Diseño de un sistema de drenaje activo para el tratamiento del glaucoma
Abstract
El glaucoma es la segunda causa de ceguera a nivel mundial sólo por detrás de la catarata. Esta afección está relacionada a la elevación en la presión intraocular, originada en la mayoría de casos por la falla del sistema de drenaje del ojo. Dentro de los métodos convencionales para el tratamiento del glaucoma se encuentran el uso de gotas oftálmicas, para la disminución de la presión interna del ojo, y la cirugía laser para la creación de canales artificiales de drenaje. En caso los métodos anteriores no sean efectivos en el paciente, se procede a implantar quirúrgicamente un dispositivo de drenaje en la superficie del globo ocular. Estos dispositivos funcionan bajo un principio de activación pasiva, y en la mayoría de los casos no poseen una buena precisión al momento de realizar el drenaje, ocasionando complicaciones como la hipotonía post-operativa. Es por ello que este trabajo se centra en el diseño de un sistema de drenaje activo, que posea mayor precisión con respecto a los dispositivos actuales y sea capaz de evitar la hipotonía en el tratamiento del glaucoma. El sistema activo debe ser lo suficientemente pequeño para ser implantado dentro del globo, así como también preciso al momento de realizar el drenaje; en ese sentido, se utiliza tecnología basada en Microelectromechanical Systems (MEMS) con la finalidad de cumplir con ambos requisitos. El sistema activo cuenta con un sensor piezorresistivo, colocado sobre la superficie de la córnea, que mide constantemente la presión interna del ojo, y a partir de dichas mediciones se decide, o no, activar una válvula piezoeléctrica que realiza el drenaje, colocada en el espacio intraescleral del globo. La presente tesis muestra los resultados de simulación del sistema activo utilizando el modelo computacional del ojo en el software COMSOL Multiphysics. Glaucoma is the second leading cause of blindness worldwide only behind cataract. This condition is related to elevated intraocular pressure, caused in most cases by the malfunctioning of the eye drainage system. Among the conventional methods for the treatment of glaucoma are the use of eye drops, to decrease the intraocular pressure, and laser surgery to create artificial drainage channels. If these methods are not effective in the treatment of the patient, a drainage device is surgically implanted on the surface of the eyeball. These devices work under a passive activation principle, and in most cases they do not have good precision performing the drainage, causing complications such as post-operative hypotony. In that sense, this work focuses on the design of an active drainage system, which has greater precision with respect to the current devices and is capable of avoiding hypotony in the treatment of glaucoma. The active system must be small enough to be implanted within the eye, as well as precise at the drainage; Hence, technology based on Microelectromechanical Systems (MEMS) is used in order to satisfy both requirements. The active system has a piezoresistive sensor, placed on the surface of the cornea, which constantly measures the internal pressure of the eye, and from these measurements it is decided, whether or not, to activate a piezoelectric valve that performs the drainage, placed in the intrascleral space of the eye. This work shows the simulation results of the active system using the computational model of the eye in the COMSOL Multiphysics software.