for example the Datatips in Figures 3 

and 4.  

Figure 3 shows the variations of non-dimensionalized vertical deflection with the 

parameter m and n for a very thick plate after an optimization procedure (several 

computations of the partial differential equations by changing the parameter m and n). It 

can be noticed that closer results to the 3D solution obtained by Zenkour [43] 

( 1.63774w ) can be found with values of m≠n≠


h
 (0.1592). The accuracy in the results 

are more susceptible to change of n (transverse shear strain function “g( )”) than m 

(inplane shear strain function “f( )”). 

In Figure 4 the variations of non-dimensionalized inplane normal stresses with the 

parameter m and n after the optimization procedure is shown. In this figure it is even 

more evident the influence of the parameters m and n in the results. As in the previous 

figure the value of m=n2=4h in a very thick plate (a/h=2, a=1) produces more accurate 

results ( 0.4435yy ) to 3D exact solution ( 0.43051yy ) than in the case when 

m=n=0.1592=


h
( 0.4679yy ). In the first case an error around 3% can be noticed, 

however in the well-known TPT it is about 8.7%, i.e. after the optimization procedure of 

this theory 5.7% in accurate is gained.  Again, the accurate in the results are more 

susceptible to change of n (transverse shear strain function “g( )”) than m (inplane shear 

strain function “f( )”). However, as can be noticed, different values of m and n can be 

used according the type of application (for example beams), type of requested results 



(displacement or stresses) and considering the degree of accuracy that is intended to 

reach.  

Figure 5 shows the variations of non-dimensionalized vertical displacement and 

normal stresses with parameters “m” and “n” for an EGP (a/b=1/6, a/h=2 and p={0.1, 

1.5}) computed by using the HSDT2 (see Table 1). From Figure 5 can be noticed that the 

m and n have both the same influence in the accuracy of vertical displacement. However, 

n parameter is more influent in normal stresses results, i.e. the inplane and transverse 

shear strain shape functions are very important, and so the selection of both m and n 

should be performed carefully. Nevertheless, it is still visible a set of values of m and n in 

both plots (dark red color) where good accuracy is achieved. The selected values for m 

and n are shown in Table 2. They are used for further computations in this paper. 

 Figure 6 shows the variations of non-dimensionalized vertical displacement and 

normal stresses with parameters “m” and “n” for an EGP (a/b=1/6, a/h=2 and p={0.1, 

1.5}) computed by using the HSDT3 (see Table 1). In this case it is visible that the m 

parameter is more influent in the non-dimezionalized vertical displacement and normal 

stresses than the parameter n. This can perhaps be explained because the Hybrid HSDT, 

studied in this case, utilize an exponential transverse shear strain shape function “g( )”. 

However, a set of values for m and n (dark red color) where good accuracy is achieved 

can be noticed in Figure 6. Again, the selected values for m and n are presented in Table 

2.  

 Looking at Figures 3-6, in the context of the present generalized hybrid-type quasi-

3D HSDT, it can be said that further studies need to be performed for general conclusions 

regarding the influence of the shear strain shape functions in the accuracy of the results. 

Because few studies related to the influence of non-polynomial hybrid type shear strain 

functions in HSDTs were performed, this paper can lead to a new topic of research. 

 In what follows, numerical results are presented for different aspect ratios (a/b) and 

several values of the parameter p. Table 3 presents results of nondimensionalized centre 

plate deflection, w (a/2, b/2, 0), for very thick plates, a/h=2. In general, the centre 

deflection, w , decreases as p or a/h increase, and also when b/a decreases. For very thick 

rectangular plate, b/a={1,6}, the HSDT2 (A, m=
5

4h
 and n =

3

4h
), HSDT3 (A, m=

3

4h
 



and n =
3

4h2
), and HSDT3 (B, m=

5

4h
 and n =

5

8h2
) present the best results among all 

the rest of HSDT introduced in this paper. These HSDTs have for example an average 

error (average of the absolute value of each specific error at (a/2,b/2,0), see Equations 

(17a-c)) for all the values of p considered in Table 3 (a/h=2 and b/a=6) of 1.6%, which 

decreases as b/a decreases. 
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Results of in-plane normal stress, yy (a/2,b/2,h/2), of square and rectangular thick plate, 

a/h=2, are presented in Table 4. The present results are also compared with 3D 

elasticity solution and other HSDTs above mentioned. The results for the normal stresses, 

yy , increase with both the increase of the parameter, p, and the decrease of the aspect 

ratio, b/a. Likewise, to evaluate the accuracy of the results, the average error was 

calculated. Based on this analysis it can be concluded that for very thick rectangular 

plate, a/h={2} and b/a={1,6}, the HSDT1 (A, hm 4  and hn 4 ) appear to be the very 

good choice, however HSDT1 (B, 
h

m


  and 
h

n


 ) can be also considered. Similar 

conclusions are valid when a/h=4 for both nondimensionalized maximum deflection and 

normal stresses. The analysis of accuracy of shows that the HSDT2 (D, 
h

nm
2


 ) 

present the higher error among all the HSDTs presented in this paper. This HSDT is 

attractive for simplicity, but it is not good option in terms of accuracy. 

 

 

 



4.2 Functionally graded shells (case problem 1) 

 

 The Ren shell geometry is considered in this case problem. The curvature radii are R1 

= 10 m in the 1 direction and R2 =  in the 2 direction. The dimension b is equal to 1 m, 

while the dimension a = 1
3

R


m. The considered thickness h is 2.5 m, 1 m, 0.1 m and 0.01 

m, which means a thickness ratio 
h

R1  equal to 4, 10, 100 and 1000, respectively.  The FG 

shell is subjected to bi-sinusoidal load (r = s = 1), and it is applied at the top. The material 

is that proposed by Zenkour [42] (see equation 18) with the Young’s modulus changing 

according to Equation (3b).  

 

Et = 380 GPa, vt = 0.3; Eb = 70 GPa, vb = 0.3      (18) 

 

 In order to study the accuracy of the present quasy-3D HSDTs, the quasi-exact 

solution provided by Brischetto [55] is used as reference solution. This reference solution 

is proposed by dividing the Ren shell in 100 mathematical layers with constant properties 

and considering for each layer a LM4 theory, this solution is indicated as Nml = 100 in 

Table 5 as originally named by Brischetto and Carrera [56]. This Table considers the 

transverse displacement,  11w10w  , in z = 0. The comparison is made between the 

FSDT, several optimized quasi-3D HSDTs (including the polynomial one, HSDT4 with 

f()=
3
 and g()=

2
, which of course cannot be optimized), the refined HSDTs (LM4, 

LD4, LM2 and LD2) by Brischetto and Carrera [56] and the referential solution 

(Mml=100) for different thickness ratios 
h

R1  and two power-law exponent p=1, 4 for 

the material law.  

Looking at the average errors in Table 5, the first impression is that the FSDT produces 

very large average errors of vertical deflection of Ren shells (70%), therefore its use is 

questionable. In order to select an appropriated quasi-3D HSDT a balance between the 

accuracy and the number of unknowns in the computation (computational cost) should be 



performed. This analysis suggest the use of the HSDT1 (B, m=n=
h


 or A, m=n=4h). 

Alternatives optimized quais-3D HSDTs can be the HSDT3 (A, 
h

m
4

3
  and 

24

3

h
n  ) 

and the HSDT2 (C, 
h

m
4

3
  and 

h
n

1
 ). In addition, the polynomial one (HSDT4) can 

be also a good choice. It should be remembered that all the proposed and optimized 

quasi-3D HSDTs have just 6 unknowns. Interesting procedures to obtain accurate 

theories exists in the literature and most of them do increase the number of unknowns in 

order to reach certain accuracy. However, this optimization procedure keeps constant the 

number of unknowns in the displacement. 

 

4.3 Functionally graded shells (case problem 2) 

 

 In this example problem, cylindrical shells are also considered. It is important to 

remark that the bending problem of shells made of FGMs is not easy to find in the 

literature, it may be because not much attention were given to the static behavior of 

FGMs compared with the thermomechanical behavior.  

 The geometric parameters of the shells are as follows: a=0.2 m, R1=1 m, and 

θ0=0.2 rad. The uniform load is q0=1.0×10
6
 N/m

2
. In this case the FG shell is subjected to 

uniform distributed load (r = s = 100), and it is applied at the top. The functionally graded 

material (Al/ZrO2, aluminum (Al), zirconia (ZrO2),) is that proposed by Zhao et al. [57] 

(see Equation 19). 
 

 

Et = 151 GPa, vt = 0.3; Eb = 70 GPa, vb = 0.3      (19) 

 

 Table 6 presents the non-dimensional center deflection 
h

w
w   of several shell 

geometries. The aforementioned uniformly loaded square Al/ZrO2 shells with three 

different thickness ratios R/h=50,100, 200 are used, and the volume fraction exponents 

are taken as p=0.5, 1, 2. Results reported by Zhao et al. [57] with shear correction factor 

of K=5/6 (FSDT) were compared with the quasi-3D HSDTs presented in this paper. As 



reported by Zhao et al. [57], the displacement increases against the volume fraction 

exponent p. In general, good agreement between the results exist, except for the HSDT2 

(Case B) and HSDT3 (Case C) which in somehow is coherent with the general statements 

and recommendations of the previous case problem.  

 

5. Conclusions 

 

 An unavailable generalized hybrid quasi-3D shear deformation theory for the bending 

analysis of advanced composite shells is presented.  Infinite six unknown’s hybrid shear 

deformation theories, in which the stretching effect is included, can be derived by using 

the present generalized formulation. In this paper new quasi-3D HSDTs for shells (non-

polynomial, hybrid and polynomial) are derived by using the present generalized 

formulation.  

 In general, by the proper selection of the inplane and transverse shear strain shape 

function by an optimization procedure, adequate distribution of the transverse shear 

strains through the plate thickness can be achieved. Thus, the generalized theory complies 

with tangential stress-free boundary conditions and a correction factor is not required.  

 After the optimization procedures over the highly coupled partial deferential 

equations (which are m an n parameter dependent) were performed, the key conclusions 

that emerge from the present numerical results can be summarized as follows: 

 Infinite six unknowns’ hybrid type shear deformation theories with stretching 

effect included can be derived and solved. 

 All the non-polynomial HSDTs should be optimized in order to improve the 

accuracy of the theory.  

 The optimization procedure in all the cases is, in general, beneficial in terms of 

accuracy of the non-polynomial hybrid type quasi-3D HSDTs. 

 It is possible to gain accuracy by keeping the unknowns or DOFs (in FEM) 

constant.  

 There is not unique quasi-3D HSDT which performs well in any particular 

example problems, i.e. there exists a problem dependency matter. 



 Benchmark results for the displacement and stresses of exponential graded 

rectangular plates are obtained, which can be used for the evaluation of other 

HSDTs and also to compare results obtained by using numerical methods such as 

the finite element and meshless methods.  
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Appendix A: Elasticity theory [45] 
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Table Legends 

 

Table 1. Shear starin shape functions of the hybrid type qusi-3D HSDTs.  

Table 2. Selection of the parameter and particularities of the quasi-3D HSDTs. 

Table 3. Non-dimensionalized center deflection w (a/2, b/2, 0) for various EGM 

rectangular plates, a/h=2. 

Table 4. Nondimensionalized normal stresses yy (a/2, b/2, h/2) for EGM rectangular 

plates, a/h=2. 

Table 5.  Transverse displacement (w = w10
10

) of FG Ren shell geometry. 

Table 6.  Non-dimensional center deflections of several shell geometries. 

 

Figure Captions 

 

Figure 1. Geometry of a functionally graded plate 

Figure 2. Exponentially graded function V( ) along the thickness of an EG shell for 

different values of the parameter ‘‘p’’.  

Figure 3. Variations of non-dimensionalized vertical deflection with parameters “m” and 

“n” (HSDT1, a/b=1/6, a/h=2 and p=0.1). 

Figure 4. Variations of non-dimensionalized inplane normal stresses with parameters “m” 

and “n” (HSDT1, a/b=1/6, a/h=2 and p=1.5).  

Figure 5. Variations of non-dimensionalized vertical displacement and inplane normal 

stresses with parameters “m” and “n” (HSDT2, a/b=1/6, a/h=2 and p={0.1, 1.5}).  



Figure 6. Variations of non-dimensionalized vertical displacement and inplane normal 

stresses with parameters “m” and “n” (HSDT3, a/b=1/6, a/h=2 and p={0.1, 1.5}).  

Tables 
 

Table 1. 

Model f() and g() function Particularities 

Present trigonometric 

HSDT(HSDT1) 

)sin()(
m

mf


   

)cos()(
n

g


   

)
2

cos(*

m

h
y   

)
2

cos(*

n

h
q   

Present trigonometric 

HSDT(HSDT2) 

)tan()(  mf   

)sec()(  ng   

)
2

(sec2* mh
my   

)
2

sec(* nh
q   

Present hybrid HSDT(HSDT3) 
)tan()(  mf   

2

)(  neg   

)
2

(sec2* mh
my   

4/* 2nheq   

Present hybrid HSDT(HSDT3) 

3)(  f  

2)(  g  

4

3 2
* h

y  , 

4

2
* h

q   

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2.  
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Table 3. 

 

a/h b/a Theory p=0.1 diff. p=0.3 diff. p=0.5 diff. p=0.7 diff. p=1.0 diff. p=1.5 diff. Avrg. 

2 

6 

3-D[43] 1.63774 (%) 1.48846 (%) 1.35184 (%) 1.22688 (%) 1.05929 (%) 0.82606 (%) (%) 

Present (HSDT1) A 1.63627 -0.1 1.47929 -0.6 1.33623 -1.2 1.20598 -1.7 1.03245 -2.5 0.79371 -3.9 1.7 

Present (HSDT1) B 1.62939 -0.5 1.47309 -1.0 1.33066 -1.6 1.20101 -2.1 1.02823 -2.9 0.79056 -4.3 2.1 

Present (HSDT2) A 1.63704 0.0 1.47995 -0.6 1.33677 -1.1 1.20639 -1.7 1.03263 -2.5 0.79359 -3.9 1.6 

Present (HSDT2) B 1.63661 -0.1 1.47960 -0.6 1.33651 -1.1 1.20624 -1.7 1.03624 -2.2 0.77894 -5.7 1.9 

Present (HSDT2) C 1.63756 0.0 1.48046 -0.5 1.33730 -1.1 1.20690 -1.6 1.03323 -2.5 0.79429 -3.8 1.6 

Present (HSDT2) D 1.63518 -0.2 1.47828 -0.7 1.33526 -1.2 1.20504 -1.8 1.03150 -2.6 0.79277 -4.0 1.8 

Present (HSDT3) A 1.63748 0.0 1.48038 -0.5 1.33723 -1.1 1.20683 -1.6 1.03316 -2.5 0.79422 -3.9 1.6 

Present (HSDT3) B 1.63712 0.0 1.48002 -0.6 1.33684 -1.1 1.20646 -1.7 1.03270 -2.5 0.79366 -3.9 1.6 

Present (HSDT3) C 1.63684 -0.1 1.47982 -0.6 1.33667 -1.1 1.20638 -1.7 1.03635 -2.2 0.77905 -5.7 1.9 

Present (HSDT4) 1.63629 -0.1 1.47931 -0.6 1.33625 -1.2 1.20601 -1.7 1.03244 -2.5 0.79369 -3.9 1.7 

quasi-3D HSDT [7] 1.63654 -0.1 1.47953 -0.6 1.33644 -1.1 1.20618 -1.7 1.03325 -2.5 0.79387 -3.9 1.6 

1 

3-D[43] 0.57693   0.52473   0.47664   0.43240   0.37269   0.28904     

Present (HSDT1) A 0.57761 0.1 0.52215 -0.5 0.47156 -1.1 0.42547 -1.6 0.36400 -2.3 0.27925 -3.4 1.5 

Present (HSDT1) B 0.57308 -0.7 0.51806 -1.3 0.46788 -1.8 0.42216 -2.4 0.36117 -3.1 0.27712 -4.1 2.2 

Present (HSDT2) A 0.57915 0.4 0.52352 -0.2 0.47278 -0.8 0.42652 -1.4 0.36481 -2.1 0.27973 -3.2 1.4 

Present (HSDT2) B 0.57797 0.2 0.52247 -0.4 0.47186 -1.0 0.42574 -1.5 0.36798 -1.3 0.26509 -8.3 2.1 

Present (HSDT2) C 0.57937 0.4 0.52375 -0.2 0.47302 -0.8 0.42672 -1.3 0.36506 -2.0 0.28002 -3.1 1.3 

Present (HSDT2) D 0.58111 0.7 0.52529 0.1 0.47435 -0.5 0.42793 -1.0 0.36598 -1.8 0.28057 -2.9 1.2 

Present (HSDT3) A 0.57919 0.4 0.52359 -0.2 0.47287 -0.8 0.42659 -1.3 0.36494 -2.1 0.27993 -3.2 1.3 

Present (HSDT3) B 0.57933 0.4 0.52369 -0.2 0.47292 -0.8 0.42666 -1.3 0.36493 -2.1 0.27983 -3.2 1.3 

Present (HSDT3) C 0.57822 0.2 0.52270 -0.4 0.47205 -1.0 0.42591 -1.5 0.36812 -1.2 0.26519 -8.3 2.1 

Present (HSDT4) 0.57763 0.1 0.52217 -0.5 0.47158 -1.1 0.42549 -1.6 0.36400 -2.3 0.27924 -3.4 1.5 

quasi-3D HSDT [7] 0.57789 0.2 0.52240 -0.4 0.47179 -1.0 0.42567 -1.6 0.36485 -2.1 0.27939 -3.3 1.4 

 

 

 



 

Table 4. 

 

a/h b/a Theory p=0.1 diff. p=0.3 diff. p=0.5 diff. p=0.7 diff. p=1.0 diff. p=1.5 diff. Avrg. 

2 

6 

3-D[43] 0.2943 (%) 0.3101 (%) 0.3270 (%) 0.3451 (%) 0.3746 (%) 0.4305 (%) (%) 

Present (HSDT1) A 0.2773 -5.8 0.2966 -4.4 0.3171 -3.0 0.3391 -1.7 0.3750 0.1 0.4435 3.0 3.0 

Present (HSDT1) B 0.2912 -1.1 0.3118 0.6 0.3339 2.1 0.3573 3.5 0.3955 5.6 0.4679 8.7 3.6 

Present (HSDT2) A 0.2711 -7.9 0.2897 -6.6 0.3096 -5.3 0.3309 -4.1 0.3657 -2.4 0.4322 0.4 4.4 

Present (HSDT2) B 0.2758 -6.3 0.2949 -4.9 0.3153 -3.6 0.3371 -2.3 0.3740 -0.2 0.4325 0.5 2.9 

Present (HSDT2) C 0.2703 -8.1 0.2889 -6.8 0.3088 -5.6 0.3300 -4.4 0.3648 -2.6 0.4312 0.2 4.6 

Present (HSDT2) D 0.2559 -13.0 0.2730 -11.9 0.2914 -10.9 0.3111 -9.9 0.3434 -8.3 0.4054 -5.8 10.0 

Present (HSDT3) A 0.2713 -7.8 0.2900 -6.5 0.3100 -5.2 0.3313 -4.0 0.3662 -2.2 0.4329 0.6 4.4 

Present (HSDT3) B 0.2702 -8.2 0.2887 -6.9 0.3085 -5.6 0.3298 -4.4 0.3644 -2.7 0.4306 0.0 4.7 

Present (HSDT3) C 0.2747 -6.7 0.2937 -5.3 0.3140 -4.0 0.3357 -2.7 0.3725 -0.6 0.4305 0.0 3.2 

Present (HSDT4) 0.2772 -5.8 0.2965 -4.4 0.3171 -3.0 0.3390 -1.8 0.3749 0.1 0.4433 3.0 3.0 

quasi-3D HSDT [7] 0.2763 -6.1 0.2954 -4.7 0.3159 -3.4 0.3378 -2.1 0.3737 -0.2 0.4416 2.6 3.2 

1 

3-D[43] 0.3103   0.3292   0.3495   0.3713   0.4068   0.4741     

Present (HSDT1) A 0.2927 -5.7 0.3149 -4.3 0.3386 -3.1 0.3636 -2.1 0.4039 -0.7 0.4790 1.0 2.8 

Present (HSDT1) B 0.2955 -4.8 0.3181 -3.4 0.3421 -2.1 0.3675 -1.0 0.4085 0.4 0.4851 2.3 2.3 

Present (HSDT2) A 0.2879 -7.2 0.3096 -6.0 0.3327 -4.8 0.3571 -3.8 0.3965 -2.5 0.4698 -0.9 4.2 

Present (HSDT2) B 0.2926 -5.7 0.3149 -4.4 0.3385 -3.2 0.3635 -2.1 0.4067 0.0 0.4609 -2.8 3.0 

Present (HSDT2) C 0.2912 -6.2 0.3133 -4.8 0.3368 -3.6 0.3616 -2.6 0.4015 -1.3 0.4758 0.4 3.2 

Present (HSDT2) D 0.2847 -8.3 0.3061 -7.0 0.3288 -5.9 0.3528 -5.0 0.3913 -3.8 0.4628 -2.4 5.4 

Present (HSDT3) A 0.2912 -6.2 0.3133 -4.8 0.3368 -3.7 0.3615 -2.6 0.4015 -1.3 0.4759 0.4 3.2 

Present (HSDT3) B 0.2879 -7.2 0.3097 -5.9 0.3327 -4.8 0.3572 -3.8 0.3965 -2.5 0.4698 -0.9 4.2 

Present (HSDT3) C 0.2926 -5.7 0.3149 -4.4 0.3385 -3.2 0.3635 -2.1 0.4067 0.0 0.4607 -2.8 3.0 

Present (HSDT4) 0.2927 -5.7 0.3149 -4.3 0.3385 -3.1 0.3636 -2.1 0.4039 -0.7 0.4790 1.0 2.8 

quasi-3D HSDT [7] 0.2924 -5.8 0.3147 -4.4 0.3383 -3.2 0.3633 -2.2 0.4040 -0.7 0.4785 0.9 2.9 

 



Table 5. 

 

w(0) 

p Theory   \   R1/h 4 diff.(%) 10 diff.(%) 100 diff.(%) 1000 diff.(%) Avrg.(%) 

1 

Nml=100 0.018   0.170   52.781   4201.3     

LM4 0.013 -27.8 0.170 0.0 52.783 0.0 4201.4 0.0 -9.3 

LD4 0.013 -27.8 0.170 0.0 52.783 0.0 4201.4 0.0 -9.3 

LM2 0.013 -27.8 0.162 -4.7 52.693 -0.2 4201.4 0.0 -10.9 

LD2 0.014 -22.2 0.162 -4.7 52.692 -0.2 4201.4 0.0 -9.0 

FSDT 0.054 200.0 0.170 0.0 43.735 -17.1 3792.2 -9.7 61.0 

Present (HSDT1) A 0.015 -14.6 0.162 -4.6 52.263 -1.0 3978.1 -5.3 -6.7 

Present (HSDT1) B 0.011 -41.1 0.159 -6.3 52.109 -1.3 3975.2 -5.4 -16.2 

Present (HSDT2) A 0.018 -2.2 0.164 -3.7 52.251 -1.0 3977.9 -5.3 -2.3 

Present (HSDT2) B 0.016 -11.7 0.163 -4.4 52.261 -1.0 3978.1 -5.3 -5.7 

Present (HSDT2) C 0.018 -1.1 0.164 -3.8 52.228 -1.0 3977.4 -5.3 -2.0 

Present (HSDT2) D 0.023 26.7 0.166 -2.4 52.015 -1.5 3973.5 -5.4 7.6 

Present (HSDT3) A 0.018 -2.8 0.164 -3.8 52.237 -1.0 3977.6 -5.3 -2.5 

Present (HSDT3) B 0.018 0.0 0.164 -3.6 52.243 -1.0 3977.8 -5.3 -1.6 

Present (HSDT3) C 0.016 -9.4 0.163 -4.3 52.257 -1.0 3978.0 -5.3 -4.9 

Present (HSDT4) 0.015 -14.4 0.162 -4.5 52.263 -1.0 3978.1 -5.3 -6.7 

4 

Nml=100 0.032   0.314   79.739   7081.1     

LM4 0.022 -31.3 0.315 0.3 79.734 0.0 7081.6 0.0 -10.3 

LD4 0.021 -34.4 0.315 0.3 79.734 0.0 7081.6 0.0 -11.4 

LM2 0.028 -12.5 0.287 -8.6 79.345 -0.5 7081.6 0.0 -7.2 

LD2 0.032 0.0 0.288 -8.3 79.344 -0.5 7081.6 0.0 -2.9 

FSDT 0.090 181.3 0.277 -11.8 65.603 -17.7 6384.2 -9.8 50.6 

Present (HSDT1) A 0.040 24.4 0.308 -1.9 78.236 -1.9 6780.3 -4.2 6.9 

Present (HSDT1) B 0.030 -5.6 0.303 -3.6 78.016 -2.2 6776.6 -4.3 -3.8 

Present (HSDT2) A 0.045 39.1 0.310 -1.4 78.203 -1.9 6779.3 -4.3 11.9 

Present (HSDT2) B 0.041 27.5 0.308 -1.8 78.240 -1.9 6779.9 -4.3 7.9 

Present (HSDT2) C 0.051 60.3 0.310 -1.3 78.197 -1.9 6777.9 -4.3 19.0 

Present (HSDT2) D 0.054 67.5 0.312 -0.6 77.911 -2.3 6768.8 -4.4 21.5 

Present (HSDT3) A 0.051 58.4 0.310 -1.4 78.207 -1.9 6778.4 -4.3 18.4 

Present (HSDT3) B 0.045 40.9 0.310 -1.3 78.196 -1.9 6778.9 -4.3 12.6 

Present (HSDT3) C 0.042 29.7 0.309 -1.7 78.229 -1.9 6779.6 -4.3 8.7 

Present (HSDT4) 0.040 24.7 0.308 -1.9 78.236 -1.9 6780.2 -4.2 7.0 

 

 

 

 

 

 

 



Table 6. 

p 

w(0) 

Theory 
R1/h 

50 100 200 

0.5 

Ref. [57] 0.0038 0.0543 0.6503 

Present (HSDT1) A 0.0038 0.0544 0.6411 

Present (HSDT1) B 0.0038 0.0542 0.6399 

Present (HSDT2) A 0.0038 0.0543 0.6410 

Present (HSDT2) B 0.0034 0.0538 0.6402 

Present (HSDT2) C 0.0038 0.0543 0.6408 

Present (HSDT2) D 0.0038 0.0541 0.6391 

Present (HSDT3) A 0.0038 0.0543 0.6409 

Present (HSDT3) B 0.0038 0.0543 0.6409 

Present (HSDT3) C 0.0034 0.0538 0.6402 

Present (HSDT4) 0.0038 0.0544 0.6415 

1 

Ref. [57] 0.0043 0.0607 0.7283 

Present (HSDT1) A 0.0043 0.0608 0.7204 

Present (HSDT1) B 0.0043 0.0606 0.7186 

Present (HSDT2) A 0.0043 0.0608 0.7203 

Present (HSDT2) B 0.0043 0.0608 0.7204 

Present (HSDT2) C 0.0043 0.0608 0.7200 

Present (HSDT2) D 0.0042 0.0605 0.7176 

Present (HSDT3) A 0.0043 0.0608 0.7201 

Present (HSDT3) B 0.0043 0.0608 0.7202 

Present (HSDT3) C 0.0043 0.0608 0.7203 

Present (HSDT4) 0.0043 0.0608 0.7204 

2 

Ref. [57] 0.0047 0.0666 0.8057 

Present (HSDT1) A 0.0047 0.0667 0.7991 

Present (HSDT1) B 0.0047 0.0665 0.7971 

Present (HSDT2) A 0.0047 0.0667 0.7989 

Present (HSDT2) B 0.0047 0.0667 0.7990 

Present (HSDT2) C 0.0047 0.0667 0.7986 

Present (HSDT2) D 0.0047 0.0664 0.7958 

Present (HSDT3) A 0.0047 0.0667 0.7987 

Present (HSDT3) B 0.0047 0.0667 0.7988 

Present (HSDT3) C 0.0047 0.0667 0.7990 

Present (HSDT4) 0.0047 0.0667 0.7991 
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