Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12815/244
Título : Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours
Autor: Gonzales Vera, Ricardo Alonso
Seemann, Felicia
Lamy, Jérôme
Arvidsson, Per M.
Heiberg, Einar
Peters, Dana C.
Asesor: Murray Herrera, Victor Manuel
Fecha de publicación : 19-jun-2021
Resumen : Background: Segmentation of the left atrium (LA) is required to evaluate atrial size and function, which are important imaging biomarkers for a wide range of cardiovascular conditions, such as atrial fbrillation, stroke, and diastolic dysfunction. LA segmentations are currently being performed manually, which is time-consuming and observer-dependent. Methods: This study presents an automated image processing algorithm for time-resolved LA segmentation in cardiac magnetic resonance imaging (MRI) long-axis cine images of the 2-chamber (2ch) and 4-chamber (4ch) views using active contours. The proposed algorithm combines mitral valve tracking, automated threshold calculation, edge detection on a radially resampled image, edge tracking based on Dijkstra’s algorithm, and post-processing involving smoothing and interpolation. The algorithm was evaluated in 37 patients diagnosed mainly with paroxysmal atrial fibrillation. Segmentation accuracy was assessed using the Dice similarity coefcient (DSC) and Hausdorf distance (HD), with manual segmentations in all time frames as the reference standard. For inter-observer variability analysis, a second observer performed manual segmentations at end-diastole and end-systole on all subjects. Results: The proposed automated method achieved high performance in segmenting the LA in long-axis cine sequences, with a DSC of 0.96 for 2ch and 0.95 for 4ch, and an HD of 5.5 mm for 2ch and 6.4 mm for 4ch. The manual inter-observer variability analysis had an average DSC of 0.95 and an average HD of 4.9 mm. Conclusion: The proposed automated method achieved performance on par with human experts analyzing MRI images for evaluation of atrial size and function.
Palabras clave : Active contours
Cardiovascular imaging
Magnetic resonance imaging
Left atrium
Segmentation
Editorial : Universidad de Ingeniería y Tecnología
BioMed Central
Citación : Gonzales, R. A., Seemann, F., Lamy, J., Arvidsson, P. M., Heiberg, E., Murray, V. y Peters, D. C. Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours. BMC Med Imaging 21, 101 (2021). https://doi.org/10.1186/s12880-021-00630-3
Descripción : Artículo sustentado el 22 de Julio 2021 para la obtención del título profesional de Ingeniero Electrónico.
URI: https://hdl.handle.net/20.500.12815/244
DOI : https://doi.org/10.1186/s12880-021-00630-3
Aparece en las colecciones: Ingeniería Electrónica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Gonzales Vera_Portada de tesis.pdfGonzales Vera_Portada de tesis71.58 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons